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Abstract

The present study aims to develop a new formulation to effectively calculate the incompressible Navier–Stokes solutions in non-stag-
gered grids. The distinguished feature of the proposed method, which avoids directly solving the divergence-free equation, is to add a
rigorously derived source term to the momentum equation to ensure satisfaction of the fluid incompressibility. For the sake of numerical
accuracy, dispersion-relation-preserving upwind scheme developed within the two-dimensional context was employed to approximate the
convection terms. The validity of the proposed mass-preserving Navier–Stokes method is justified by solving two benchmark problems at
high Reynolds and Rayleigh numbers. Based on the simulated Navier–Stokes solutions, the proposed formulation is shown to outper-
form the conventional segregated method in terms of the reduction of CPU time.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For more than five decades, numerical prediction of
practically important viscous incompressible fluid flows
has been the focus of the CFD community after the pio-
neering works of Fromm and Harlow [1] and Harlow
and Welch [2]. This differential system for the fluid flow
has gained importance because the predicted solution is
susceptible to various types of numerical oscillation. One
well-known oscillation arises from the central approxima-
tion of convection terms shown in this class of differential
equations. To eliminate the oscillations, which primarily
occur in the velocity field, one can approximate the convec-
tive terms by means of upwinding schemes [3]. However,
upwinding approximation of convective terms can give rise
to false diffusion error as the spatial dimension exceeds one
[4]. Therefore, the chosen flux discretization scheme should
dispense with the cross-wind diffusion error without sacri-
ficing the convective stability. Another type of numerical
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oscillation frequently encountered in the analysis of incom-
pressible flow equations, cast in primitive variables, is due
to the predicted oscillatory pressure values manifested by
the checkerboard pattern. On the non-staggered (collo-
cated) grids, numerical oscillation is evident if a conven-
tional central differencing scheme is used to approximate
the pressure gradient term in the momentum equations
and the cell-face velocity in the approximation of continu-
ity equation [5]. The oscillatory solution is featured with
two separate pressure solutions at the alternating nodes
owing to the decoupling of velocity and pressure fields.
For these reasons, many studies have been motivated to
resolve the checkerboard problem without resorting to
the staggered grid approaches. The need to suppress oscil-
lations of velocity and pressure origins without accuracy
deterioration has motivated our previous study [6].

Another computational challenge encountered in the
calculation of incompressible viscous flow equations is
due to the velocity field which should be always diver-
gence-free. The incompressibility constraint condition
r � u ¼ 0 required for coupling u and p limits the arbitrary
choice of functional spaces for the velocity and pressure. In
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fact, this set of primitive variables should satisfy the
Babuska–Brezzi inf–sup condition [7]. To conserve the
mass, the mixed formulation, which solves the equations of
motion in conjunction with the incompressible constraint
condition, is employed. It is, however, obvious that calcu-
lation of the velocity–pressure coupled discrete equations is
quite expensive. Moreover, the resulting large-sized matrix
equations become diagonally weak and may accommodate
poor eigenvalue distribution. These drawbacks make the
calculation of primitive variables from the incompressible
Navier–Stokes equations an even challenging issue.

The necessity of resolving the divergence-free constraint
condition and the convective instability problems inherent
in the velocity–pressure mixed formulation for the incom-
pressible Navier–Stokes equations has motivated the devel-
opment of projection approach [8,9]. This class of methods,
which are featured with the decomposition of the L2 – vec-
tor fields into the sum of divergence-free and curl-free fields
[10], can be interpreted as the splitting algorithms in time.
Within the framework of fractional-step methods, over
each time step the solution will be updated through two
or more stages. In the first temporal stage, momentum
equations are normally solved for an approximated veloc-
ity vector, which is not necessarily to be divergence-free.
The intermediate velocity vector is then projected into the
divergence-free space by means of a Poisson equation,
which can be cast in different forms, for the updated pres-
sure. The difficulties of simultaneously coping with diver-
gence-free condition and suppressing the convective
instability are revolved.

Besides the projection and pressure–Poisson formula-
tions, the pseudo-compressibility and penalty methods,
which can regularize the primitive-variable Navier–Stokes
equations, have been shown to be able to enhance numer-
ical stability and reduce computational cost. The underly-
ing idea of the pseudo-compressibility methods is to
replace the incompressibility constraint condition with,
for example, the following three equations: (i) r � uþ
�p ¼ 0; (ii) r � uþ � op

ot ¼ 0 and (iii) r � u� �r2p ¼ 0, where
op
on joD ¼ 0 on the boundary oD. The prescribed perturbation
parameter �, which will be addressed in Sections 3.1 and
5.2, plays an essential role to determine the computational
effectiveness. Application of penalty method is another
effective way for the calculation of velocity and pressure
solutions separately. Moreover, this method has the benefit
of not necessarily invoking the pressure–Poisson equation.
The explicit transient MAC method [2] and the implicitly
updating SIMPLE method [4] are known to be the two rep-
resentative primitive-variable methods for solving the
incompressible flow equations. A more recently proposed
gauge method [11] was also developed to replace the pres-
sure variable with the gauge variable U by introducing an
auxiliary vector field a, which differs from the velocity u
by an amount of rU. The advantage of employing this for-
mulation is that the boundary conditions for a and U can
be unambiguously assigned, thus eliminating the problem
of pressure boundary value. Recently, the sequential regu-
larization method (SRM) proposed by Bayo and Avello
[12] for the constrained mechanical system drew much
interest in solving the time-dependent incompressible
Navier–Stokes equations [14,13]. One prevailing advantage
of employing the SRM is that a fully explicit scheme can be
used to calculate the truly transient solution. No need is
required to solve the linear system of momentum equations
and pressure correction equation. Specification of pressure
boundary values can thus be avoided.

This paper is organized as follows. Section 2 presents the
primitive-variable Navier–Stokes equations. This is fol-
lowed by presenting the proposed divergence-free-condition
(DFC) compensated method. Section 4 describes the meth-
ods for appropriately decoupling the velocity–pressure field
in non-staggered grids and the two-dimensional dispersion-
relation-preserving (DRP) scheme for the approximation of
the first-order derivative terms. Both dispersion and Fourier
(or von Neumann) stability analyses will be carried out for
the employed convection–diffusion–reaction (CDR) discret-
ization scheme. Section 5 presents the simulated results to
validate the DRP convection scheme. In Section 6, some
concluding remarks are given.
2. Governing equations

In this study the viscous incompressible flow equations,
including the continuity and momentum equations cast in
the primitive-variable pair ðu; pÞ, are solved at the Rey-
nolds number Re:

r � u ¼ 0; ð2:1Þ
ou
ot
þ ðu � rÞu� 1

Re
r2uþrp ¼ f : ð2:2Þ

In the above, f represents the source term. Given the initial
divergence-free velocity field and the boundary velocity, the
chosen primitive variables u and p will be sought in a region
X with the boundary oX. The condition applied at oX with
an outward normal vector n must satisfy

H
oXu � nds ¼ 0.

Subjected to the constraint Eq. (2.1), the differential sys-
tem governing the viscous flow motion is not entirely evo-
lutionary. Momentum equations can be solved along with
the divergence-free Eq. (2.1). Unconditional satisfaction
of the constraint condition for preserving the mass conser-
vation (or incompressibility) can, however, result in a
matrix system which is not normally well-conditioned.
Under the circumstance, the convergent solutions for
ðu; pÞ become more difficult to be obtained using a compu-
tationally less expensive iterative solver [15]. In certain
cases, the peripheral storage for the matrix equations
may exceed the available computer power and disk space.
These drawbacks led to the derivation of a scalar equation
for p to replace Eq. (2.1). This class of approaches is sub-
jected to the rigorously derived integral condition for the
pressure [16] and is, therefore, computationally more
challenging to be dealt with. Due to the above drawbacks
in the computation of time-dependent incompressible
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Navier–Stokes equations, Lin [14] proposed the sequential
regularization method without invoking any specification
of pressure boundary value. In the present study, a compu-
tationally effective and novel method will be developed in
Section 3 for the time-dependent Navier–Stokes equations.

3. Divergence-free-condition compensated method

3.1. Some underlying theories

Development of regularized methods for solving the
computationally difficult Navier–Stokes equations along
with the incompressibility constraint condition is rooted
in replacing the divergence-free constraint equation for
mass conservation with a differential equation for pressure
or pressure variation. The fractional step and artificial
compressibility methods are the two representative classes
and will be briefly reviewed below. In the artificial com-
pressibility method, the constraint equation for the velocity
field, which is governed by Eq. (2.2), is regularized by add-
ing a pseudo-time-dependent term 1

b
op
os to the left-hand-side

of Eq. (2.1). The equation representing mass conservation
turns out to be the following equation for p:

1

b
op
os
þr � u ¼ 0: ð3:1Þ

While it is very sensitive to obtain the convergent solution
from Eqs. (2.2) and (3.1) due to the user’s specified artificial
compressibility coefficient b (10–500 was recommended in
[17,18]), Eq. (3.1) is served to be the guidance to update
the pressure value by an amount of br � u between the
two pseudo-times (or iterations).

Another approach to approximate Eqs. (2.1) and (2.2) is
to employ the fractional-step methods. In this semi-discrete
formulation, approximation of equations can be generally
decomposed into two or three steps. The first step, which
approximates the viscous and convective terms, consists
of finding an intermediate velocity from the transport
equation for u with the pressure term being omitted. This
step can, thus, be considered as a linearized viscous Bur-
gers’ problem. To make the fractional-step method viable
for solving the incompressible Eqs. (2.1) and (2.2), the time
advancement should be accurately split. Thanks to the
Helmholtz–Hodge decomposition theorem [19], which
enables us to decompose any vector field w into a solenoi-
dal field with the zero normal component on the boundary
and the gradient of some scalar functions. By choosing the
scalar function as U and the divergence-free vector field as
the velocity u, the following equation is resulted from the
Helmholtz–Hodge decomposition theorem

u ¼ w�rU: ð3:2Þ

Define an operator P such that P ðwÞ ¼ u. In other words,
use of this operator can project any vector field w to its
divergence-free part, namely, u. Application of operator
P on Eq. (3.2) can render P ðwÞ as P ðuÞ þ PðrUÞ and, in
turn, P ðrUÞ ¼ 0 by virtue of the definition of P (or
P ðwÞ ¼ u). The operator P is then applied to both hand
sides of Eq. (2.2), for example, to render

P
ou
ot
¼ P �ðu � rÞu�rp þ 1

Re
r2uþ f

� �
: ð3:3Þ

Since u is divergence-free, the derivative term on the left-
hand-side of the above equation is also divergence-free,
thereby yielding Pðou

otÞ ¼
ou
ot. Eq. (3.3) can be therefore re-

duced to

ou
ot
¼ P �ðu � rÞu�rp þ 1

Re
r2uþ f

� �
: ð3:4Þ

Use of the above employed orthogonal splitting operator
can decouple the convective term from the constrained
incompressibility condition, which is known to be the ma-
jor difficulty in the simulation of viscous incompressible
flow equations. Thanks to this theoretically splitting equa-
tion, the vector field can be decomposed into the zero-curl
and zero-divergence parts. The intermediate velocity unþ1

2

can then be calculated from the fully implicit equation
along with the prescribed boundary velocity unþ1

2joX ¼ b as

unþ1
2 � un

Dt
¼ �ðunþ1

2 � rÞunþ1
2 þ 1

Re
r2unþ1

2 þ f nþ1
2: ð3:5Þ

Note that the pressure variable has been eliminated from
the momentum equations. Analysis of incompressible vis-
cous equations becomes therefore much simplified. For
the value of unþ1

2, it can be also calculated sequentially from
the advection and diffusion steps based on the Marchuk–
Yanenko fractional-step method [20]. Use of this method
can separate the convective term from the viscous diffusion

term. The advection step, given by
u

nþ1
2

a �un

Dt þ ðun � rÞun ¼ 0,

and the diffusion step, given by
unþ1

2�u
nþ1

2
a

Dt ¼ 1
Rer

2unþ1
2 þ f nþ1

2,
are resulted. Note that the intermediate velocity solution
unþ1

2 obtained from the above two steps does not satisfy
the divergence-free constraint condition. Then the interme-
diate field unþ1

2 (or w given in Eq. (3.2)) is decomposed into
the sum of the solenoidal velocity field unþ1 and the gradi-
ent of the currently chosen scalar function, which is pro-
portional to Dtrpnþ1. This enlightens the integrity of
employing the following two equations in the projection
step

unþ1 � unþ1
2

Dt
¼ �rpnþ1; ð3:6Þ

r � unþ1 ¼ 0: ð3:7Þ

As the Eq. (3.6) implies, calculation of unþ1 needs a pres-
sure solution. By applying the divergence operator to both
hand sides of Eq. (3.2), the following Poisson equation for
the pressure is derived by virtue of Eq. (3.7)

r2p ¼ r � unþ1
2: ð3:8Þ

The above equation can be considered as the incompress-
ibility condition. Controversy arises regarding the necessity
of specifying the pressure boundary value for Eq. (3.8)
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since no pressure boundary value is needed to be specified
when solving Eqs. (2.1) and (2.2). The resulting incompat-
ibility of the projection boundary conditions with those for
the continuous problem defined by Eqs. (2.1) and (2.2) may
cause a numerical boundary layer of width OððmDtÞ

1
2Þ to de-

velop [21,22]. Besides the numerically generated boundary
layer artifact, analysis of the Poisson equation for p is also
computationally expensive. For these reasons, in the fol-
lowing section the regularization method is proposed.

3.2. Divergence-free-condition compensated method

Development of the proposed regularization method
begins with the substitution of Eq. (3.6) into the following
semi-discretized momentum equation for (2.2)

unþ1 � un

Dt
þ ðunþ1 � rÞunþ1 � 1

Re
r2unþ1 þrpnþ1 ¼ f nþ1:

ð3:9Þ
This substitution yields

unþ1 � un

Dt
þ ðunþ1

2 � rÞunþ1
2 � 1

Re
r2unþ1

2 þrpnþ1

¼ f nþ1 þM1 þM2; ð3:10Þ

where M1 ¼ ½ðunþ1
2 � rÞrpnþ1 þ ðrpnþ1 � rÞunþ1

2 � 1
Rer

2

ðrpnþ1Þ�Dt and M2 ¼ �½ðrpnþ1 � rÞrpnþ1�Dt2. Let pnþ1 ¼
p� þ p0, where p* can be initially chosen to be the computed
convergent solution pn. Afterwards, the value of p* will be
chosen as the most updated value. The pressure gradient
step is decomposed into the following two steps

u� � unþ1
2

Dt
¼ �rp�; ð3:11Þ

unþ1 � u�

Dt
¼ �rp0: ð3:12Þ

Then Eq. (3.10) can be reformulated as

unþ1 � un

Dt
þ ðu� � rÞu� � 1

Re
r2u� þ rp�

¼ f nþ1 �rp0 þM3 þM4; ð3:13Þ

where

M3¼ ðu� �rÞrp0 þ ðrp0 �rÞu� � 1

Re
r2ðrp0Þ

� �
Dt; ð3:14Þ

M4¼�½ðrp0 �rÞrp0�Dt2: ð3:15Þ

By taking the divergence of Eq. (3.12) and imposing the
constraint condition r � unþ1 ¼ 0, Eq. (3.14) can be rewrit-
ten as

M3 ¼ ½ðu� � rÞrp0 þ ðrp0 � rÞu��Dt � 1

Re
rðr � u�Þ: ð3:16Þ

We denote the right-hand-side of Eq. (3.13) as MDFC. The
introduced momentum source term MDFC plays the role of
ensuring the divergence-free condition and can be called as
the divergence-free-condition (DFC) compensated momen-
tum source term. In other words, the main concept of the
proposed compensated method is to replace the diver-
gence-free constraint condition with the momentum source
term, which is added to the momentum equations. Note
that the Lin’s SRM [14] given below.

For m ¼ 1; 2; . . .

oum

ot
þ um � rum �

1

Re
r2um þrpm�1 ¼ krðr � umÞ; ð3:17Þ

pm ¼ pm�1 � kðr � umÞ ð3:18Þ

falls also into the category of the DFC compensated meth-
od provided that f ¼ 0, MDFC ¼ krðr � umÞ and p0 ¼
kðr � umÞ.

In the present study, the aim of developing a compen-
sated method is to avoid dealing with the computationally
challenging divergence-free constraint equation. As the
divergence-free constraint condition is satisfied, the DFC
momentum source will be disappeared. For the steady-
state analysis, the convergent tolerance defined by Eð�
max j/nþ1 � /njÞ, where / represents the field variable for
u or p, is set as E 6 10�6. For the transient case, the
time-accurate solution can be iteratively obtained. After
obtaining the updated values for velocity and pressure at
every iteration, they are substituted into the left-hand-
side of Eq. (3.10) to calculate the momentum source
term. As the momentum source term becomes smaller
than 10�4, the solution at each time step is assumed to be
convergent.

Now, the remaining issue of the proposed compensated
method is to derive the equation for p 0. By performing the
divergence operator on Eq. (3.12), we get

r � unþ1 ¼ r � u� � Dtr2p0: ð3:19Þ
Enforcement of the divergence-free condition r � unþ1 ¼ 0
yields

r2p0 ¼ r � u
�

Dt
: ð3:20Þ

At an interior point ði; jÞ, central approximation of the left-
hand-side of Eq. (3.20) leads to

2
1

Dx2
þ 1

Dy2

� �
p0i;j ¼ �

r � u�i;j
Dt

þ 1

Dx2
ðp0i�1;j þ p0iþ1;jÞ

þ 1

Dy2
ðp0i;j�1 þ p0i;jþ1Þ: ð3:21Þ

By omitting 1
Dx2 ðp0i�1;j þ p0iþ1;jÞ þ 1

Dy2 ðp0i;j�1 þ p0i;jþ1Þ, the fol-
lowing equation can be derived:

p0i;j ¼ �
Dx2Dy2

2ðDx2 þ Dy2ÞDt
r � u�i;j: ð3:22Þ

The above omission may over-estimate the predicted pres-
sure solution p 0. A compensation for the omission of two
terms will be made as follows. First, Eq. (3.22) is used to
obtain the following predicted pressure correction p0�

p0�i;j ¼ �
Dx2Dy2

2ðDx2 þ Dy2ÞDt
r � u�i;j: ð3:23Þ
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This is followed by calculating the pressure correction p 0

from p0� by taking into account the two omitted terms,
which are evaluated using the p0� solutions. The resulting
p 0 solution at ði; jÞ, for example, is calculated according to

p0i;j ¼ p0�i;j þ
Dy2

2ðDx2 þ Dy2Þ ðp
0�
i�1;j þ p0�iþ1;jÞ

þ Dx2

2ðDx2 þ Dy2Þ ðp
0�
i;j�1 þ p0�i;jþ1Þ: ð3:24Þ

Note that under-relaxation is no longer needed.
In summary, given the divergence-free initial velocity

vector, the velocity vector u at the time step ðnþ 1Þ can
be computed explicitly from Eq. (3.13). The source terms
for M3 and M4 are computed respectively from Eqs.
(3.16) and (3.15). As for the source term �rp0, it is calcu-

lated from its central approximation (or p0i;j ¼
p0iþ1;j�p0i�1;j

2Dx )

based on the p 0values computed from Eqs. (3.23) and
(3.24). The pressure solution pi;j at ðnþ 1ÞDt is then com-
puted as pnþ1

i;j ¼ p�i;j þ p0i;j, where p* is the known convergent
value calculated at the previous time (or pn

i;j). The algo-
rithm is summarized below:Given the divergence-free initial

velocity vector u� and p* with p0 ¼ 0

(1) s := 0;
(2) solving Eq. (3.13) to get the velocity vector unþ1

s using
Eqs. (3.16) and (3.15);

(3) solving Eqs. (3.23) and (3.24) to get p0s;
(4) update p by virtue of p�s ¼ p�s�1 þ p0s;
(4) s :¼ sþ 1;
(5) check convergence {if convergence, go to step (1) to

compute the solution at the next time step; otherwise,
go to step (2)}.
13

2

12 4 5 6

1

11

3

7 8 9

10

Fig. 1. Schematic of the stencil points invoked in the proposed two-
dimensional DRP convection scheme.
4. Discretization of spatial derivatives in non-staggered grids

4.1. Approximation of pressure gradient terms

While the even–odd pressure oscillations can be well
resolved in staggered grids, the resulting programming
complexity motivated us to discretize rp in non-staggered
meshes, where the velocities and pressure are stored at the
same point. To avoid spurious pressure oscillations, the
nodal value of pi;j should be taken into account while
approximating rp at a nodal point ði; jÞ. One novel way
to approximate px (or F i;j ð� hpxji;jÞ) at an interior node
ði; jÞ is to use the following implicit equation

c1F iþ1;jþ c2F i;jþ c3F i�1;j

¼ c4ðpiþ2;j�piþ1;jÞþ c5ðpiþ1;j�pi;jÞþ c6ðpi;j�pi�1;jÞ
þ c7ðpi�1;j�pi�2;jÞ: ð4:1Þ

In the above equation, h denotes the constant mesh size.
The readers can refer to [6] for the detailed derivation of
the seven coefficients c1–c7 by expanding F i�1;j in Taylor
series with respect to F i;j, and pi�1;j and pi�2;j with respect
to pi;j.
4.2. Approximation of convective terms

The first-order spatial derivative terms shown in the lin-
earized momentum equations are approximated such that
their dispersion relations, which stand for the relation
between the angular frequency of the wave and the wave-
number of the first-order derivative term, are retained so
that the convective oscillations can be effectively sup-
pressed in the prevailing convection case [23]. For the sake
of simplicity, we present the way of approximating /x,
which can accommodate the dispersion-relation-preserving
property, under Dx ¼ Dy ¼ h. Referring to Fig. 1, /x at the
nodal point ði; jÞ is assumed to be expressed as

/xðx; yÞ ’
1

h
ða1/i�1;j�1 þ a2/i;j�1 þ a3/iþ1;j�1

þ a4/i�1;j þ a5/i;j þ a6/iþ1;j þ a7/i�1;jþ1

þ a8/i;jþ1 þ a9/iþ1;jþ1 þ a10/i;j�2

þ a11/i;jþ2 þ a12/i�2;jÞ: ð4:2Þ

Substitution of the Taylor series expansions for /i�1;j, /i�2;j,
/i;j�1, /i;j�2, /i�1;j�1 into the above equation, we are led to
derive the resulting modified equation for /x. The deriva-
tion is followed by eliminating eleven leading error terms
to yield a system of eleven algebraic equations. One more
equation has to be derived so as to be able to uniquely
determine a1 � a12 shown in Eq. (4.2). It is essential that
the dispersion relation, which stands for the relation be-
tween the angular frequency of the wave and the wavenum-
ber of the spatial variable, be retained so as to effectively
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suppress the convective oscillations in the prevailing con-
vection case [23]. The right-hand-side of Eq. (4.2) is desired
to get nearly the same Fourier transform in space as the
original derivative term shown in the left-hand-side of
Eq. (4.2).

Within the two-dimensional context, defining the Fou-
rier transform and its inverse for /ðx; yÞ as follows:

~/ða; bÞ ¼ 1

ð2pÞ2
Z þ1

�1

Z þ1

�1
/ðx; yÞe�iðaxþbyÞ dxdy; ð4:3Þ

/ðx; yÞ ¼
Z þ1

�1

Z þ1

�1

~/ða; bÞeiðaxþbyÞ dadb: ð4:4Þ

Performing the Fourier transform on terms shown in Eq.
(4.2), the first component in the actual wavenumber vector
a ¼ ða; bÞ can be derived as

a ’ �i

h
ða1 e�iðahþbhÞ þ a2 e�ibh þ a3 eiðah�bhÞ þ a4 e�iah

þ a5 þ a6 eiah þ a7 e�iðah�bhÞ þ a8 eibh þ a9 eiðahþbhÞ

þ a10 eið�2bhÞ þ a11 eið2bhÞ þ a12 eið�2ahÞÞ; ð4:5Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. In the approximated sense, the two com-
ponents of the effective wavenumber vector ~a ¼ ð~a; ~bÞ can
be written as follows
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Fig. 3. Plots of the group velocity ratio Cg

Ce
against the modified wave-number

investigated at Pex ¼ Pey ¼ 102, Rx ¼ Ry ¼ 0 and mx ¼ my ¼ 0:1.
~a ¼ �i

h
ða1 e�iðahþbhÞ þ a2 e�ibh þ a3 eiðah�bhÞ þ a4 e�iah

þ a5 þ a6 eiah þ a7 e�iðah�bhÞ þ a8 eibh þ a9 eiðahþbhÞ

þ a10 eið�2bhÞ þ a11 eið2bhÞ þ a12 eið�2ahÞÞ; ð4:6Þ
~b ¼ �i

h
ðb1 e�iðahþbhÞ þ b2 e�ibh þ b3 eiðah�bhÞ þ b4 e�iah

þ b5 þ b6 eiah þ b7 e�iðah�bhÞ þ b8 eibh þ b9 eiðahþbhÞ

þ b10 eið�2bhÞ þ b11 eið2bhÞ þ b12 eið�2ahÞÞ: ð4:7Þ

To make ~a as an appropriate representation of a, it is ra-
tional to make the value of jah� ~ahj2 (or the following inte-
grated error E ) to be equal to zero in the following weak
sense [23–25]:

EðaÞ ¼
Z p

2

�p
2

Z p
2

�p
2

jah� ~ahj2 dðahÞdðbhÞ

¼
Z p

2

�p
2

Z p
2

�p
2

jic1 � ~c1j
2 dc1 dc2: ð4:8Þ

Note that ðc1; c2Þð� ðah; bhÞÞ should sufficiently define a
period of sine (or cosine) wave. This explains why the inte-
gral range shown above is chosen as � p

2
6 c1, c2 6

p
2
. To

minimize E, oE
oa6
¼ 0 is enforced to obtain a1 ¼ a3 ¼

a7 ¼ a9 ¼ 0, a2 ¼ a8 ¼ 1
9

pð3p�10Þ
ð3p�8Þ , a4 ¼ �1, a6 ¼ 1

3
, a5 ¼

1
6

3p2�19pþ24
ð3p�8Þ , a10 ¼ a11 ¼ � 1

36
pð3p�10Þ
ð3p�8Þ , and a12 ¼ 1

6
. In the
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resulting modified equation, /x is shown to have a spatial
accuracy order of three in the sense that /x ’ h3

12
/xxxxþ

h3

18
pð3p�10Þ
ðp2�6pþ8Þ/yyyy � h4

30
/xxxxx þ h5

72
/xxxxxx þ � � � þHOT. Similarly

for /y , the 12-point stencil discrete equation, which accom-
modates the dispersion relation property, can be derived by
the same way.

Dispersion and Fourier analyses will be conducted for
the two-dimensional linear model equation given by
/nþ1�/n

Dt þ a/n
x þ b/n

y � kr2/n þ c/n ¼ 0. Given the initial
condition /ðx; y; t ¼ 0Þ ¼ exp½iðaxþ byÞ�, the exact solu-
tion for the two-dimensional Euler time-stepping scalar
equation can be expressed in terms of ða; bÞ

/ðx; y; tÞ ¼ expf�½kða2 þ b2Þ þ c�tg expfi½aðx� atÞ
þ bðy � btÞ�g: ð4:9Þ

Referring to Fig. 1, the discrete equation at an interior
point ði; jÞ takes the following form

/nþ1
i;j ¼ A1/

n
i�1;j�1 þ A2/

n
i;j�1 þ A3/

n
iþ1;j�1 þ A4/

n
i�1;j

þ A5/
n
i;j þ A6/

n
iþ1;j þ A7/

n
i�1;jþ1 þ A8/

n
i;jþ1

þ A9/
n
iþ1;jþ1 þ A10/

n
i;j�2 þ A11/

n
i;jþ2

þ A12/
n
i�2;j þ A13/

n
iþ2;j: ð4:10Þ

The exact solution for the above equation, which involves
both amplitude and phase errors, is as follows

~/ðx; y; tÞ ¼ exp � ka2 þ c
2

� � kr

c2
1

þ kb2 þ c
2

� � kr

c2
2

� �
t

	 


	 exp i a x� a
ki

c1

t
� �

þ b y � b
ki

c2

t
� �� �	 


:

ð4:11Þ

By virtue of ðc1; c2Þ ¼ ðah; bhÞ, mx ¼ aDt
h , my ¼ bDt

h , Pex ¼ ah
k ,

Pey ¼ bh
k , Rx ¼ ch

a and Ry ¼ ch
b , the following equation is

derived

exp � ka2þ c
2

� �kr

c2
1

þ kb2þ c
2

� �kr

c2
2

� �
þ i aa

ki

c1

þbb
ki

c2

� �	 

Dt

	 


¼ exp � ka2þ c
2

� � kr

ðahÞ2
þ kb2þ c

2

� � kr

ðbhÞ2

" #((

þ i aa
ki

ah
þbb

ki

bh

� �)
Dt

)
: ð4:12Þ

Dispersion analysis of the semi-discrete equation is made
by substituting /i;j, /i�1;j, /i;j�1, /i�2;j, /i;j�2 and /i�1;j�1,
which are calculated from Eq. (4.11), into Eq. (4.10). By
setting

exp � ka2 þ c
2

� � kr

c2
1

þ kb2 þ c
2

� � kr

c2
2

� �		

þ i aa
ki

c1

þ bb
ki

c2

� �

Dt


¼ expð�p þ i�qÞ;

the parameters accounting for the amplitude, kr, and
phase, ki, errors can be derived as
kr ¼
��p

mx

Pex
þ mx

Pex
þ 1

2

mxRx þ 1

c2
1

þ myRy þ 1

c2
2

� � ; ð4:13Þ

ki ¼
��q

mx þ my
: ð4:14Þ
The exact expressions for /i;j, /i�1;j, /i;j�1, /i�2;j, /i;j�2 and
/i�1;j�1, are then substituted into Eq. (4.10) to render the
following expression

e�pþi�q ¼ ðA1eið��xÞ þ A2eið�c2Þ þ A3eið�yÞ þ A4eið�c1Þ

þ A5ei þ A6eiðc1Þ þ A7eið��yÞ þ A8eiðc2Þ þ A9eið�xÞ

þ A10eið�2c2Þ þ A11eið2c2Þ þ A12eið�2c1Þ þ A13eið2c1ÞÞ;

ð4:15Þ
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where �x ¼ c1 þ c2 and �y ¼ c1 � c2. Two variables �q and �p
shown above can be derived as �q ¼ tan�1 n

m and �p ¼
lnfm cos �qþ n sin �qg from the respective imaginary and real
parts, where m and n are given below

m ¼ ðA1 þ A9Þ cos �xþ ðA2 þ A8Þ cos c2 þ ðA3 þ A7Þ cos �y

þ ðA4 þ A6Þ cos c1 þ A5 þ ðA10 þ A11Þ cosð2c2Þ
þ ðA12 þ A13Þ cosð2c1Þ; ð4:16Þ

n ¼ �½ðA1 � A9Þ sin �xþ ðA2 � A8Þ sin c2 þ ðA7 � A3Þ sin �y

þ ðA4 � A6Þ sin c1 þ ðA10 � A11Þ sinð2c2Þ
þ ðA12 � A13Þ sinð2c1Þ�: ð4:17Þ

Fig. 2 plots the kr and ki contours against ðmx; myÞ and
ðPex; PeyÞ at the condition of ðRx;RyÞ ¼ ð0; 0Þ, for example.
It can be observed from this figure that ki agrees perfectly
with ðc1; c2Þ in the small wavenumber range. The larger the
wavenumbers, the less satisfactory are the predicted phase
and the amplitude errors. The ratio Cg

Ce
for the numerical
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Fig. 7. Comparison of the simulated and Ghia’s results obtained at Re = 5000
(b) comparison of the simulated velocity profiles using the conventional
streamfunction contours; (d) the simulated error reduction plots.
group velocity Cg � 1
2

dx
dc1
þ dx

dc2

� ��
, where x �

�
aa ki

c1
þ

bb ki
c2

��
, and the analytical wave velocity Ce is plotted in

Fig. 3.
Fourier (or von Neumann) stability analysis [27] is also

conducted. Let vx ¼ vy ¼ 2pm
2L h ðm ¼ 0; 1; 2; 3; . . . ;MÞ, h be

the grid size, and 2L be the period of fundamental fre-

quency ðm ¼ 1Þ, the amplification factor G
�
� /nþ1

i;j

/n
i;j

�
can

be derived as G ¼ e�pðcos �qþ i sin �qÞ. In Fig. 4a, jGj is
clearly seen to have a magnitude smaller than one at the
low values of mx and my . Take the case of pex ¼ pey ¼ 102

as an example, when mx ¼ my 6 0:25 the value of jGj is smal-
ler than one. The derived amplification factor is rewritten

as G ¼ jGjeih, where h � tan�1 ImðGÞ
ReðGÞ

��� ���� �
is the phase angle.

According to the exact phase angle he ¼ �ðvxmx þ vymyÞ,
the contour values for the relative phase shift h

he
are plotted

against ðvx; vyÞ, ðmx; myÞ and ðPex; PeyÞ in Fig. 4b at the fixed
value of ðRx;RyÞ ¼ ð0; 0Þ.
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5. Numerical studies

5.1. Validation study

We consider the following transport equation for / in a
square domain ð�1 6 x; y 6 1Þ for the sake of code
validation:

o/
ot
þ u

o/
ox
þ v

o/
oy
¼ 1

Re
o2/
ox2
þ o2/

oy2

� �
þ S: ð5:1Þ

In the above, Re and S denote the Reynolds number and
the source per unit volume, respectively. The solution /
is sought in a domain subject to the following divergence-
free velocity field [28]:

uðx; y; tÞ ¼ � cosðpxÞ sinðpyÞe�2p2t=Re; ð5:2Þ
vðx; y; tÞ ¼ sinðpxÞ cosðpyÞe�2p2t=Re: ð5:3Þ

The analytic solution for / has the same form as u given in
(5.2) provided that S ¼ � op

ox, where

pðx; y; tÞ ¼ � 1

4
ðcosð2pxÞ þ cosð2pyÞÞe�4p2t=Re: ð5:4Þ

As usual, the employed DRP upwind discretization scheme
is assessed by examining the predicted nodal errors ob-
tained at various mesh sizes for Re ¼ 103 and Dt ¼ 10�4.
The rate of convergence is slightly larger than 3, as shown
in Fig. 5, based on the L2-error norms computed at differ-
ent grid sizes of h ¼ 1

10
; 1

15
; 1

20
; 1

25
; 1

30
; 1

35
; 1

40
. The applicability

of the DRP scheme to solve the two-dimensional transport
equation is, therefore, confirmed.

5.2. Lid-driven cavity flow problem

Fluid flow is analyzed at Re = 5000 in the lid-driven
square cavity. For the cases with 81	 81, 101	 101 and
129	 129 mesh points, the predicted velocity profiles
Table 1
Comparison of the predicted eddy centers (primary eddy P, corner eddies BL a
reported in [26,29] for the lid-driven cavity problem investigated at Re = 400,

Symbol Authors R

400

Primary PPE [26] 0.5599, 0.6062
Ghia [29] 0.5547, 0.6055
Present DFC 0.5570, 0.6068

T PPE [26] –
Ghia [29] –
Present DFC –

BL PPE [26] 0.0495, 0.0468
Ghia [29] 0.0508, 0.0469
Present DFC 0.0505, 0.0463

BR PPE [26] 0.8859, 0.1235
Ghia [29] 0.8906, 0.1250
Present DFC 0.8861, 0.1251

Mesh points PPE [26] 101
Ghia [29] 257
Present DFC 101
uð0:5; yÞ and vðx; 0:5Þ plotted in Fig. 7 show good agree-
ment with the steady-state benchmark solutions of Ghia
[29]. Besides the good agreement with the benchmark loca-
tions of eddy centers, which are schematic in Fig. 6 and
tabulated in Table 1, the considerable saving of CPU time
shown in Fig. 8 demonstrates the benefit of applying the
present scheme to carry out the high Reynolds number flow
calculations. For the sake of completeness, the ratios of the
CPU times required in the conventional PPE and the pro-
posed DFC compensated approaches are also given in the
same figure for the three additional cases investigated at
Re = 400, 1000 and 3200. Based on the simulated results,
we can estimate b, shown in Eq. (3.1) for the artificial com-
pressibility method, and plot its magnitude against the iter-
ations. It can be clearly seen from Fig. 9 that b is not the
normally suggested constant value [17,18]. Instead, it is
nd BR, and the eddy T near the cavity roof schematic in Fig. 6) with those
1000, 3200 and 5000

1000 3200 5000

0.5332, 0.5658 0.5180, 0.5453 0.5138, 0.5356
0.5313, 0.5625 0.5165, 0.5469 0.5117, 0.5352
0.5311, 0.5637 0.5173, 0.5464 0.5138, 0.5378
– 0.0532, 0.8965 0.0643, 0.9149
– 0.0547, 0.8984 0.0625, 0.9141
– 0.0546, 0.9025 0.0632, 0.9154
0.0846, 0.0787 0.0838, 0.1102 0.0730, 0.1337
0.0859, 0.0781 0.0859, 0.1094 0.0703, 0.1367
0.0850, 0.0776 0.0827, 0.1148 0.0738, 0.1337
0.8640, 0.1098 0.8203, 0.0876 0.8000, 0.0760
0.8594, 0.1094 0.8125, 0.0859 0.8086, 0.0742
0.8626, 0.1105 0.8194, 0.0868 0.8000, 0.0762
129 129 129
129 129 257
129 129 129
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varied dramatically in the course of calculations. The pro-
posed method is also applied to solve the two-dimensional
transient lid-driven cavity problem. For the cases investi-
gated at Re = 400, 101	 101 mesh points and Dt ¼ 10�3,
the predicted velocity profiles uð0:5; 0:8Þ and uð0:5; 0:2Þ in
Fig. 10 show good agreement with the predicted solutions
of Pontaza [30].

For the sake of completeness, the proposed method is
also applied to solve the three-dimensional lid-driven cavity
problem in a square cube at Re = 400 and 1000. Compar-
ison was made on the basis of the predicted mid-span
velocity profiles along the vertical and horizontal center-
lines. According to the computed solutions plotted in
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Fig. 9. Plots of the magnitude of bð� � Dp
r�uDt) based on the simulated solutions

DFC compensated method with 41 · 41 grids. (a) CFL = 0.1; (b) CFL = 0.5.
Fig. 11, the agreement with the solutions given in [31–33]
is known to be excellent.

5.3. Natural convection problem

Two-dimensional natural convection problem for the
unit square cavity (0 6 x; y 6 1) schematic in Fig. 12 is gov-
erned by the following equations:

ou
ox
þ ov

oy
¼ 0; ð5:5Þ

ou
ot
þ u

ou
ox
þ v

ou
oy
¼ � op

ox
þ Pr

o2u
ox2
þ o2u

oy2

� �
; ð5:6Þ
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for the lid-driven cavity problem investigated at Re = 400 using the present
Note that b in the range of 10 6 b 6 500 was recommended in [17,18].
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ov
ot
þ u

ov
ox
þ v

ov
oy
¼ � op

oy
þ Pr

o
2v

ox2
þ o

2v
oy2

� �
þ RaPrT ; ð5:7Þ

oT
ot
þ u

oT
ox
þ v

oT
oy
¼ o2T

ox2
þ o2T

oy2
: ð5:8Þ

The boundary conditions for velocity at all walls are no-
slip (u ¼ v ¼ 0), while the temperatures along the two ver-
tical walls are T = 1 at x = 0 and T = 0 at x = 1. Along the
horizontal walls, both of them are assumed to be adiabatic

oT
oy ¼ 0
� �

. The problem is investigated at RaðRayleigh
numberÞ ¼ 103; 104, 105; 106; 107 and Pr (Prandtl num-

ber)¼ 0:71. In the current study, uniform mesh of nodal
points 81	 81 is employed for the cases investigated at
Ra ¼ 103; 104 and 129	 129 nodal points for the cases with
Ra ¼ 105; 106; 107. The solutions plotted in Fig. 13 and tab-
ulated in Tables 2–4 are compared well with the referenced
x

y

temperature : Adiabatic
(∂T/∂y = 0)

temperature : Adiabatic
(∂T/∂y = 0)

Liquid

g

temperature : cold wall
(T = TC = 0)

temperature : hot wall
(T = TH = 1)

velocity : u = v = 0

velocity : u = v = 0

velocity : u = v = 0 velocity : u = v = 0

Fig. 12. Schematic of the natural convection problem.
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Fig. 13. The simulated temperature and streamfunction contours for the natural convection problem. (a) and (b) Ra ¼ 106; (c) and (d) Ra ¼ 107.

Table 3
Comparison of the predicted maximum velocity magnitudes for v at (0.5,y) with those reported in [26,34]

Ra 103 104 105 106 107

Chenoweth and Paolucci [34] 3.695 19.62 68.63 220.8 699.0
De Vahl Davis [34] 3.697 19.62 68.63 219.4 –
Ramaswamy, Jue and Akin [34] – 19.62 68.64 232.97 717.04
Le Quéré [34] – – – 220.56 699.2
Saitoh and Hirosh [34] – 19.62 – 216.76 –
Ho and Lin [34] 3.697 19.63 68.63 219.86 705.3
Hortmann, Peric and Scheure [34] – 19.63 68.64 220.46 –
Dennis and Hudson [34] 3.698 19.63 68.64 – –
Kalita, Dalal and Dass [34] 3.697 19.61 68.61 221.66 696.2
Conventional PPE [26] 3.695 19.61 68.55 219.88 695.6
Present work 3.695 19.54 68.50 219.16 692.3

Table 2
Comparison of the predicted values for the streamfunction at (0.5,0.5) with other solutions reported in [26,34]

Ra 103 104 105 106 107

De Vahl Davis [34] 1.174 5.071 9.111 16.32 –
Ramaswamy, Jue and Akin [34] 1.170 5.099 9.217 16.68 29.436
Le Quéré [34] – – – 16.38 29.362
Dennis and Hudson [34] 1.175 5.074 9.113 – –
Kalita, Dalal and Dass [34] 1.175 5.080 9.123 16.42 29.382
Conventional PPE [26] 1.175 5.071 9.113 16.42 29.432
Present work 1.174 5.070 9.103 16.35 29.380
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Table 4
Comparison of the simulated averaged Nusselt numbers Nu with those reported in [26,34]

Ra 103 104 105 106 107

Chenoweth and Paolucci [34] 1.118 2.244 4.520 8.822 16.82
De Vahl Davis [34] 1.118 2.243 4.519 8.800 –
Le Quéré [34] – – – 8.825 16.52
Hortmann, Peric and Scheure [34] – 2.245 4.521 8.825 –
Saitoh and Hirosh [34] – 2.242 – 8.712 –
Ball and Kuo [34] 1.118 2.248 4.528 8.824 16.52
Ho and Lin [34] 1.118 2.248 4.528 8.824 16.52
Comini, Cortella and Manzan [34] – – 4.503 8.825 16.53
Kalita, Dalal and Dass [34] 1.118 2.245 4.522 8.829 16.52
Conventional PPE [26] 1.118 2.242 4.528 8.822 16.80
Present work 1.118 2.241 4.515 8.820 16.70

Table 5
Comparison of the CPU times, marked by (a), required for the
conventional PPE method and the CPU time, marked by (b), using the
present compensated method

Ra 103 104 105 106 107

Conventional
PPE [26]

6975.32 7936.64 – – –

Present work 669.59 745.95 3145.79 4314.01 12307.45
(a)/(b) 10.417 10.639

Note that ‘‘–’’ indicates the cases having the CPU time P20000.
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numerical solutions. As the computed results tabulated in
Table 5, the saving of CPU time is seen to be considerable.

6. Concluding remarks

In the current study, the divergence-free-condition com-
pensated method is proposed to solve the two-dimensional
incompressible viscous equations. The simulated results
from the dispersion-relation-preserving convection scheme
for the first-order derivatives in non-staggered grids dem-
onstrate that the simulated solutions have good agreement
with the benchmark solutions for the lid-driven cavity and
natural convection problems. A considerable amount of
the computational time is also seen to be reduced.
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