Downloaded by [China Science & Technology University] at 02:42 26 February 2014

Taylor & Francis

Taylor & Francis Group

Numerical Heat Transfer, Part B, 51: 351-374, 2007
Copyright © Taylor & Francis Group, LLC e
ISSN: 1040-7790 print/1521-0626 online

DOI: 10.1080/10407790601144730

ON A MUSHY CELL TRACKING METHOD
FOR SIMULATING GALLIUM MELTING

Yih-Jena Jan
National Kao-Hsiung Marine University, Taiwan, Republic of China

Tony Wen-Hann Sheu

Department of Engineering Science and Ocean Engineering, National Taiwan
University, Taiwan, Republic of China

Zhen-Yu Hsu and Fang-Pang Lin

Department of Mechanical Engineering, National Chiao Tung University,
Taiwan, Republic of China

Gallium melting in a rectangular cavity heated from the side wall has been extensively stud-
ied. Since the previously simulated results were not consistent and the myth of a grid-
converged solution remained, we reexamine this problem using the thermally driven mushy
cell tracking method to clarify whether the solution is physically correct. In the study, the
computational domain is separated into solid-phase and liquid-phase regions, with the
mushy cell placed in between. The governing equations for the thermofluid transport are
expressed in terms of the primitive variables and are discretized in the stationary unstruc-
tured grid using the finite-volume formulation. The mushy cell tracking equation is derived
under the mass and energy balance laws to capture the mushy cell front. With the variables
located in the cell centers, the distinguishing characteristic of the present tracking algorithm
lies in the specification of constant melting or freezing temperature at the center of the
mushy cells without consideration of the curvature and normal velocity effects in the den-
dritic solidification. Thanks to this feature, a straightforward and accurate evaluation of
the boundary conditions at the interface of the mushy, solid, and liquid cells becomes feas-
ible. The predicted moving interface and thermofluid field of gallium melting are shown to
agree well with the results from other numerical solutions.

1. INTRODUCTION

In the past two decades, numerous studies of phase-change problems encoun-
tered in natural environments and processing industries have been made by compu-
tational fluid dynamics scientists [7, 9, 14]. This class of problems is characterized by
some internal boundaries or interfaces, across which the physicchemical properties
can change sharply. Nonlinear physical complexities emerge from a wide range of
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NOMENCLATURE
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U velocity vector Q]|  volume of Qg
U, face velocity vector

time and space scales. In addition, geometric complexities, such as multibody config-
urations and bodies with complex shapes, can further complicate the analysis. The
moving interface itself is considered as a part of the solution process for solving
the system of equations governing the behavior of the thermofluid flow field.
Free-and moving-boundary problems are normally difficult to analyze because of
their geometric and physical complexities, among other factors. Analytic solutions
for this class of problems are only available for very few cases with simple geometry
[9, 14]. With the advent of high-speed computers, numerical capturing of the time-
varying interfaces has gradually become feasible. In the literature, the methods
employed for solving free/moving-boundary problems can be classified into the
enthalpy-based [10, 11] and moving = particle [12] methods. Shyy [7] has given a
detailed review of these methods.

When a numerical method is applied to solve problems involving solidification
of liquid and melting of solid, the working equations for describing the conservations
of mass, momentum, and energy along with the tracking of the moving interface are
required. In this study, the cell-by-cell thermally driven mushy cell tracking algor-
ithm [5, 6] is applied to simulate 1 D solidification and 2 D tin melting. After inves-
tigating these two benchmark tests, the gallium melting problem is investigated. The
computational domain is separated into solid-phase and liquid-phase regions, with
the mushy cell placed in between. The transport phenomenon in the solid-phase
region is governed by the stable diffusion process, while the transport phenomenon
of the liquid-phase region is governed by the conditionally stable convection-
diffusion process. The movement of the interface, which is referred to as the compu-
tational mushy cell, for the current two-phase problem is governed by the mass and
energy balance principles. A detailed description of the method and its application to
various fields can be found in [5, 6]. The distinguished characteristic of the present
algorithm is the specification of constant melting or freezing temperature without
considering curvature and normal velocity effects in the dendritic solidification
[22]. Thanks to this embedded feature, one can easily and accurately evaluate the
boundary conditions at the interface between the mushy, solid, and liquid cells. In
comparison with other methods, the mushy cell tracking algorithm has the following
distinguishing features [5].

1. The volume-averaged property (F),, is introduced.
2. Solidification or melting time is defined as a function of (F)
3. Evaluation of 07'/07 in the mushy cells is circumvented.
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4. The field variables for both liquid and solid phases are solved without introdu-
cing any source term involving the volume-averaged (F),, explicitly.

5. The size of the region of (F),, is controlled by the mushy cell, and can be reduced
to a local point of the moving front.

6. The algorithm is mainly controlled by a conduction-type equation, and there is
no need to solve for the temperature in the mushy cells since a constant melting
temperature condition is specified at the interfaces between the mushy and either
solid or liquid cells.

7. The mushy cells separate the domain into liquid and solid zones. Consequently,
the field variables are solved in a phase-by-phase and cell-by-cell manner.

To validate the present algorithm, both the 1-D solidification without consider-
ation of convection [14] and the melting of tin in a rectangular cavity with consider-
ation of convection effect [1-4, 11, 13, 15, 16] will be investigated. The first problem
is the so-called Stefan problem. The predicted interface location, which has been
known to be amenable to analytical solution, will be used to access the proposed
numerical model. The gallium melting problem has been studied experimentally [1]
and numerically [2-4]. Hannoun et al. [4] gave an excellent review of the gallium
melting problem and tried to resolve some previously known controversies. This
problem will be reexamined in this study using the mushy cell tracking algorithm
with an aim of clarifying the afore-mentioned controversial problem.

2. WORKING EQUATIONS

The solidification problem is sometimes referred to as the Stefan problem, since
this problem was first published by Stefan [14] to study the thickness of the polar ice
cap. This classical problem considers the energy conservation in the domain Q by
dividing it into three distinct domains, Q; (solid zone), Q,, (mushy zone), and Qy
(liquid zone), where Q, U Q,, U Q; = Q. The flow and energy conservation equations
are expressed as

VeU=0 inQ, (la)
ou .

bl Vo (UU)| = ~TP+ Vot pghs(T—Tar) inQ  (Ih)

oT :
pr.Cp E+20(QT) =Vek/ VT inQp (I¢)

T
pSCPaa_t:z.kSZT in Qg (1d)
where
~ 2] .

1=p[(VU)+(YU)] -5 VYeU inQ (2)
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It should be noted that the current study is investigated under the isothermal
moving-interface restriction. The internal boundary condition is specified as

T="T, in Q,,(1) U0Q,,(t) (3)

The subscripts s, L, and m denote the solid, liquid, and mushy states, respectively.
Other physical properties involved are the density p, specific heat Cp, gravity accel-
eration g, temperature 7, dynamic viscosity ., thermal conductivity k, and the ther-
mal expansion coefficient B,. In Eq. (1), U is the fluid velocity and P is the pressure.

When considering phase-change problems without taking into account convec-
tion, the equation for the thermal energy can be reduced to one similar to that for
solid heat conduction. To describe the movement of the mushy cell, one additional
equation is needed in order to account for the energy balance at the interface of the
mushy cell. When the moving-particle method is used to trace the front propagation,
the Stefan condition [14] should be valid at the solid /liquid interface for truly repre-
senting the solidification process,

ps(AH)E.E =k NTson—k NTpen (4)

In the above equation, AH denotes the latent heat of solidification. The vector n is
the outward normal vector of the moving front, and V7, e n and VT e n denote the
normal derivatives of 7" in the liquid and solid regions, respectively. W is the velocity
of the moving front. It should be noted that Eq. (4) corresponds to the constant
melting or frozen temperature criterion. When using this front-capturing method,
the computational time and memory requirements can be excessive. However, both
the computational time and memory can be significantly reduced in the mushy cell
tracking approach presented later on.

During solidification, the mushy cell tracking equation will be derived within
the nonmoving framework using the control-volume method. The equations for
the conservation of mass and energy can be written in integral forms as follows:

| opartd pw-mw,)eaa=o (5)
ot Jg, oQ

S oemans § prU-w,)edd= ¢ gedd (6)
a[ Qm an aQV“ B

In the above equations, W,, is the control-surface velocity, which is zero for a fixed
control volume, Q,, is the fixed control volume, and g is the conduction heat flux.
Here, the following two important assumptions will be made:

1. No flow is allowed to proceed between the mushy cells. Actually, the mushy cell is
treated as a porous medium with a fairly high resistance to the flow.

2. Across the interface, no temperature gradient is allowed to take place because the
temperature of each mushy cell is specified as 7},. Taking the mushy cell shown in
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Figure 1 as an example, the mass and energy equations can be expressed as

1901 & {0, + D (01Ut —0)  4,1) = 0 )

190l S ), + S (00 i (U~ 0) 0 A1)
= (kYT 0 4,)+) (kiVTreA,) (8)

In the above equations, A4,,; is the outward normal vector from the cell Q,, and is
directed toward the neighboring liquid cell. The associated enthalpy H,,; is evalu-
ated at the face center shown in Figure 1. U, ; is the convective velocity at the face

—=m

between the mushy and liquid cells. The volume-averaged solid fraction (F),, is

defined to be the volumetric integration of the local solid fraction F and is given as
(F) 2;/ FdA 9)
"1l Ja,

It is noted that (p)q is a time-dependent property, since (F),, varies with the time.
Thus, Eq. (7) can be written as

0
> P1Uns ¢ Ays = =€l 5 (p)a (10)

n

It is worth noting that Eq. (10) is the constraint prescribed at the interface of the
mushy and liquid cells. The velocity at this interface is initially estimated to be the
averaged velocity magnitudes for the two adjacent cells. Each estimated velocity is
then corrected by using a scaling factor such that the net mass flow rate due to
the corrected velocities becomes exactly equal to the right-hand side of Eq. (10).

Fixed control volume

Figure 1. Mushy cell viewed as a fixed control volume.
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The interface velocity thus obtained serves as the boundary condition for the flow
simulation in the liquid region.

To complete the derivation of mushy cell tracking equation, one additional
condition relating to the enthalpy of solid or liquid is commonly required,

Latent heat (1 1)

{ HL = CYTm + A/I—_I/ + CL(TL - Tm) QL U anL
Hs = CsTs Qs U anS

It should be noted that the interface temperature 7, is set as T, in Eq. (11), which
leads to H,; = C,T,, + AH. For convenience, it can be assumed that T, = T),.
These specifications will provide the essential boundary condition at the interface
of the mushy and liquid (or solid) cells. In other words, once the mushy cell is formed,
its temperature becomes the same as 7},,. Combining Egs. (8), (10), and (11), we have

) 0
19l (§ e, — e 53 0,
= Z VT . Ams + Z kL VTL> ‘AmL) (12)
The volume-averaged properties (pH)q and (p), seen above are given as follows:

<pH>Qm = <F>m(vaATm) + (1 — <F>m)pL(CSTm + AH)
Enthalpy of solid part  Enthalpy of liquid part (13)
(P, = (F)ups + (1= (F),)ps

Under these conditions, Eq. (12) can be simplified as

||Q || '()SCVT"”% - pL(CvT;n + AH) —a<F>"’i|
m a r a -
~(C T+ AH) (p, 2l — p, Y1)

= Z(K&ZTS) 0A,.)+ Z(KL<ZTL> °A4,)

or

A AT = S (K (VT 0 4,) + S (KUY T 0 4,) (1)

Further manipulation of Eq. (14) results in

it D) £ (A

or

ol S = S (R v e 4 ) 13
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where Ayis the outward normal vector of face, from the mushy cell Q,, and is directed
toward the neighboring cell of i (solid or liquid phase). Only the thermal diffusion
fluxes from the liquid and solid phases will be included, due to the above two main
mentioned assumptions.

As stated in Part I of [5, 6], the main reason for choosing the mushy cell track-
ing equation is the minimum time step which is applicable to update (F),, for every
mushy cell. This minimum time step is determined by scrutinizing every mushy cell
so that it can be used to define the new front location at the updated time level. In
addition, the associated essential boundary conditions are as follows:

TmL = T'ms = 1im

3 (16)
ZPLKmL ‘AmL = _“Qm”a<p>ﬂm

where T, is the temperature between the mushy and liquid cells. It is worth noting
that the advancing length of the moving front is limited by the length of a cell in a
cell-by-cell manner to update (F), for every mushy cell. The candidates for the
mushy cells can be easily identified by examining the neighbors (in liquid state) of
the newly solidified mushy cells. Thus, the mushy cells can be advanced in a cell-
sby-cell manner as illustrated in Figure 2. In a similar manner, one can derive the
well-known Stefan condition shown in Eq. (4) by the moving-control-volume
method to get the essential temperature boundary conditions at the interface
between mushy and liquid or solid phases [6].

S|S| |[L|L|L|L S|S|S L|L SSS.LLL
S|S LILILIL S|S|S LIL S|S|S LILIL
| S|SISELILIL| | S|S[S ILIL| IS|SS|LILIL
SISISENLILIL g [SSS L|L - S|S|S| |L|L|L
S|S|SILIL|L S|S|S L|L S|S|S| |L|L|L
S|S|S| |L|L|L S[S|S L|L S|SISISIIL|L
S|S| |[L|L|L|L S[S|S L|L S|SISELIL|L
S|S| [L|L|L[L S|S|S L|L S|S|S|LIL[L
S|S|S|SPIL|L S[S|S| [L|L|L S|SISELIL|L
S|SS|silLL S|S|S LILIL S|S|S LILIL
S|S|S|S| |L|L S|SIS|SPL L S|SIS|SEIL|L
S|S|S|S LIL - S|S|S|S L |L - S|S|S|S L |L
S|S|S|[S LIL S|SIS|SPIL|L S|S|S|SPIL|L
s/s/s[S|S|HL s[s[s[S| IL|L s|s|s|S L [L
S|S|S|S L |L S|S|S LILIL S[S|S LIL|IL
S|S|S[sL|L S|S|S LIL|L S|S|S LIL|L

[ Mushycell

[] Newly solidified cell

Figure 2. Illustration of the mushy cell advancing.
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3. NUMERICAL METHOD

The domain to be investigated is initially subdivided into several convex poly-
hedrons or cells. The boundaries and vertices of the cells are referred to as the faces
and nodes, respectively. Neighboring cells are defined as those sharing a common
face. All transport variables are stored at the cell centers. The resulting cells are
known as the nonstaggered cell-centered control volumes, as illustrated in
Figure 3. The thermally driven mushy cell movement is described in Figure 2 for
the sake of illustration. When applying the cell-by-cell thermally driven mushy cell
tracking algorithm, it is worth noting that the convection terms near the walls are
still retained because all variables are evaluated at the cell center rather than on a
cell boundary. It is also worthwhile to note the following advantages of storing field
variables at the cell center:

1. The mushy cell can be easily identified without interpolating or extrapolating the
moving front. Therefore, the computational time can be considerably reduced.

2. Heat flux into the mushy cell can be easily calculated.

3. The number of faces of one particular cell is fixed so that the matrix solver can be
easily dealt with.

4. The boundary temperature along the moving front could be easily set as the mushy
temperature at the cell center instead of the melting or frozen temperature at the
front. The interpolated or extrapolated procedures can therefore be omitted.

The transport equation for a scalar quantity ® can be cast into the following
form by choosing the appropriate I and Se:

A(p®) 0 A
or oy P =5y <Fax,-> + So (17)

where I is the transport coefficient such as the viscosity p and the ratio oy = k;/Cy.

Figure 3. Diagram of the unstructured finite-volume and the notations used.
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Integration of Eq. (17) over the control volume Qy, schematic in Figure 3, can result
in the following equation:

12| p@G !

[1920]| @G
ot t

+ZJf(Df ZZDf—l-ScDHQOH +(34 (18)
S S

The mass flow rate J; is defined to be larger than zero for the fluid leaving Q. Dy
represents the diffusion transport through the face “face,”. ||Qol is the volume of
the domain Q. In Eq. (18), the Euler time-stepping method is used to render first-
order temporal accuracy.

In the absence of a line structure, the field variable and its derivatives cannot be
obtained directly from the Taylor series expansion. To overcome this difficulty, sev-
eral gradient reconstruction strategies have been proposed [24-26]. Among them, the
CVFEM method [18] employed the shape function, and another approach used the
least-squares technique [24]. These techniques are, however, quite expensive and are
dependent on the cell shape. If a shape-independent formulation [23] for the cell gra-
dients can be devised by virtue of the divergence theorem, a hyper-order-accurate
value of @ at the cell face could be calculated from the following formula:

— +1
O = q)ﬁpwind + z(I)f\pwind, cedr (19)
—_——  — —
Ist term 2nd term

In the above equation, dr denotes the vector with direction from the centroid of an
upwind cell to the center of the face. The value of (I)ﬁg‘},md is obtained from an upwind
cell, and the reconstructed gradient V®y .. , is evaluated from the upwind cell
at the time instant #,. Note that all field variables are treated implicitly, while their
gradients are evaluated explicitly.

The transport flux Dy due to heat conduction through faces is derived below
based on the Gauss divergence theorem:

Dy =a(VT), @ 4, (20)

where the thermal diffusivity o, is defined as «; = k;/C;. In Eq. (20), the temperature
flux across a face can be generally expressed as [23]

Arod, A oA
(VT), 0 d, = (Ty — T) L2 VT, 0 (4, — 012 (21)
fo= A 001 S/ S

first term Second term

where

<§T>f =

N —

(ST + (V7)) and (91 = 150 3 T4,
f

At a facer, (VT) and Ty are taken to be the averaged quantities of the two adjacent
cells. The face vector 4, is directed outward and is normal to face, for Qp, and 01 is
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the distance vector measured from the center of Qg to the center of Q;, which is the
neighboring cell of Qy shown in Figure 3. The first term in Eq. (21) is of the first-
order-accurate type, and the second term is known as its hyper-order (super-linear)
correction. It will be addressed that second-order accuracy could be achieved in an
orthogonal and quadrilateral cell later on.

Based on Eq. (21), the following linear system of equations for the field vari-
able T at the cell centers can be derived in the solid phase or liquid phase under
the motion-free condition:

Q Q

=L By=) B
Toreq, % "

Here, the summation is made over all the neighbors “nb’’ of Q. The source term Sy
contains the super-linear term, such as the secondary diffusion flux terms in Eq. (21).
The diffusion fluxes at the boundaries are also included in Sy, and T is applied at the
center of the boundary. When solving Eq. (22), the interface temperature between
the mushy and liquid and solid cells is specified by the constant melting or freezing
temperature, respectively. The boundary diffusion flux can then be treated similarly
to that at an interior face using Eq. (21). The flux D, on a boundary schematic in
Figure 2 can be written as

Bnb =

P VAT Ay N Sy LY. ”
b O)Af'QJrﬂT—)f' T 4002 (23)
first term Second term

where 7> is evaluated at the center of the boundary face and vector 02 is measured
from the center of the cell € to the centroid of the boundary face. For the case with
Dirichlet-type boundary condition, the first term in Eq. (23) is treated implicitly and
will be included in the left-hand side of Eq. (22). As for the second term in Eq. (23), it
is included in the right-hand side of Eq. (22). For the case with Neumann boundary
condition, the specified flux can be implemented directly in the control-volume
integration.

After assembling all the discretized terms, including the convection, diffusion,
and source terms, the following linear system of equations for ® can be derived at
each cell center in the liquid phase containing the convection effect:

1Q0]|p @
ot

10| p®5

50 (24)

+ Bo®ft = By @i = 8o +
nb

Here, ||Q|| is the volume of Q). The notation nb denotes the number of neighboring
cells of Q). The source term S, contains the volumetric source of ® and the deferred
correction of @, as shown in Eq. (19). The flux contributions at boundaries are
included in Sy, and By is the coefficient containing the contributions from the
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convection and diffusion fluxes in the liquid phase considering the convection effect.
The superscript k denotes the k™ sub-time step in the » time step.

Since the pressure and the velocity components are stored at the cell centers,
the mass flow rate J,, which is obtained by averaging the cell center velocities, is
prone to oscillatory modes and checkerboard pressure patterns. To overcome these
drawbacks, a scheme [17, 23, 27] similar to that of Rhie and Chow [28] will be used.
At the face “face,” schematic in Figure 1, the mass flow rate is determined by

Ui+ Ui
Jr = pfAf . <_—0 > _1>
o120l + 4 ) - o
- : P — Py —(VP), e0] | —=
GlanTors By + a5 | (1= P = @Ry« o) 205
correction term from momentum
(25)

where U™ is the velocity field that satisfies the momentum conservation law. By is the
coefficient in the discrete momentum equation for the cell Qy shown in Eq. (25),
(YP)Jf is the averaged pressure gradient evaluated at the cell face “face;” and 01
is the vector measured from the center of Q to the center of Q;.

In each momentum equation, the source term contains the pressure gradient,
the thermal buoyancy force, and the stress tensor components are not included in
the standard diffusion term:

0 ( Ow 2. Ou
a—x]<uﬁ_x,_§ ljua_.X]_Sl]P) _pglﬁT(T_T;H) (26)
Integration of Eq. (26) over the control volume Qg results in the following equation:

Ou; 2 au]
5 (g Soum gt 3ums )4+ opmbr (T~ Tllol 27

where the viscosity i, the extra shear, and the pressure forces at the cell face are
evaluated by averaging the cell derivatives and cell values, respectively. The buo-
yancy force due to thermal expansion is also evaluated at the control-volume center.

Within the SIMPLE solution framework, the pressure-correction equation can
be derived as follows, according to [27]:

U = —%yﬁ (28)

Pk+1 _ Pk +Pl Qk+l _ Qk _'_Ql (29)

Ve (pU') = -V o (pU¥) (30)
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Substituting Eq. (28) into Eq. (30), the pressure-correction equation is derived as
1
VP =< Ve (pU") (31)

where the superscript k represents the predictor step or the previous corrector step.
After discretization and integration of Eq. (31) over the control volume €, the fol-
lowing discrete equation can be obtained:

APy + 3w, = = 557 (pU o ) 4
nb f

TP, o 4, - 01224
(VP e LT 4600
‘ (32)
éf 'éf

Ay = — A
0l e A/‘ 0 Z nb
- nb

Anb:_

The above system of equations will be solved using a preconditioned conjugate
gradient method. Two algorithms of the conjugate gradient (CG) type [19] are
employed in the present study. The preconditioned CG method is used to solve
the pressure-correction coefficient matrix equation, since it is classified to be sym-
metric and positive definite. The preconditioned BiCGSTAB method is selected
for solving the momentum and the discretized temperature equations with convec-
tion. Once the solution of Eq. (32) is obtained through the preconditioned CG
solver, both velocity and pressure fields can be updated using Eq. (29). The entire
corrector step is repeated until convergence. If the boundary pressure is not known,
then the Neumann-type boundary condition [8], Eq. (28), is employed along with the
known boundary velocity. The solution procedures based on the liquid phase con-
taining the convection effect for solidification are summarized as follows.

1. Define spatially the liquid phase, the mushy zone, and the solid phase. The mini-
mum time step &7 is then determined from the mushy cell tracking equation. The
value of (F),, can be then updated for each mushy cell.

2. Solve for the heat conduction equation in the solid phase with the time step &t
and the governing equations in the liquid phase using the SIMPLE algorithm
to determine the velocity, pressure, and temperature. To stabilize the calculation,
ot is decomposed into several sub-time steps, i.e., 5t = > (8¢),. In the mushy cell
tracking equation, the velocity is controlled by the diffusion contribution. Since a
cell-by-cell approach is used to move the front by virtue of the characteristic cell
length h, (8t),,c = 0.3(h%p,Cr/ky) is currently selected as a constraint on (87),,
which is the sub-time step of the minimum time step 6z. It is noted that
h*p; C/k; has the unit of time and is therefore considered as the local cell’s time
scale. Thus, the sub-time step (J7), is chosen as

0t = k(0t)ep + (82); 0 < (80)5 1y < (80)er

5 ot for 81 < (8¢),¢ (33)
OO =V E for 8t > (t)gps = 1,2, k+1

For every single sub-time step (7).
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(a) Use the updated pressure and temperature fields to solve the momentum
equations.

(b) Substitute the new velocities into the pressure-correction equation and then
solve the pressure-correction equation to update the velocity and pressure
magnitudes, which satisfy the mass conservation law.

(¢) Use the updated velocity vector to solve for the temperature.

(d) Go to step (a).

Repeat this procedure until the values of pressure, temperature, and velocity
converge to the user specified tolerance.
3. Go to step 1 for the next time step. If the solid phase cannot move farther into a
mushy cell, then stop the solidification process.

4. NUMERICAL EXAMPLES

Two model problems are used to validate the present method. They are known
as the 1-D solidification without consideration of the convection effect, and tin melt-
ing in a rectangular cavity heated from the side wall with consideration of convection
effect. The first problem is also known as the analytic Stefan problem [14] and will be
chosen to access the present method. The second problem has been studied numeri-
cally [4]. After validating these two benchmark tests, the gallium melting studied
experimentally [1] and numerically [2-4, 11, 13, 15, 16] is investigated. However,
the numerical result was not consistent with the experimental results. The discrep-
ancy is associated with the myth of grid-converged solution in the sense that the
coarse-grid solution obtained from the lower-order scheme agrees better with the
experimental results than with the predicted fine-grid and high-order solution. This
problem will be studied systematically using the present mushy cell tracking method
to clarify whether the solution is physically correct.

4.1. Solidification of One-Region Problem without Convection

An example taken from [14, 21] is investigated for evaluating the quality of the
predicted solid—liquid interface. The domain and the specified boundary conditions

0.154 1
mushy zone Adiabatic
0.1 3
> - -
0.054 .ﬂ Solid phase Liquid phase - n
Initial temperature: T=0 e
01 —
Adiabatic
-0.05 ’
" 0 0.2 0.4 0.6 0.8 1
X

Figure 4. Schematic of the physical domain and the specified boundary conditions for the one-region
problem.
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Figure 5. Comparison of the simulated and analytical interface locations for the investigated 1-D, one-
region solidification problem (St = 2.85).

are shown in Figure 4. Three orthogonal and quadrilateral meshes with 100 x 10,
200 x 20, and 300 x 30 resolutions are selected for the current numerical simulation.
Under p, =p; =1, ks =k =1, and C; = Cp = 1, the latent heat AH will be used

0.016
0.014
0012 Stefac number=2.85
§ 4
$ 0.010 4
_‘0_'} 4
>
é 0.008
ﬁ 0 006_' Error=0.00614, 100*10 cells
0.004 + Error=0.00309, 200*20 cells
0.002
r Error=0.00206, 300*30 cells
0.000 T T T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Time (t)

Figure 6. Simulated absolute errors for the numerical and analytical solid-liquid interface locations.
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Figure 7. Simulated rates of convergence for the moving solid-liquid interface location.

to adjust the Stefan number St, which is defined as St = C,(7y — Tour)/AH.
Initially, the liquid in the domain under investigation is at rest and its temperature
is kept at the freezing (or melting) temperature 7y = 0. The wall at x = 0 is main-
tained at the constant temperature 7,y = —1. The resulting exact solution for the
moving front is derived as S(7) = n+/7 in the Appendix. The current simulations
were performed at the Stefan numbers of 0.1, 2.85, and 5. The resulting values of
N turn out to be 0.4400, 1.7985, and 2.1194, respectively. The simulated results for
S(?) at the Stefan number 2.85 are shown in Figure 5. Clearly, the simulated results
and the analytical solutions are perfectly matched in the sense that the predicted dis-
crepancy, defined as & = |S(0),um — S(O)apalyiic|» 18 negligibly small as shown in
Figures 5 and 6. The accuracy order is determined according to the relation
e~ C(1)l", where h is defined as the characteristic length of a cell. Figure 7 shows
that the value of n is very close to 1, which can be also seen in Table 1. In other
words, the error of the predicted interface location using the cell-by-cell thermally
driven mushy cell tracking method is bounded by € =~ O(h). The results obtained
at different Stefan numbers are summarized in Table 1.

Table 1. Absolute errors obtained at different Stefan numbers [14, 21]

Mesh e(St=0.1) £(St = 2.85) e(St=15)
100 x 10 0.00510 0.00614 0.0065
200 x 20 0.00258 0.00309 0.0032
300 x 30 0.00175 0.00206 0.0021

S(Z)analytic = 0'4400\/; S(Z)analytic = 1‘7985\/E S(t)analytic = 2'1194\/;
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Table 2. Physical data for tin [4]
Symbol p k Gy u T pgh p
Units kg/m* w/mK J/kgK  NS/m °C kg/m* m/S? 1/K 1/K
Solid 7,500 60 200 4
Liquid 7500 60 200 6x10* 2319 19.1 2.67x 10
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Figure 8. Comparison of the moving fronts during the melting of tin.
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Figure 9. Simulated liquid fractions during the melting of tin (cells: 70 x 70).
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Table 3 Physical properties of gallium [4, 20]
Symbol p k Gy u Tn pgB p H

Units kg/m* w/mK J/kgK NS/m °C kg/m®m/S$? 1/K 1/K J/kg
Solid 6,095 335 395.15

0 4 4
Liquid 6,095 335 39515 18x10?® 2078 70 L173 %107 8x10

4.2. Melting of Tin

The melting of tin in a square cavity will be investigated at the published physi-
cal data [4] listed in Table 2. The left and right wall temperatures are 508 K and
505 K, respectively, and the bottom and top boundaries are assumed to be thermally
adiabatic. The melting temperature of tin is assumed to be 505 K. The computed
results regarding the moving front location and the liquid fraction compare all well
with those given in [4], as shown in Figure 8 and Figure 9.

4.3. Melting of Gallium

Gallium melting in a rectangular cavity heated from the side wall has been
studied experimentally [1] and numerically [2-4, 11, 13, 15, 16]. The widely cited
experimental results of Gau and Viskanta [1] is chosen for the verification of the
present numerical model. The geometric configuration and boundary conditions
are sketched in Figure 10. Initially, the temperature in the solid gallium block is
set at T =28.3°C. The temperature at the left wall is increased instantly to
T = 38.0°C, while the right wall temperature remains unchanged with the initial
value of T = 28.3°C. The physical properties used in the current calculations are
tabulated in Table 3 [4, 20].

Melting of Gallium with Flow

1.0 -
[ ]
0.8
[ ]
0.6
<
>
0.4
0.2+ e Experiment(Gau & Viskanta, 1986)
=0==Finite element method(Desal & Vafari,1993)
=== Enthalpy-based method(Kim et al., 2000)
=== Present Study (2692 elements, coarse mesh)
(Physical data taken from [2, 12])
0.0 — el o . —
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

x/H

Figure 11. Comparison of the moving interfaces of gallium melting at various time instances.
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Melting of Gallium with Flow
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Figure 12. Comparison of the present result with other numerical results.

Hannoun et al. [4] employed the enthalpy method, together with various discre-
tization schemes and grid resolutions, to study this problem. They found that the
predicated dynamics of interface and thermofluid in the coarse meshes match better
with the experimental data than those obtained from the fine meshes. In order to
shed some light on this controversial prediction, several grid resolutions of unstruc-
tured and structured meshes as depicted in Figure 10 are employed. The coarse
meshes generated around the interface region are very important, since they will

Melting of Gallium with Flow
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Figure 13. Comparison of the present result with the experimental data [1].
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affect the simulated results, as noted by Hannoun et al. [4]. The resulting predicated
solutions in the coarse meshes near the interface region can yield better prediction
quality compared with the experimental data [1] and other numerical results [2, 3,
11] shown in Figure 11.

To further address the effect of mesh resolution on the predicted thermofluid
flow field and interface dynamics, 80 x 60, 90 x 70, and 100 x 71 orthogonal, quadri-
lateral meshes are used. Comparison of the currently predicted interface with other
numerical results is shown in Figure 12. The currently predicted interface matches
well with the numerical results of Hannoun et al. [4] in the early period of simulation
(¢t < 280s) and agrees well with the other numerical results for # > 360s, as shown in

155 sec

e
L]
42 sec 85 sec 155 sec 280 sec
(1) (100*70) (2) (80*60)

Figure 14. Simulated streamlines: upper row from [4] and lower row from the present study.



Downloaded by [China Science & Technology University] at 02:42 26 February 2014

SIMULATION OF GALLIUM MELTING 371

Figure 12. Comparison of the numerical results with the experimental data [1] is
depicted in Figure 13. The discrepancy between the numerical result and those
obtained from the fine meshes and the experimental data is significant and has been
discussed by Hannoun et al. [4]. This predicted difference might be attributed to the
discrepancy between the experimental setup and the assumptions made in the
numerical simulation. The corresponding streamline patterns obtained at various
time instants are shown in Figure 14.

5. CONCLUSIONS

A thermally driven mushy cell tracking solution algorithm has been developed
within the finite-volume context. The physical domain is separated into solid-phase
and liquid-phase regions, with the mushy cells being placed in between. The mushy
cell tracking equation has been derived to satisfy the mass and energy conservations
so as to be able to accurately predict the movement of the mushy cells. Both 1-D
solidification without convection transport, and tin and gallium 2-D melting with
convection have been studied to validate the method. Based on the computed results,
the following conclusions can be drawn.

1. Simulation of the solidification shows that the predicted moving interface S(z)
agrees well with the analytic solution. The predication accuracy order for the
moving interface is linear in the sense that g(¢) ~ C(¢)A. This finding is close to
the order of accuracy predicted by the moving-particle method [12].

2. As Hannoun et al. [4] demonstrated, our gallium melting interface, predicted in
the coarse meshes, near the interface region matches better with the experimental
data [1] and other numerical results [2, 3, 11]. We believe these predictions are
mesh-dependent, but the mesh resolution is not fine enough to resolve the small
and complex thermofluid flow field structure near the top wall close to the inter-
face area. Simulation of gallium melting in fine meshes shows that the predicted
thermofluid flow field and dynamics of mushy cells agree well with the experi-
mental data [1] and other numerical results [4, 11, 15, 16] in the early simulation
period (¢ = 0-280s). The simulated results are different from the experimental
data but are consistent with other numerical results in the later period of simula-
tion (¢ > 360s). The discrepancy between the experimental and numerical results
might be attributed to the experimental setup, which is not consistent with the
assumptions made in the numerical simulation, as elaborated in [4].
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APPENDIX: EVALUATION OF THE MOVING-FRONT LOCATION

Consider the following one-dimensional equation:

oT  ky O°T
a—t—pscq@ O0<x< H
t=0, T=T, (Al)

X = 07 T = Tgur
x=S(1), T=Tp

where S() is the interface between the liquid and solid phase. In Eq. (A1), the parti-
cular solution is given as

T—-T,=C [erf(a) - erf( (A2)

i)

Note that erf(a) is defined as erf(a) =2 [ (e ") dn/\/m and the thermal diffusivity
is defined as o, = k,/p,C;. The subscript s represents the solid phase. Two constants,
C) and a, could be specified by substituting the boundary conditions into Eq. (A2) to
render Tyyr — T, = Crerf(a) and a= S(¢)/4ost. It should be noted that
dT [= (0T /0t) dt + (0T /Ox) dx] at the moving front is zero for the constant-melting
or frozen-temperature case. Thus,

(&) o &)
ot x=S(1) dt |\ Ox v=S(1)

results. Thanks to the energy conservation principle, we can get

(&), i ()
dt) s (AH)\Ox/ g

in the one-dimensional domain. Note that AH is the latent heat of the phase change
and C; is the heat capacity for the solid. Consequently, the equation for the moving
interface can be described as

or 2

Ox

(&), =i
0t ) sy  (AH)

(A3)

=5(1)



Downloaded by [China Science & Technology University] at 02:42 26 February 2014

374 Y.-J. JAN ET AL.

Since (07'/01),_g ;) and (87'/0x),_g, can be respectively expressed as

(aT> _ CIS([) efs(r)z/ékxxt (A4)
x=S(t)

or V4o

or G —8(1)? /4ot
il __ = oLt A
(ax>x—S(t) Va (A3

we can have

C = % <e“2) (A6)

By substituting Eq. (A6) into the equation given by Ty — T, = Cj erf(a), we are
led to derive Tyyr — Ty = —(AH)a\/ﬁ(e"z) erf(a)/C;.

To further illustrate the time-varying front feature, the Taylor series approxi-
mation is applied to ae” erf(a), thus resulting in

) 2a* , a a? at
Corfla) =2 (1o V(1o @
ae” ert(a) ﬁ( ratgt >< 3x1 T 5x2! )

200 2, 4,

A further simplification of Ty — 7T}, can render

Tsurf_ Tm:_

2AH)a (2
39715

4
C +a +—a4+-~> (A8)

The Stefan number is defined as St = —(Tsyr — T1n) Cs/AH and its value is obtained
from St =2a?(1+24?/3 + --+) for solidification. The Stefan number is defined to
signify the importance of the sensible heat relative to the latent heat. If we keep
the term (a)*2/3, the accurate front profile S(¢) can be approximated as below after
some simple calculations.

S = \l—3+\/9+12(w> Vot

— {\/—3 + \/W} Vot
i (A9)

If the simulation is performed at St = 0.1, the values of 1 becomes 0.4400.



