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Numerical study of flow field induced by a locomotive fish
in the moving meshes
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SUMMARY

In this paper, the equations of motion are solved together with the incompressible constraint condition to
simulate the flow field induced by the two specified fish motions. Since the investigated flow/structure
interaction varies with time, the analysis is conducted in the moving meshes. Within the arbitrary
Lagrangian–Eulerian (ALE) framework, both the space conservation law and the geometric conserva-
tion law have been rigorously enforced on the discrete level. Grid points move along with the fish to
facilitate the analysis of the induced flow field for revealing the interaction mechanism. The resulting
wave and sinusoidal motions of the fish are addressed. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The habitat of fish in water and its shape and moving mode have evolved to have an optimized
situation. Scientists are, therefore, motivated to design a propelling system from the fish mo-
tion with improved efficiency. In 1960s and 1970s, Lighthill [1–4] and Wu [5–8] attempted to
find an efficient three-dimensional fish-like swimming mode based on the slender body theory.
More recently, the available whole-field velocimetry and numerical visualization have enabled
us to make a detailed study of the flow field around the fish. For example, Anderson [9] and
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Wolfgang et al. [10, 11] illustrated the generation and the manipulation of vorticity in the swimming
and turning fish. The mechanism for producing propulsive and transient force in oscillating flexible
bodies and fins in water was experimentally and theoretically identified in the work of Triantafyllou
et al. [12]. One can also refer to the review article [13] for an overview of the swimming mechanism
for fish. In the literature, the effect of fluid viscosity and the influence of the surface force on the
fish motion have been less explored. Gary [14] had presented a controversial argument that the drag
applied on the swimming dolphin must be smaller than that obtained in towing the rigid dolphin
by a large factor. This subject will be addressed in the present incompressible Navier–Stokes (NS)
study. Based on the simulated results, we will compare the drag force induced by the moving and
non-moving fish bodies.

The remainder of this paper is organized as follows. With moving meshes, the dimensionless
working equations for the fluid flow are presented in Section 2. Within the semi-discretization
framework, the resulting convection–diffusion–reaction (CDR) equations are obtained. In Section 3,
the calculation of grid velocity is addressed so as to preserve the geometric conservation law.
Validation of the CDR finite element model in moving meshes is given in Section 4. This is
followed by the discussion of the simulated results. Finally, we present the concluding remarks.

2. WORKING EQUATIONS WITHIN ALE FRAMEWORK

The following incompressible Navier–Stokes equations are considered in the study of fish motion
along with the viscous effect

∇ · u= 0 (1)

St ut + u · ∇u + ∇ p − 1

Re
∇2u= f (2)

where St and Re denote the Strouhal number St= L/TU and the Reynolds number Re= �fUL/�.
�f/� is the kinematic viscosity of the fluid and L and U are the user-specified characteristic length
and velocity, respectively. The coupled momentum and continuity equations are solved in this
study so that the mass conservation law is unconditionally satisfied. Since the simulated fish body
is time-dependent, the girds are allowed to move with time to adopt the flow domain. Within the
ALE framework, Equation (2) can be identically represented by

St ut + (u − ug) · ∇u + ∇ p − 1

Re
∇2u= f (3)

In the above equation, calculation of the grid velocity ug = St(rt ) warrants a special care.
To describe the finite element model, the following transient convection–diffusion equation is

considered:

�t + u · ∇� − �∇2� + R�= f (4)

Our semi-discretization method starts with approximating �t by means of

�t =
�n+1 − �n

�t
(5)
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The superscripts n and n + 1 represent two consecutive times at tn and tn+1, with an incremental
time step �t (≡ tn+1 − tn). Substitution of Equation (5) into (4) yields the following implicit
equation containing only the spatial derivative terms:

u · ∇�n+1 − �∇2�n+1 +
(
R + 1

�t

)
�n+1 = f (x) + 1

�t
�n (6)

The originally investigated transient convection–diffusion equation (4) is now transformed into the
steady-state convection–diffusion–reaction (CDR) equation (6). We are, therefore, able to apply
our previously developed convection–diffusion–reaction finite element model [15] to solve the
transient transport equation (4).

3. GEOMETRIC CONSERVATION LAW AND GRID VELOCITY

The simulation of conservation equation (3) on the moving meshes requires the value of ug. On
the continuous level, the space conservation law (SCL) and the volume conservation law (VCL)
are naturally satisfied. The SCL implies that each cell should be closed by its surfaces, and the
VCL states that the volume change of a moving cell must be equal to the sum of the volume
increase along its surface that encloses the volume. The combination of the SCL and the VCL
is the geometric conservation law (GCL) [16]. Equations (7) and (8) represent the SCL and the
VCL, respectively [17],

∮
B
a · ds= 0 (7)

�V
�t

=
∮
B
w · ds= 0 (8)

In the above equations, s represents the area vector with its direction normal to the boundary
surface B of the time-varying volume V . a and w represent the constant-velocity flow direction
in any non-moving mesh and the specified boundary velocity vector for B, respectively. While
Equations (7) and (8) are unconditionally satisfied in the continuous sense, they are not always
satisfied in their discrete description. In the course of simulation, violation of the GCL will cause
the prediction accuracy to deteriorate in two ways. The dissatisfaction of the SCL will lead to
an erroneously calculated convection velocity and also the dissatisfaction of the discrete VCL
will cause the mass to accumulate or diminish owing to the numerically introduced source and
sink, respectively. While errors of these kinds have long been recognized, they were not seriously
addressed in many previous reports.

The Galerkin finite element analysis in the moving meshes described in Equation (3) requires
the value of ug. By integrating the GCL condition in its differential description and employing
the divergence theorem, the GCL condition in its integral description is obtained as shown in
Equation (8). In other words, the calculation of grid velocity is constrained by the following GCL
condition:

1√
g

�
√
g

�t
= ∇ · ug (9)
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The
√
g shown above represents the determinant of the Jacobian matrix, which relates the fixed

and the moving co-ordinates. The way to move nodes from their previous locations to the updated
ones in each time step is as follows: We assume that (ug, vg) remains unchanged in magnitude as
well as in direction from (xold, yold) to the updated location at (xnew, ynew). One way to satisfy
the VCL and the SCL and, thus, the GCL is to calculate ug and vg by ug = (xnew − xold)/�t and
vg = (ynew − yold)/�t . The rigorous proof for this calculation is given in Chen and Sheu [18].

4. VALIDATION OF THE ALE FINITE ELEMENT CODE

To validate the current method, the 2D channel flow with a moving indentation is considered. This
problem was numerically studied by Ralph and Pedley [19], Demirdzic and Peric [20], Lai and
Przelwas [21], and experimentally investigated by Pedley and Stephanoff [22]. The indented wall
schematic in Figure 1 is given by

y(x)=

⎧⎪⎪⎨
⎪⎪⎩
h for 0<x<x1

0.5h{1 − tanh[a(x − x2)]} for x1<x<x3

0 for x>x3

(10)

where a = 4.14, x1 = 4, x3 = 6.5, x2 = 5.25 and h = 1
2hmax[1 − cos(2�t)] with hmax = 0.38. The

Reynolds number (Re) in the current study is 507 and the Strouhal number (St) is 0.037. Subjected
to an initially fully-developed velocity, the simulation involves 16 000 elements and the time step
�t is chosen as 0.001. During the calculation, the inlet condition is kept unchanged and the zero
gradient condition for the field variables is applied at the channel outlet.

Due to the cyclic motion of the indented wall, the vortices are generated and destroyed period-
ically. In Figure 2, three main vortices, namely, A, B and C are seen at t = 0.6. The locations of
the crests and troughs for the eddies B and C are plotted in Figure 3. The dimensionless length
X∗ (= x(10St)1/3) is proportional to (St)1/3 and is independent of Re. In Figure 3, good agreement
between the present results and the experimental observation [22] and other numerical results [21]
is seen.

X

Y
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3
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x2

x3

b=1

flow direction

Figure 1. Schematic of the 2D channel with a moving indentation.
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Figure 2. The simulated streamlines and vortices A, B, C at t = 0.6.
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Figure 3. A comparison of positions of eddies B and C.

To validate the present numerical results, the mass conservation law must be satisfied, namely
the local mass conservation (LMC) and the global mass conservation (GMC). The LMC and GMC
are given by LMC ≡ ∫

�e
(u · n) ds and

GMC=
∫

�
(u · n) ds = ∑ ∫

�e

(u · n) ds (11)

In Figure 4, the computed value of GMC is seen to lie between 7.91× 10−13 and 4.174× 10−16.
The mass conservation is well preserved even though the domain undergoes a larger deformation.
In Figure 5, we plotted the region with a large value of LMC and pressure contours at t = 1.5.
In this figure, the value of |LMC| at each point is represented by the size of the square. In other
words, if the size of the square approaches zero, the mass conservation is preserved. Within the
rectangular enclosures shown by the dashed lines, the local mass conservation is less satisfied near

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:2247–2263
DOI: 10.1002/nme



2252 T. W. H. SHEU AND Y. H. CHEN

Time

G
M

C

0 0.5 1 1.5 2

-6E-13

-4E-13

-2E-13

0

2E-13

Figure 4. The simulated value of GMC against time.
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Figure 5. The distribution of LMC magnitudes in the region having a high pressure gradient.

the higher pressure gradient part. The value of |LMC| lies between 4.0× 10−4 and 1.0× 10−10,
instead of zero. From the above discussion, it can be concluded that the present finite element
method fails to maintain the mass conservation exactly in the very high pressure gradient region.
This result is not surprising in the sense that the use of finite element method satisfies the global
mass conservation and the local mass conservation is not exactly maintained everywhere.

5. RESULTS AND DISCUSSION OF FISH-LIKE MOTIONS

In order to simplify the analysis, the chosen Robo Tuna fish is allowed to move only along the
x direction. The fish model under the current investigation has a length of L and its body profile
assumes the form given by [23, 24]

y1(x) = y∗(x∗)
L

= ± 0.152 tanh

(
6x∗

L
+ 1.8

)
for − 0.3<

x∗

L
<0.1 (12)
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Figure 6. Schematic of the fish profile.

y2(x) = y∗(x∗)
L

= ±
(
0.075 − 0.076 tanh

(
7x∗

L
+ 3.15

))
for 0.1<

x∗

L
<0.7 (13)

The length of the NACA0016 caudal fin is 0.07L . By virtue of Equations (12) and (13), the area of
the investigated fish schematic in Figure 6 is calculated as A= 2(

∫ 0.1
−0.3 y1(x) dx +∫ 0.7

0.1 y2(x) dx)=
0.191611. The cross section is assumed to be elliptical with a major to minor ratio (AR= 1.5),
and hence the volume is given by V = 4�AR(

∫ 0.1
−0.3 y1(x)

2 dx + ∫ 0.7
0.1 y2(x)2 dx)= 0.222581.

We consider that the fish backbone varies with time according to the following wave form [23]:
y∗
b (x

∗, t∗) = a∗(x∗) sin(kwx
∗ − �t∗) (14)

where

a∗(x∗) = c1x
∗ + c2(x

∗)2 (15)

In the above equations, Kw (= 2�/�∗) denotes the wave number and � (= 2�/T ) denotes the
circular frequency. The dimensionless form of Equation (14) is as follows:

yb(x, t) = a(x) sin

(
2�

�
x − 2�t

)
(16)

where the dimensionless wavelength is � = �∗L and

a(x)= c1x + c2x
2 (17)

The time t∗ is replaced with tT and the period of waveform T is taken as the reference time. In the
amplitude envelope a(x), c1 and c2 are the two parameters used to generate different configurations.
The point x = 0 is chosen at a distance of 30% of the fish length from its nose as shown in Figure 6.
The motion of the fish backbone is plotted in Figure 7 for the case with c1 = 0.00232, c2 = −0.163
and � = 1.475. In Figure 7, the fish shape is obtained by adding Equations (12) and (13) for the
fish profile and Equation (14) for the backbone and is expressed as

y(x, t) =
{
yb(x, t) ± y1(x, t) for − 0.3<x<0.1

yb(x, t) ± y2(x, t) for 0.1<x<0.7
(18)
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Figure 7. An illustration of the moving fish backbone.

In this simulation, the regeneration of grids is necessary for the up-and-down of the fish movement
and is not necessary in the x direction.

To compute the velocity uf and the displacement xf of fish body, the following dimensionless
equation of motion was employed.

St
duf
dt

+ 4��Snuf + 4�2(Sn)
2xf = Fi

m
(19)

where � is the damping coefficient and m (=m∗/�fL2) is the dimensionless mass. The dimensional
mass per unit length, namely m∗, is rewritten in terms of the density ratio R� (= �b/�f) and the
cross section area A as

m = m∗

�fL2
= �b A

�fL2
= R�

A

L2
(20)

In Equation (19), St (= L/TU ) is called the Strouhal number, where T is the reference time, and
Sn is called the natural Strouhal number, which can be chosen arbitrarily. As the system natural
frequency ( fn) is used to normalize the time, St turns out to be equal to Sn. The external force Fi
can either be the drag force Fx or the lift force Fy , depending on the fish movement. By integrating
the stress along the fish body and the interface boundary �, the force vector can be calculated
according to

F= (Fx î, Fy ĵ) =
∫

�
�̃ · n ds =

∫
�
(�xxnx + �xyny) ds î +

∫
�
(�xynx + �yyny) ds ĵ

The moment referenced to the mass centre x̄i (≡ ∫
xi dA/

∫
dA) is given by

MG = Mz k̂=
∫

�
rg × (�̃ · n) ds

=
∫

�
[(rg)x (�xynx + �yyny) − (rg)y(�xxnx + �xyny)] dsk̂ (21)

where rg is located between the boundary point and the mass centre.
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Figure 8. The switching of the caudal fin at different times.

The steps involved in the present simulation are described as follows: The fish shape �f is
determined first from Equation (18) to render Figure 8. This is followed by the grid generation
to obtain the proper new solution points. Then the grid velocity is computed to solve the NS
equations. By virtue of Equation (21), the stress along �f is integrated to obtain the force applied
on the fish body. Finally, the equation of motion (19) is solved to obtain the new fish velocity. The
above procedures are repeated until the terminated time is reached.

In Figure 9, the gradient type boundary condition is specified at the free stream boundary �o.
The no-slip condition is applied on the fluid/solid interface and the boundary moving velocity
is assigned as the flow velocity, u|� =ug|�. In the simulation, 3120 elements and 12 830 nodal
points are generated in the domain �, with more points clustered near the fish body. As the flow
near the caudal fin is very complex, many vortices may be generated here and, hence, a fine mesh
is generated at this caudal fin region. The length of the Tuna fish is taken as 1 m and its volume
is 0.222 m3. The density ratio of the fish and water is assumed as R� = (�fish/�water) = 1.

As the fish swims forward with the velocity of −0.147, the streamlines are plotted in Figure 10
from t = 4.0–4.5 at (St,Re) = (0.5, 2000). As the fish moves forward, two vortices are seen to be
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Figure 9. Schematic of the computational domain and its boundaries.

regularly generated at each side of the fish body. Their locations and sizes keep changing with
the fish velocity. The fish position, the velocity and the drag force (Fx ) applied on the fish are
plotted in Figure 11 for (St,Re) = (0.5, 2000). From the simulated displacement, it is observed
that the specified backbone motion makes the fish to swim forward continuously (x-direction).
The net force applied along the x-direction changes its sign alternately. As the absolute value
of the negative force is larger than its positive counterpart, the fish can move along the negative
x-direction due to the viscous effect. There are two types of force applied on the fish, known as the
pressure force and the viscous force. In order to show their roles, Fx was separated into two parts.
One force is contributed from the pressure (Fx )p and the other from the viscosity (Fx )v . The Fx ,
(Fx )p, (Fx )v and velocity at t = 3.0–5.0 are plotted in Figure 12. It is found that (Fx )p is always
negative and is considered as the source of propulsion. The simulated profile (Fx )p enlightens that
the fish wave motion can always lead to a net force that can cause the fish to move towards the
side with a small amplitude.

The maximum force (Fx )p is seen to appear at t = 4.27 and the caudal fin has the largest
displacement at side (b) as shown in Figure 13. Arrows 1 and 2 seen in Figure 13 indicate the
moving direction of each part of the fish. The part A of the fish moves towards the direction of
arrow 1. In the incompressible fluid flow, the pressure side (positive) and the suction side (negative)
always appear in pair. The pressure side is denoted as side (a) and side (b) is regarded as the
suction side. In this figure, the dashed line and shaded region denote the pressure distribution along
the fish surface. The magnitudes of pressure at sides (a) and (b) are almost the same, but their
signs are different. Usually, the pressure force at the pressure side will generate a force which is
capable of pushing the fish forward, while the pressure force at the suction side will generate an
opposite one. From this point of view, it is observed that if the fish locomotion is not proper, the
force at one side may cancel that at the other side and the fish cannot move forward. By examining
the side (a), it is noted that the pressure is positive. There exists an angle 	a between the moving
direction and the fish surface. The existence of this angle has caused the positive normal pressure
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Figure 10. The simulated time-varying streamlines at Re= 2000 and St= 0.6.
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Figure 11. The simulated location, velocity and force Fx for the fish under investigation.

to distribute along the negative x-direction. At this moment, the side (b) is so adjusted that it is
parallel to the moving direction. This can avoid the negative normal pressure force produced along
this direction. In order to further support this argument, the pressure is integrated along each side
of the fish body at different t . The force along the x-direction is plotted in Figure 14. When one
side of the fish body has provided the maximum pushing force (point a) to make the fish to move
forward, the shape at the other side is so adjusted to reduce the oppositive force to zero (point b).

From the previous discussion, it is noted that the force along the y-direction will be generated so
that the z-direction moment cannot be avoided. The fish wave motion is featured with the presence
of time-varying inflection point, which results in different parts of fish body to switch towards the
opposite direction. The z-direction moment with opposite sign is generated from different parts.
The switch of caudal fin can, thus, stabilize the fish body. Another part of the force applied on
the fish is of the viscous type. The ratio (Fx )v/(Fx )p is about −0.75 to −1.75. Both the viscosity
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Figure 12. The simulated forces Fx , (Fx )p , (Fx )v and the velocity for the investigated fish.

and the normal pressure are equally important. The (Fx )v is always positive since the viscous
force direction is, by theory, opposite to the velocity direction. Thanks to this force the fish with
the presently prescribed wave motion may be stopped in water. From this study, the fish with a
wave-type motion can generate the force to make itself to move forward and also can stabilize
the fish body. For a detailed study the form drags for both the moving and the stationary fish are
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Figure 13. The simulated surface pressure force at t = 4.25.
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Figure 14. The simulated forces Fx on each side of the fish body.

calculated. The maximum form drag for the moving fish is about 0.002, while for the stationary
fish is 0.0036. The maximum form drag of the moving fish is found to be smaller than that of the
stationary fish and this difference is, however, negligible. Also the form drag of the moving fish
does not remain constant. At a particular moment, the very large form drag ratio agrees with that
obtained by Gray [14]. However, the conclusion made by Gray is proper only at one particular
moment of the fish motion.

To validate the present results, the sinusoidal fish motion given below is also considered

yb(x, t) = a(x) sin(−2�t) (22)

where

a(x)= c1x + c2x
2 (23)

The time-varying fish locations are plotted in Figure 15. It is observed that the displacement of the
wave-motion becomes smaller than that of the sinusoidal motion type. The wave motion performs
better than the sinusoidal motion from the displacement viewpoint. In Figure 16, the maximum
velocities for two investigated motions are found to be very close. The minimum velocity of the
wave motion is, however, larger than that produced by the sinusoidal one. From this point of view,
a fish swimming with the wave form outperforms the sinusoidal type.
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Figure 15. The time-varying displacement for the fish with the wave and the sinusoidal motions.
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Figure 16. The time-varying velocity for the fish with the wave and the sinusoidal motions.
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Figure 17. The time-varying force Fx for the fish with the wave and the sinusoidal motions.

From Figure 17, it is observed that Fx for the wave motion type is much smaller than that of the
sinusoidal-motion type. The fish of a wave motion type is, thus, hydrodynamically more efficient
than that with the sinusoidal motion. At the same swimming velocity, the fish with a wave motion
uses only about 50% of the force. In Figure 18, the simulated Fy for the sinusoidal motion is
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Figure 18. The time-varying force Fy for the fish with the wave and the sinusoidal motions.

larger than that of the wave motion. One character of the sinusoidal fish motion is that the moving
part of the fish body moves in the same direction at a certain moment. As a result, the net force
becomes larger. For the fish movement that is allowed only in the x direction, the one with a small
Fy is found to be better, otherwise, Fy will induce a larger moment. The wave-fish motion is,
therefore, more stable than the fish having a sinusoidal motion.

For the modelling of interaction between the fluid flow and the elastic fish body, the viscous
flow equations are solved in the currently most available physical domain to render the pressure
and stresses along the fish surface. With these simulated surface forces, the displacement vector for
the elastic fish body can then be updated from the Navier equation, which governs the movement
of the linearly elastic fish body with Young’s modulus and Poisson ratio. The resulting predicted
displacement enables us to update the configuration of flow domain, within which the flow equations
are calculated in the new spatial domain. The above procedures are repeated over each time
increment until the investigated fish shows a negligible change in its geometry. The reader can
refer to [18] for additional details about the fluid–structure interaction solution algorithm.

6. CONCLUDING REMARKS

We have applied ALE finite element method to simulate the fish-like motion in the incompressible
fluid flow at the fixed Reynolds and Strouhal numbers. The conclusion drawn from this study is
that the fish can generate a net force that enables it to move forward. In addition, the fish with a
wave-motion is hydrodynamically much better than the sinusoidal motion. While the amplitudes
of the wave and sinusoidal motions are about the same, the displacement and velocity variation
are quite different. The wave motion can result in not only a faster velocity but also a stable
mechanism.
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