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Abstract

A quasi-implicit fractional-step method is presented for computing unsteady incompressible flow on unstructured grids. A non-stag-
gered grid system is employed rather than a staggered grid system because of the simplicity and ease of extension to three-dimensional
analysis. In this study, the momentum interpolation method, developed by Rhie and Chow [C.M. Rhie, W.L. Chow, Numerical study of
the turbulent flow past an airfoil with trailing edge separation, AIAA J. 21 (1983) 1525–1532] and further extended by Zang et al.
[Y. Zang, R.L. Street, J.R. Koseff, A non-staggered grid, fractional-step method for time-dependent incompressible Navier–Stokes equa-
tions in curvilinear coordinates, J. Comput. Phys. 114 (1994) 18–33], is applied to problems on unstructured grids to resolve the pressure
oscillation problem occurring in a non-staggered grid system. An implicit time advancing scheme is used in order to remove the time step
restriction and to reduce the required CPU time for problems with complex geometries. The nonlinear equations resulting from this fully
implicit scheme are linearized without deteriorating the overall time accuracy. The system matrices are solved using the CG family
method, known with P-BiCGSTAB, for momentum equation and P-CG for pressure Poisson equation. The present numerical method
is applied to solve four benchmark problems and the results show good agreement with previous experimental and numerical results.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper a second-order time-accurate numerical
method is presented for solving the unsteady incompress-
ible Navier–Stokes equations on unstructured grids. In
the case of the structured grid, one of the most popular
methods to obtain a time dependent solution for unsteady
incompressible flow is a fractional-step method applied on
the staggered grid system. In this type of method, a pseudo-
pressure is used to correct the velocity field such that the
continuity equation is satisfied at each computational time
step [1]. However, in the case of the unstructured grids, the
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staggered grid system makes the code more complicated
than that implemented in the non-staggered grid system,
because in the staggered grid the control volumes for the
pressure and velocity are very different from each other.
Therefore, in general the non-staggered grid system is pre-
ferred to be chosen than in the staggered grid system in the
case of the unstructured grid. The non-staggered grid sys-
tem had been known to produce unrealistic pressure oscil-
lations in the converged solution until Rhie and Chow [2]
presented their numerical method (momentum interpola-
tion method) for the steady flow which satisfies the mass
conservation on non-staggered structured grids without
resulting in artificial pressure oscillations. Later, Zang
et al. [3] applied the concept of the momentum interpola-
tion method to a fractional-step method for unsteady
flow on non-staggered structured grids. This momentum
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Nomenclature

Af outward area vector based on the facef
P pressure
St Strouhal number
t time
U velocity vector
Uf face velocity vector
ui velocity component along the i-direction

Greek symbols

q density
r gradient operator
X0 domain of cell0
kX0k volume of X0

dt time step
v kinetic viscosity
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interpolation method has been also applied to steady flow
analysis on unstructured grids by a few researchers [4–6].
Kim and Choi [20] proposed a second-order time accuracy
finite volume method for unsteady incompressible flow on
hybrid unstructured grids. Kim and Choi [20] used the
Crank–Nicolson approach of second-order time accuracy
to resolve the nonlinear convection term. However, in this
method, one does need to solve the x- and y-directional
momentum equations simultaneously. Instead of doing
so, a Crank–Nicolson method is used for linearization
the convection term within the one-dimensional context.
Thus it does solve the x- and y-directional momentum,
respectively. It is briefly proved in later section that this
approach can also yield the second-order temporal accu-
racy and is numerically proved in Example 1.

Unstructured grids have been mostly used with the finite
element method. The finite volume method with unstruc-
tured grids has, however, become popular recently. Finite
volume methods on unstructured grids have been mostly
used for steady flow [4–9] but a few have been used for
unsteady flow [10–14]. Miller and Wang [10] used the
stream function and vorticity formulation for the two-
dimensional flow. However, this method cannot be directly
applied to the three-dimensional flow. Pan et al. [11] and
Weiss and Smith [12] employed the artificial compressibil-
ity method, which needs a sub-iterative procedure at each
computational time step and thus requires more computa-
tional efforts. Schulz and Kallinderis [13] and Chen and
Kallinderis [14] used a first-order pressure correction
method on ‘‘structured’’ non-staggered grids without using
the momentum interpolation method and introduced the
artificial dissipation to suppress oscillatory solutions.
Therefore, an accurate and efficient numerical method for
simulating unsteady flows on non-staggered unstructured
three-dimensional grids should be developed.

A modified second-order time-accurate numerical
method for calculating the unsteady incompressible flows
on unstructured grids is presented. The momentum inter-
polation method similar to the method of Rhie and Chow
[2] is developed in the non-staggered grid system, where the
pressure and Cartesian velocity components are defined at
each center of the cell and the face-normal velocities are
defined at the mid-points of the corresponding cell faces
to eliminate the unrealistic pressure oscillations. The
time-integration method is based on a quasi-implicit frac-
tional-step procedure and the resulting nonlinear momen-
tum equations are linearized in one dimension without
losing the overall time accuracy. A finite volume method
is used for the spatial derivative terms and the flow vari-
ables at the cell face are obtained using the pressure correc-
tion, which is independent of the cell shape. The accuracy
of the present method is verified by analyzing four bench-
mark problems known as the decaying vortice [1,3,20],
lid-driven cavity flow [15,20,21], vortex shedding flow
[17,18,20,21], and backward-facing step flow [1,16,20]
problems.
2. Numerical scheme and procedure

2.1. Governing equations

The governing equations for unsteady incompressible
viscous flow are

q oU
ot þr � ðUUÞ
h i

¼ �rP þr � s;

s � l½ðrUÞ þ ðrUÞt� � 2l
3
r � U ;

8<: ð1Þ

r � U ¼ 0; ð2Þ

where r is the gradient operator, l is the viscosity, and q is
the fluid density. The above equations are cast in the
dimensional form. To solve the above equations, use of
SIMPLE algorithm does need the inner iterations to make
the momentum and pressure correction equation to reach
convergence. Then, the converged solution can be updated
from the pressure correction. The updated velocity and
pressure are substituted into the momentum equations un-
til the solution is no longer needed to be updated under
some criteria. This procedure constitutes the outer iterative
loop. Consequently, it takes much longer computational
time for getting a converged solution to satisfy the mass
equation and momentum equation simultaneously at each
time instant. Under this consideration, it does need a
scheme to make the solution converged in an efficient man-
ner and to ensure that the solution is accurate in compari-
son with the analytical solutions or other published
numerical data. In this study, we modified the nonlinear
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convection term by the Crank–Nicolson approach from
one-dimensional sense and this concept can be incorpo-
rated into two-dimensional momentum equation. In order
to prove that this scheme does not lose the overall temporal
accuracy during the discretization, an analytical solution is
tested to show that this approach offers the second-order
time accuracy in time. To discretize the governing equa-
tions for fluid flow, the cell-centered finite volume method
is selected. The reasons are as following:

(a) All conservation principles are applied in a single
control volume.

(b) The variables are located at the center of the cell so
that the mean value theorem is applicable.

(c) A cell can accommodate a velocity at its center.
(d) The number of surrounding cells is constant for a

particular type of cell such as quadrilateral, triangu-
lar or hexahedral. As a result, the construction of
the system matrix is straightforward.

(e) Convection is suppressed for those cells with all
nodes located at the wall in both finite volume
and finite element based methods, whereas, it is
reserved when using the cell-centered finite volume
method.

The face velocity is defined at the mid-point of each cell
face. The face-normal mass flow rate is defined as

J f � qU f � Af ; ð3Þ

where U f is the face velocity located at the center of the
face and Af is outward, the normal face vector. It is noted
that the value of this velocity U f is not the averaged value
from the two adjacent cells. In order to be free from the
pressure oscillations due to the use of collocated, non-stag-
gered grid layout, the momentum interpolation is intro-
duced to give an exact face velocity in this study. Thus,
the improved mass flow rate can be obtained. This partic-
ular observation will be shown in Example 2.
2.2. Numerical scheme

The time-integration method used to solve Eqs. (1) and
(2) is based on the fractional-step method [1,20,21,27],
where the pressure is used to correct the velocity field at
each computational time step. The fully implicit time
advancing scheme is shown as follows:

q
Unþ1 � Un

dt
þr � ðUUÞnþ1

� �
¼ �rP nþ1 þ 0:5lðr2Unþ1 þr2U nÞ þ F ; ð4Þ

dt is the size of time step. F i:e:; o
oxj

l ouj

oxi
� 2

3
dijl

oul
oxl

� �� �
in

Eq. (3) and will be addressed in Eq. (19) in later section.
Implicit treatment of the convective and viscous terms
eliminates the numerical stability restriction. Before we
present the way for the approximation of nonlinear convec-
tion term, we analyze the one-dimensional equation written
as
q
du
dt
þ o

ox
ðuuÞ

� �
¼�oP

ox
þl

o2u
ox2

) q
unþ1�un

dt
þ o

ox
ðu2Þ

� �
¼� oP

ox

� �nþ1

þ0:5l
o2u
ox2

� �nþ1

þ o2u
ox2

� �n
 !

:

ð5Þ
It is noted that we neglect the extra term F for convenience.
To linearize the convection term, a Crank–Nicolson formu-
lation is given as shown below

o

ox
ðu2Þ ¼ 0:5

o

ox
ððu2Þn þ ðu2Þnþ1Þ: ð6Þ
A Taylor series expansion is made and we can have the fol-
lowing equation:

ðu2Þnþ1 ¼ ðu2Þn þ dt
oðu2Þ

ot

� �n

þ 1

2
ðdtÞ2 o

2ðu2Þ
ot2

� �n

þ � � �

) ðu2Þnþ1 ¼ ðu2Þn þ oðu2Þ
ou

� �n

duþOðdtÞ2

) ðu2Þnþ1 ¼ ðu2Þn þ 2unduþOðdtÞ2: ð7Þ

By substitution Eq. (7) into Eq. (6), we can have

o

ox
ðu2Þ ¼ 0:5

o

ox
ð2unun þ 2unðduÞÞ þOðdt2Þ

) o

ox
ðu2Þ ¼ o

ox
ðununþ1Þ þOðdt2Þ

) o

ox
ðu2Þnþ1 � o

ox
ðununþ1Þ: ð8Þ

Based on the above simple analysis, the nonlinear convec-
tion term is linearized without losing the accuracy as
following
q
Unþ1 � U n

dt
þr � ðU nU nþ1Þ

� �
� �rP nþ1 þ 0:5lðr2U nþ1 þr2U nÞ þ F n: ð9Þ
It is also noted that the current approximation is shown to
be of the second-order accuracy in time from one-dimen-
sional sense. Kim and Choi [20] gave a complex approach
in Crank–Nicolson manner and also achieved the second-
order temporal accuracy. It solves the momentum equa-
tions based on the intermediate velocity simultaneously.
Next, we apply a fractional-step procedure to Eqs. (2)
and (9). Thus the proposed quasi-implicit time-advance-
ment scheme can be expressed as
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Present scheme:

q
bU�Un

dt þr � ðUn bU Þ� �
¼ �rP n þ 0:5lðr2 bU þr2UnÞ þ F n;

q U��bU
dt

� �
¼ rP n;

q Unþ1�U�

dt

h i
¼ �rP nþ1

)
r2P nþ1 ¼ q

dtr � U �;
) U nþ1 ¼ U � � dt

q rP nþ1

" #
:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð10Þ

The boundary condition for the intermediate velocity bU or
U � is simply set to the value of U nþ1 and bU yields the second
order in time step. It is proved by the equation given belowbU ¼ U nþ1 þ ðdtÞðrP nþ1 �rP nÞ ) bU
¼ U nþ1 þOðdt2Þ ) bU � Unþ1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

known as quasi-implicit

: ð11Þ

In the present study, the Courant–Friedrichs–Lewy (CFL)
number is employed according to the definition given by
Kim and Choi [20].

CFL ¼ dt
2kXk

X
f

jU f � Af j: ð12Þ
2.3. Definition of cell-centered, collocated control volume

The domain under investigation is initially subdivided
into an arbitrary number of convex polyhedrons called
cells. The boundaries and vertices of these cells are referred
to as the faces and nodes, respectively. The neighboring
cells are defined as those which share a common face. All
transport variables are at the cell centers. The cells used
in the present study are known as the non-staggered cell-
centered, collocated control volumes, as illustrated in
Fig. 1.

2.4. The discrete scalar transport equation

The transport equation of a scalar quantity U can be
cast into the following form by choosing the appropriate
C and SU

oðqUÞ
ot
þ o

oxi
ðquiUÞ ¼

o

oxi
C

oU
oxi

� �
þ SU; ð13Þ

C is the transport coefficient such as the viscosity. U can be
the velocity component uj. The source term SU for the
momentum equations contains the pressure gradient and
the components of the stress tensor not included in the
standard diffusion term and will be addressed in later sec-
tion. An integration over the control volume X0, as indi-
cated in Fig. 1, results in the following equation:

kX0kqUnþ1
0

dt
þ
X

f

J f Uf ¼
X

f

Df þ SU þ
qUn

0

dt

� �
kX0k;

ð14Þ
where J f is the mass flow rate which is defined to be
positive for the flow leaving X0 and will be addressed in
the later section. Df represents the diffusion transport
through the face ‘‘facef ’’. The summations are over the
faces of the control volume.

2.5. Convection flux: J f Uf

The mass flow rate J f at the face ‘‘facef ’’ is determined
when solving the momentum and the continuity equations.
The convective flux can then be determined upon evaluating
the face value of Uf . In the absence of a line structure, the
values of the variable and its derivatives cannot be written
in terms of cell values using a one-dimensional Taylor series
expansion. To overcome this difficulty, several gradient
reconstruction strategies are proposed [23–25]. Among
them, the CVFEM method [24] employs the shape function
and another approach uses the least squares technique [23].
However, these techniques can be quite expensive and are
dependent on the cell-shape. If a shape-independent formu-
lation [5] for the cell gradients can be devised using the diver-
gence theorem, a hyper-order accurate value of Uf at the cell
face could be obtained by using the following formula:

Uf ¼ Unþ1
upwind þrUn

upwind;r � dr; ð15Þ

where dr is the vector that directs from the centroid of an
upwind cell to the center of the face, Unþ1

upwind is the value from
an upwind cell and the reconstructed gradient rUn

upwind;r is
evaluated from the upwind cell at the time instant tn. Note
that the value itself is treated implicitly while the gradient
is evaluated explicitly. The implementation of this upwind
reconstruction has been addressed in Appendix A.

2.6. Diffusion flux: Df

For the non-moving grid system, the time derivative
term on the left-hand side of Eq. (13) can be placed outside
of the volume integral. It should be noted that the diffusion
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term at the face, as defined in Eq. (6), is derived from the
Gauss divergence theorem

Df � ChrUif � Af ; ð16Þ
C is the transport coefficient such as the viscosity in the
momentum equations. In Eq. (16), hrUif � Af is discretized
in a manner similar to the Crank–Nicolson method fre-
quently used in the predication of time dependent diffusion
equation

hrUif � Af ¼ ðU1 � U0Þ
Af � Af

Af � 01

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

First term

þ hrUi � Af � 01
Af � Af

Af � 01

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Second term

� 1

2
ðU1 � U0Þnþ1 þ ðU1 � U0Þn
h i Af � Af

Af � 01

� �
þ hrUinf � Af � 01

Af � Af

Af � 01

� �
: ð17Þ

A detail derivation of Eq. (17) is given in Appendix A. At a
facef , hrUinf is taken to be the averaged derivative deter-
mined from the values calculated at the two adjacent cells.
The volume averaged property hrUi0 is evaluated using
the Gauss divergence theorem and will also be addressed
in Appendix A. There are several methods, addressed in
a detailed manner in [23–25], for evaluating gradients. In
the present study, a cell-center based gradient reconstruc-
tion [5] is adopted due to its simplicity and minimal compu-
tational effort. The face vector Af is outward and normal to
the facef for the cell X0 and 01 is the position vector from
the center of X0 to the center of X1, which is the neighbor
cell of X0. The first term in Eq. (17) is of the first-order
accuracy in space and the second term is a hyper-order
(super-linear) correction. It has been addressed in [28–30]
that the second-order accuracy in space could be achieved
if the cell is orthogonal and quadrilateral. The boundary
diffusion flux can then be treated in the same manner as
that for an interior face. The flux D2 at a boundary, see
Fig. 1, can be written as

D2 � ChrUif � Af

� C
2
ðU2 � U0Þnþ1 þ ðU2 � U0Þn
h iAf � Af

Af � 02

þ ChrUinf � Af � 02
Af � Af

Af � 02

� �� �n

; ð18Þ

where U2 is the value at the center of the boundary face and
02 is the vector from the center of the cell X0 to the centroid
of boundary face. For the Neumann boundary conditions,
the specified flux can be directly added to the control vol-
ume balance. Eq. (18) is also employed to compute the
boundary values.

2.7. Discretization of momentum equation

In a similar manner, the momentum equation is discret-
ized as the general scalar equation described above. The
source term contains the pressure gradient and the compo-
nents of the stress tensor are not included in the standard
diffusion term:

o

oxj
l

ouj

oxi
� 2

3
dijl

oul

oxl
� dijP

� �
: ð19Þ

Eq. (19) is discretized and integrated over the control vol-
ume X0, resulting in the following equation:X

f

lf
ouj

oxi
� 2

3
dijlf

oul

oxl
� dijP f

� �n

Aj; ð20Þ

where the viscosity lf , the extra shear, and pressure forces
at the cell face are evaluated by averaging the cell deriva-
tives and cell values, respectively.
2.8. Mass flow rate J f

Since the pressure and the velocity components are
stored at the cell centers, the evaluation of the mass flow
rate at a cell face J f by averaging the cell center velocities
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is prone to wavy modes and checker-board pressure pat-
terns. To overcome this drawback, a scheme [20,27] similar
to that of Rhie and Chow [2] is used. For the face ‘‘facef ’’
y
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qðU f � U �f Þ � Af

dt
¼ �hrP if � Af ) J f � qU f � Af

¼ q
U �0 þ U �1

2

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

qU�
f

�Af � ðdtÞhrP if � Af ) J n
f

¼ q
U n

0 þ U n
1

2

� �
� Af

� ðdtÞ ððP n
1 � P n

0Þ � hrP inf � 01ÞAf � Af

Af � 01

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pressure correction term

;

ð21Þ
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procedure of using the momentum interpolation method
can be found in Zang et al. [3] for the structured grids in
curvilinear coordinates. Those schemes have been success-
fully applied to a variety of incompressible flow problems.
An implicit method is preferred when the time step limita-
tion imposed by an explicit or semi-implicit stability bound
is significantly less than that imposed by the accuracy
requirement. If the flow geometry contains sharp corners
which exist in many flow geometries, rapid variation of
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flow variables in their vicinity would require dense grid
clustering which restricts the computational time step. A
fully implicit method overcomes this restriction with a
trade-off of possible higher operation counts per time step.
For example, Choi et al. [26] used a fully implicit method
in a curvilinear coordinate system to simulate the flow
over ribs. The required CPU time can be reduced much
as compared to that using a conventional semi-implicit
method.
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2.9. Pressure equation

In an operator splitting method the pressure equation
shown in Eq. (22) is constrained by the assumption of
incompressible fluid flow. It results in

r2P nþ1 ¼ 1

dt
r � ðqU �Þ: ð22Þ

After discretization and integration of Eq. (22) over the
control volume X0, the following equation is obtained:
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hrP inf � Af � 01
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;

Anb ¼ �
Af � Af

01 � Af
; A0 ¼ �
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Once the solution of Eq. (23) is obtained through the pre-
conditioned CG solver, the velocity and pressure fields are
updated using Eq. (10). If the pressure on a boundary is not
known prior, however, knowing the velocity, a Neumann
type of boundary condition, Eq. (10) is employed.

2.10. Equation solver

The number of neighboring cells in Eq. (10) or Eq. (14)
could be arbitrary for an unstructured grid. Ss a conse-
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quence, the familiar line-by-line iterative solvers cannot be
used. Instead, the system is solved using a pre-conditioned
conjugate gradient method. Two algorithms of the conju-
gate gradient (CG) method [22] are used in the present
study. The P-CG method is used for the pressure correction
equation since it gives rise to a symmetric and positive def-
inite coefficient matrix. The P-BiCGSTAB method [22] is
selected for the momentum equation. The convergence cri-
terion is that the normalized residuals given below over all
the cells are less than our prescribed value, usually 10�6
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R � AU� B; R ¼ ðR1;R2; . . . ;Rc; . . . ;RMcellÞ;

kRck
kXck|ffl{zffl}

normalized residual

< 10�6; c ¼ 1; 2; . . . ;Mcell:

8>>><>>>: ð24Þ
In the above, A is the system equations and vector B is the
assembled term from the time dependent convection, and
diffusion with proper boundary conditions specified.
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3. Numerical examples

Example 1 (Decaying Vortex). The temporal accuracy of
the present numerical method is verified by simulating the
following two-dimensional unsteady flow, which has been
investigated by the previous researchers [1,3,20]:
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uðx; y; zÞ ¼ �½cosðpxÞ sinðpyÞ�e�2p2t=Re;

vðx; y; zÞ ¼ �½sinðpxÞ cosðpyÞ�e�2p2t=Re;

pðx; y; zÞ ¼ � 1

4

	
cosð2pxÞ þ cosð2pyÞ



e�4p2t=Re:

ð25Þ

The computational domain is �1=2 6 x; y 6 1=2 and the
computations are carried out at Re = 20–100, where
Re ¼ U maxL=v, and Umax is the initial maximum velocity
and L = 1 is the size of a vortex. The initial velocity condi-
tion at t = 0 and the velocities at the time-varying bound-
aries are provided from the exact solution. The temporal
accuracy is investigated by varying the time step but keep-
ing the mesh size fixed. Here, the orthogonal grids of
100 · 100 cells are used to minimize the spatial error. The
current operator splitting method is verified to have the
second-order time accuracy as shown in Fig. 2.

Example 2 (Lid-Driven Cavity Flow). The geometry,
boundary conditions, and grid for the flow in a lid-driven
square cavity [15,20,21] are shown in Fig. 3. The Reynolds
number is defined as Re ¼ UsL=v, where Us ¼ 1 is the
velocity of the top lid and L = 1 is the length of the bottom
wall. A calculation is performed at Re ¼ 1000 and
Re = 10,000 with an unstructured grid shown in Fig. 4a
and b. In this calculation, the maximum CFL number is
around 3.5. In order to illustrate the effect of pressure cor-
rection term in Eq. (21), the absolute maximum error is
against time in Fig. 4c. Figs. 5–8 shows the centerline veloc-
ities uðxÞ and vðyÞ along the vertical and horizontal center-
lines, respectively. It is noted that the results using the
present scheme is independent of the time step size used
as shown in Fig. 5. In addition, to get the mesh indepen-
dent solution, different types mesh such as triangle and
quadrilateral are used and the results are shown in Fig. 6.
It is also clear that the present results are shown to have
an excellent agreement with the data from Ghia et al.
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cylinder.
[15]. However, the results from Chung are suppressed; in
other words, it introduces much upwind effect in his impli-
cit scheme. Flows of Re ¼ 5000 and Re = 10,000 are tested
further and the results are compared well with the Ghia
et al. [15], as shown in Figs. 7 and 8.
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Example 3 (Backward-Facing Step Flow). Another widely
used benchmark problem to examine the accuracy of the
numerical method is the backward-facing step in a channel
flow. The flow geometry and boundary conditions are
described in Fig. 9. The expansion ratio is 1:2 and the
length of the computational domain is 30h, where h is the
step height. The uniform flow at the entrance is specified
and the traction free boundary condition [21] is specified
at the outlet to obtain the pressure, P nþ1

f ¼ lðnÞt � sn
f � ðnÞ.

s is defined in Eq. (1). To solve bU in the momentum equa-
tion, ðoU=onÞn ¼ 0 is specified at the outlet and this speci-
fication is also applied in Example 4. An unstructured grid
of 8831 quadrilateral is used as shown in Fig. 9. Calcula-
tions are performed at Re ¼ 200; 400, and Re = 600, where
Re ¼ U b2h=v and U b is the bulk velocity. The computa-
tional time step is fixed to satisfy the maximum CFL
around 2–3. Fig. 10 shows the calculated reattachment
length as a function of the Reynolds number, in compari-
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Fig. 16. Plot of the Strouhal number against the Reynolds numbe
son with the previous results of Armaly et al. [16], Kim
and Moin [1] and Kim and Choi [20]. The present result
is in good agreement with the computational result of
Kim and Moin [1] and Kim and Choi [20] for all the inves-
tigated Reynolds numbers calculated. However, at
Re > 400, a difference exists between the computational
(present study and [1]) and the experimental results [16].
This difference may result from the three-dimensionality
of the flow as Armaly et al. [16] pointed out. At
Re = 600, a secondary separation recirculation length
exists on the upper wall (Figs. 10 and 11). The length is
7.9h, which agrees well 7.8h which was obtained from
Kim and Moin [1].

Example 4 (Flow over a Circular Cylinder). Flow over a
circular cylinder at Re > 47 is a typical example of unsteady
flow because vortex shedding takes place at that Reynolds
number range [17,18]. Fig. 12 shows the geometry and
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r (Williamson [19]: St ¼ �3:3265=Reþ 0:1816þ 1:6� 10�4Re).
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boundary conditions for the flow. The computational
domain is �6d 6 x 6 20d and �10d 6 y 6 10d, where d

is the diameter of the cylinder and (x = 0; y = 0) corre-
sponds to the center of the cylinder. Again, the traction free
boundary condition is specified at the outlet.

Fig. 12 shows an unstructured grid with 10318 quadri-
laterals used in this study. Calculations are performed at
three different Reynolds numbers: Re = 80, 100, and
Re = 120, where Re ¼ ubL=v and ub is the uniform inlet
velocity. The computational time step is fixed to satisfy the
maximum CFL which is around 2–3. Fig. 13a shows the
streamline pattern to demonstrate the induced vortex
shedding at t = 253. In order to illustrate the effect of
pressure correction term in Eq. (21), the absolute maxi-
mum error is against time in Fig. 13b. Fig. 14 shows the
time varying vðyÞ velocity. The spectrum results show that
the Strouhal number is 0.166 at the Reynolds number 100,
as shown in Fig. 15. The Strouhal number is a function of
Reynolds number, where St ¼ fd=ub and f is the shedding
frequency. The calculated Strouhal number is compared
with the experimental correlation of Williamson’s [19] and
the computational result of Park et al. [17] shown in
Fig. 16. An excellent agreement is found among these
results.
4. Conclusions

The present numerical method is applied to four bench-
mark problems and the results show good agreement with
the previous experimental and numerical results. Conse-
quently, the following conclusions are drawn from the
above simulation results:

1. A quasi-implicit fractional-step method is presented for
evaluating the unsteady incompressible flow on unstruc-
tured grids.

2. A non-staggered grid system is employed rather than a
staggered grid system because of the simplicity and ease
of extension to three dimensions. Convection is sup-
pressed for those cells with all nodes located at the wall
in both finite volume and finite element methods. This
convection is retained when using the cell-centered finite
volume method.

3. In this study, the momentum interpolation method,
developed by Rhie and Chow [2] and was further
extended by Zang et al. [3], is applied to problems with
unstructured grids to eliminate the wavy mode and the
checker-board pressure pattern occurring in a non-stag-
gered grid system.

4. In order to remove the time step restriction and to
reduce the required CPU time for complex geometries,
a fully implicit time-advancement scheme is used. The
nonlinear equations resulting from this fully implicit
scheme are linearized without losing the overall time
accuracy. Based on the proposed modified implicit
scheme, the second-order time accuracy has been briefly
demonstrated from the one-dimensional point of view
and is validated by the two-dimensional decaying vor-
tice, as illustrated in Example 1.

5. The system matrices are solved using the P-BiCGSTAB
for the momentum equations and the P-CG method is
used to solve the pressure equation so as to update the
velocity.
Acknowledgements

The author would like to thank the National Science
Council of Taiwan for funding this research (project no.:
NSC 95-2211-E-022-016). In addition, the author would
like to express his sincerely thanks to the reviewer for his
critical comments, which enrich my knowledge. These com-
ments are also helpful to revise the manuscript.

Appendix A. ð$/Þf � Af

As shown in Fig. 1, both geometry configuration and
definition are specified. For the two-dimensional gradient
flux, the face vector is expressed as Af ¼ ab� k. k is the
third directional unit vector normal to vectors ab and 01.
By introducing the local base vector, the gradient based
on a cell can be expressed as

r/ ¼ g1 o/
ox1
þ g2 o/

ox2
; ðA1Þ

x1 is the coordinate along the vector ba and x2 is the second
coordinate along 01. Here, the local base vectors g1 and g2

are defined as g1 � ba=jbaj and g2 � 01=j01j, respectively.
The length of a vector ba is defined as jbaj. In this study,
the particular domain is restricted to Xf , which is the do-
main confined by the dash line as shown in Fig. 1. With
the above definitions, Eq. (A1) is integrated over Xf to re-
sult in

hr/iXf
¼ hg1i o/

ox1

� �
þ hg2i o/

ox2

� �
¼ hg1i/a � /b

jbaj þ hg
2i/1 � /0

j01j : ðA2Þ

The notation of hr/iXf
is denoted as the operation of

hr/iXf
�
R

Xf
r/dX=Xf . The local reciprocal base vectors,

hg1iXf
and hg2iXf

, are therefore expressed by the following
two equations:

hg1iXf
¼ jbaj

k � ðba� 01Þ ð01� kÞ; ðA3Þ

hg2iXf
¼ j01j

k � ðba� 01Þ ðk � baÞ: ðA4Þ

Upon substituting the hg1iXf
and hg2iXf

into Eq. (A2), we
have the equation as follows:

hr/iXf
¼ k � ba

k � ðba� 01Þ ð/1 � /0Þ þ
01� k

k � ðba� 01Þ ð/a � /bÞ:

ðA5Þ
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The value of hr/iXf
can be regarded as the gradient at

the facef in practice. Thus, hr/iXf
� ðr/Þf is assumed if

the volume of Xf is limited to a very small scale. Through
the mean value theorem, we can easily obtain the result of
ðr/Þf � Af and the result is expressed below

ðr/Þf � Af � hr/iXf
� ðab� kÞ

¼ Af � Af

k � ðba� 01Þ ð/1 � /0Þ þ
01 � ab

k � ðba� 01Þ
� ð/a � /bÞ: ðA6Þ

It is also noted that k � ðba� 01Þ is equivalent to 01 � Af .
Further simplification of Eq. (A6) yields

ðr/Þf � Af �
Af � Af

01 � Af
ð/1 � /0Þ þ

01 � ab
01 � Af

ð/a � /bÞ: ðA7Þ

The first term in the right-hand side of Eq. (A7) represents
the primary gradient. The second term in the right hand
side of Eq. (A7) is the secondary or cross-diffusion term
and is zero when ba � Af ¼ 0. An alternative but efficient
formula recommended by [8] is defined as Eq. (A8) to treat
the second term in Eq. (A7).

ðr/Þf � Af �
Af � Af

Af � 01
ð/1 � /0Þ

þ r/ � Af � 01
Af � Af

Af � 01

� �� �
: ðA8Þ

The smooth gradient ðr/Þf is defined as ðr/Þf ¼
0:5ððr/Þ0 þ ðr/Þ1Þ, where ðr/Þ0 is obtained through the
following steps.

(1) The reconstruction gradient r/r;0 is estimated as
shown in Eq. (A9).
r/r;0 ¼
1

X0

X
f

/f Af ; ðA9Þ

where the summation is over all the faces of cell0. The
face value of / is obtained by averaging the values at
the neighboring cells and is defined as

/f ¼
/0 þ /1

2
: ðA10Þ
(2) The smooth gradient of / for cell0 can be evaluated by
ðr/Þ0 ¼
1

X0

X
f

/f Af : ðA11Þ

Eq. (A12) enable us to obtain the expression of �/f .
�/f ¼
/f ;0 þ /f ;1

2
: ðA12Þ

Using the reconstruction gradientr/r;0, the value /f ;0

at the face of cell0 can be defined as

/f ;0 ¼ /0 þ ðr/Þr;0 � 0f ; ðA13Þ

where 0f is denoted as the displacement vector from
the center of cell0 to the associated center of facef .
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