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In this article, the convection-diffusion equation is discretized using the Pade method for the

temporal derivative term and the wavenumber-extended method for the spatial derivative

term. These temporal and spatial approximations result in two explicit equations and two

implicitly coupled equations. To construct an equal-order scheme for the solution obtained

at n Dt, both temporal=spatial derivatives are approximated to render fourth-order accuracy

without using solutions obtained previously at ðn� 2ÞDt, ðn� 3ÞDt, etc. When approxi-

mating the first-order derivative term, it is essential to take the upwind nodal points into

consideration. For revealing the dispersion and dissipation natures of the proposed scheme,

both von Neumann (Fourier) and dispersion analyses were conducted. We validate the pro-

posed method by solving several problems that are amenable to exact solutions. Results with

theoretical rates of convergence are obtained for each of the one- and two-dimensional

problems investigated.

1. INTRODUCTION

This article uses the finite-difference method to solve the practically and aca-
demically important one- and two-dimensional time-dependent convection-diffusion
equation. A comprehensive survey of finite-difference methods and the available
software packages to solve this class of differential equations have been provided
by Shokin [1] and by Machura and Sweet [2], respectively. Method of lines
(MOL) had been demonstrated to be effective for the integration of time-dependent
parabolic [3], parabolic-elliptic [4], and Korteweg-de Vries [5] partial differential
equations in fixed or adaptive grids. Within the MOL framework, the currently
investigated parabolic equation is analyzed in two separate steps. First, the spatial
derivatives are approximated by finite-difference=element=volume methods. This is
followed by integrating the resulting system of semidiscrete equations. Existing tech-
niques for solving the ordinary differential equation can thus be used to obtain the
semidiscrete solution for the original partial differential equation. The simulated
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spatial and temporal error distributions have been studied extensively by Berzins
[3, 6] and by Lawson et al. [4] and give an overall error at any MOL integration
stage. One can refer to the book by Schiesser [7] for additional details about
MOL methods. Since 1980, many software packages have been developed within
the method-of-lines framework to solve the one-dimensional first-order time-
dependent partial differential equations [8]. The software package SPRINT, which
is included in the NAG Fortran library [9, 10], is a general-purpose software pack-
age, and new methods for spatial discretization, time integration, and matrix solvers
can be integrated into its modular structure.

Among the available numerical methods to slove the initial-value equation,
Euler’s method is known to be one of the simplest ordinary differential equation
solvers [11]. Since this method is numerically inefficient, the development of
Taylor’s method, which is time-consuming in calculating / in d/=dt ¼ f but con-
ceptually easy to manipulate, is therefore motivated. The need to overcome this
drawback of Taylor’s method prompted the development of one-step Runge-Kutta
(RK) methods. Note that the Euler approach can be interpreted as a single-stage
explicit RK scheme. There are many second-order two-stage and third-order three-
stage explicit RK schemes in the literature [12]. The RK method of order �pp
will generally introduce a local truncation error Oðh�ppþ1Þ, provided that f is
sufficiently differentiable [11]. Notice, however, that the use of higher-order RK
methods requires more computational effort, which is the price paid for the
improved accuracy.

To obtain high temporal accuracy in the approximation of ordinary differen-
tial equations, it is common practice to develop multistep methods to approximate
the solution at the current time level [13]. The open-type fourth-order Adams-
Bashforth (AB) method and the Adams-Moulton (AM) method [14–16] are used
in the present article to assess the chosen time-stepping methods for the sake of com-
parison. Among the RK methods, the fourth-order four-stage explicit Runge-Kutta
method has been widely used and is also considered as a benchmark method in the
assessment of temporal schemes.

A reliable transport scheme must have the ability to suppress the convective
instability [17–19]. One rational way to develop a convectively stable scheme is to
take the analytic information of the investigated transport equation into consider-
ation [20]. For the time derivative term, Pade’s approximation [21–23] is employed
to obtain temporal fourth-order accuracy. The resulting spatial equation, which
takes inhomogeneous convection-diffusion-reaction (CDR) form, is discretized to
yield the fourth-order spatial accuracy.

NOMENCLATURE

Cg group velocity

f boundary force per unit volume

F sufficiently differentiable function

jGj amplification factor

h grid size

ki phase error defined in Eq. (4.8)

km wavenumber defined in Eq. (4.3)

kr amplitude error defined in Eq. (4.7)

Pe Peclet number

R reaction number

b ð� kmhÞ modified wavenumber

h phase angle

n Courant number

s ½� Dtð@=@tÞ� defined in Eq. (2.4)
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The rest of this article is organized as follows. Section 2 presents the working
equation and the four-step Pade time-stepping scheme employed. This is followed by
transformation of the time-dependent convection-diffusion equation into its equiva-
lent steady-state convection-diffusion-reaction equation. In Section 3 the CDR
finite-difference scheme employed to approximate the spatial derivative terms is
proposed. Theoretical studies of the proposed scheme are conducted in Section 4
with emphasis on the dispersion and Fourier (or von Neumann) stability analyses.
Section 5 presents simulated results to validate the method for both one-and two-
dimensional problems. In Section 6, concluding remarks are given.

2. FOURTH-ORDER TEMPORAL DISCRETIZATION SCHEME

The following transport equation for / is considered in this article:

/t þ u/x þ v/y � kr2/ ¼ 0 ð2:1Þ

where k is the diffusion coefficient. Two variables u and v are denoted as the x- and
y-direction velocities, respectively. Consider the following sufficiently differentiable
function:

F ¼ kr2/� ðu/x þ v/yÞ ð2:2Þ

Equation (2.1) can be rewritten as

/t ¼ Fð/Þ ð2:3Þ

Unlike the method of lines, at first the approximation sequence can be reversed by
approximating the time derivative term. Expansion of /nþ1 in a Taylor series with
respect to / at t ¼ n Dt yields

/nþ1 ¼ 1þ Dt
q
qt
þ ðDtÞ2

2!

q2

qt2
þ ðDtÞ3

3!

q3

qt3
þ � � �

" #
/n

By employing the relation given by exp ðsÞ ¼ 1þ sþ 1=2! s2 þ 1=3! s3 þ � � � ; /nþ1

can be expressed as

/nþ1 ¼ expðsÞ/n ð2:4Þ

where s ¼ Dt q=qt. We then apply the fourth-order-accurate Pade approximation
[24] for expðsÞ to yield

exp ðsÞ ¼
1þ 1

2 sþ 1
12 s2

1� 1
2 sþ 1

12 s2
ð2:5Þ

Substitution of Eq. (2.5) into Eq. (2.4) allows us to derive

1� s
2

1� 1

6
s

� �� �
/nþ1 ¼ 1þ s

2
1þ 1

6
s

� �� �
/n ð2:6Þ
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By virtue of the definitions for /nþ1=6 ¼ ð1þ s=6Þ/n and s ¼ Dtðq=@tÞ, the following
equation can be derived:

/nþ1=6 ¼ /n þ Dt

6
/n

t ð2:7Þ

The scheme development is then followed by employing /nþ1=2 ¼ /nþ ðs=2Þ/nþ1=6

and /nþ5=6 ¼ ½1� ðs=6Þ�/nþ1 to derive

/nþ1=2 ¼ /n þ Dt

2
/nþ1=6

t ð2:8Þ

and

/nþ5=6 ¼ /nþ1 � Dt

6
/nþ1

t ð2:9Þ

Use of Eqs. (2.6)–(2.8) enables us to obtain

1� s
2

1� s
6

� �h i
/nþ1 ¼ /nþ1=2 ð2:10Þ

By virtue of Eq. (2.9), the above equation can be rewritten as

/nþ1 � Dt

2
/nþ5=6

t ¼ /nþ1=2 ð2:11Þ

The Pade approximation employed for the temporal derivative term shown in
Eq. (2.1) involves two implicit and two explicit equations for /, as shown in Eqs.
(2.12)–(2.13) and (2.14)–(2.15), respectively:

/nþ1=6 ¼ /n þ Dt

6
F n ð2:12Þ

/nþ1=2 ¼ /n þ Dt

2
F nþ1=6 ð2:13Þ

Dt

6
F nþ1 � /nþ1 ¼ �/nþ5=6 ð2:14Þ

Dt

2
F nþ5=6 � /nþ1 ¼ �/nþ1=2 ð2:15Þ

A description of our proposed calculation steps is given below.

(A) Calculate /nþ1=6 according to Eqs. (2.2) and (2.12):

/nþ1=6 ¼ /n þ Dt

6
ð�u/n

x � v/n
y þ kr2/nÞ ð2:16Þ

(B) Calculate /nþ1=2 according to Eqs. (2.2), (2.13), and (2.16):

/nþ1=2 ¼ /n þ Dt

2
ð�u/nþ1=6

x � v/nþ1=6
y þ kr2/nþ1=6Þ ð2:17Þ

70 T. W. H. SHEU AND R. K. LIN



(C) Calculate /nþ1 according to

/nþ1 ¼ /n þ Dtð�u/n
x � v/n

y þ kr2/nÞ ð2:18Þ

(D) Calculate /nþ5=6 implicitly from Eq. (2.15) using the updated values of /nþ1=2

and /nþ1:

Dt

2

�
u/nþ5=6

x þ v/nþ5=6
y � kr2/nþ5=6

�
¼ /nþ1=2 � /nþ1 ð2:19Þ

(E) /nþ1 is then calculated implicitly from

/nþ1 � Dt

6
ð�u/nþ1

x � v/nþ1
y þ kr2/nþ1Þ ¼ /nþ5=6 ð2:20Þ

(F) Substitute /nþ1 into Eq. (2.19) to obtain /nþ5=6. Then substitute /nþ5=6 into
Eq. (2.20) to obtain /nþ1. The above procedures should be repeated until the
L2-norm of the computed difference between the consecutive iterations is less
than the user’s specified tolerance (10�13 is chosen in this study).

For the purpose of assessing the proposed fourth-order Pade scheme, the fol-
lowing fourth-order-accurate closed-type Adams-Moulton [16] and Gear two-step
methods are considered:
Adams-Moulton method:

/� ¼ /n þ Dt

24
ð55 Fn � 59 F n�1 þ 37 Fn�2 � 9 F n�3Þ ð2:21Þ

/nþ1 ¼ /n þ Dt

24
ð9 F� þ 19 Fn � 5 Fn�1 þ F n�2Þ ð2:22Þ

Gear method:

/� ¼ 1

3
ð�10 /n þ 18 /n�1 � 6 /n�2 þ /n�3Þ þ 4 Dt Fn ð2:23Þ

/nþ1 ¼ 1

25
ð48 /n � 36 /n�1 þ 16 /n�2 � 3 /n�3Þ þ 12

25
Dt F � ð2:24Þ

where F � ¼ Fðtnþ1;/�Þ. For the sake of completeness, the fourth-order implicit
Runge-Kutta-Fehlberg scheme [15] given below is also considered.
Runge-Kutta-Fehlberg method:

/nþ1 ¼ /n þ Dt

2

5

18
‘ð1Þ þ 4

9
‘ð2Þ þ 5

18
‘ð3Þ

� �
ð2:25Þ
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Note that the above three weighting coefficients ‘ðiÞði ¼ 1�3Þ are implicitly coupled
as follows:

‘ð1Þ ¼ F tn þ 1

2
1�

ffiffiffi
3
p

5

 !
Dt;/n þ 5

36
‘ð1Þ þ 2

9
� 1ffiffiffiffiffi

15
p

� �
‘ð2Þ

"

þ 5

36
� 1

2
ffiffiffiffiffi
15
p

� �
‘ð3Þ
�

ð2:26Þ

‘ð2Þ ¼ F tn þ 1

2
Dt;/n þ 5

36
þ

ffiffiffiffiffi
15

24

r !
‘ð1Þ þ 2

9
‘ð2Þ

"

þ 5

36
�

ffiffiffiffiffi
15

24

r !
‘ð3Þ

#
ð2:27Þ

‘ð3Þ ¼ F tn þ 1

2
1þ

ffiffiffi
3
p

5

 !
Dt;/n þ 5

36
þ 1

2
ffiffiffiffiffi
15
p

� �
‘ð1Þ

"

þ 2

9
þ 1ffiffiffiffiffi

15
p

� �
‘ð2Þ þ 5

36
‘ð3Þ
�

ð2:28Þ

Due to the implicit nature of the developed method, the value of / may be
computationally expensive to calculate from the matrix equations. The fourth-order
explicit schemes, namely, the explicit Runge-Kutta scheme [12], the Adams-
Bashforth (open-type) scheme [14], and the Gear (open-type) scheme, are therefore
considered in the current assessment study and are expressed as follows.
Runge-Kutta method:

/nþ1 ¼ /n þ Dt

6
ðkð1Þ þ 2 kð2Þ þ 2 kð3Þ þ kð4ÞÞ ð2:29Þ

where kð1Þ ¼Fðtn;/nÞ; kð2Þ ¼F ½tnþðDt=2Þ; /nþðDt=2Þkð1Þ�; kð3Þ ¼F ½tnþðDt=2Þ; /nþ
ðDt=2Þkð2Þ�, and kð4Þ ¼FðtnþDt;/nþDtkð3ÞÞ.
Adams-Bashforth method:

/nþ1 ¼ /n þ Dt

24
ð55 Fn � 59 Fn�1 þ 37 F n�2 � 9 Fn�3 Þ ð2:30Þ

Gear method:

/nþ1 ¼ 1

3
ð�10 /n þ 18 /n�1 � 6 /n�2 þ /n�3Þ þ 4 Dt F n ð2:31Þ

By using the above three explicit schemes one can avoid matrix calculation and thus
there is no storage problem for the coefficient matrix. This advantage is, however,
shadowed by the accompanying Fourier stability limitation. The trade-off between
the stability restriction and the matrix storage=calculation limitation motivated the
assessment study.

3. FOURTH-ORDER SPATIAL SCHEME

As Eqs. (2.19)–(2.20) reveal, the accuracy of the solution obtained from
Eq. (2.1) using the present semidiscretization scheme depends partly on the spatial

72 T. W. H. SHEU AND R. K. LIN



discretization scheme employed for the following convection-diffusion-reaction
equation:

�uu/x þ �vv/y � �kkr2/þ �cc/ ¼ �ff ð3:1Þ

In the above equation,

ð�uu;�vv; �kk;�cc; �ff Þ ¼ u Dt

2
;
v Dt

2
;
k Dt

2
; 0;/nþ1=2 � /nþ1

� �
and

u Dt

6
;
v Dt

6
;
k Dt

6
; 1;/nþ5=6

� �

for Eqs. (2.19) and (2.20), respectively. For simplicity, Eq. (3.1) is solved subject to
the boundary solution / ¼ g. For efficiency, Eq. (3.1) is solved using the operator
splitting scheme of Peaceman and Rachford [25]. As a result, calculation of /
involves solving the following predictor and corrector equations:

�uu/�x � �kk/�xx þ �cc/� ¼ f1 ð3:2Þ

�vv/nþ1
y � �kk/nþ1

yy þ �cc/nþ1 ¼ f2 ð3:3Þ

where f1 ¼ �ff � �vv/n
y þ �kk/n

yy and f2 ¼ �ff � �uu/�x þ �kk/�xx. The calculation of / from
Eq. (3.1) starts with prescribing the value for f1 using the most updated value of /.
This is followed by calculating /� using the nodally exact one-dimensional CDR
scheme, which will be detailed below. Upon obtaining the value of /�, f2 is computed
and then /nþ1 is obtained using a nodally exact CDR scheme similar to the predictor
step. This sweep-by-sweep calculation terminates until the user’s specified tolerance
is reached.

Based on Eqs. (3.2)–(3.3), we proceed to solve the following CDR equation:

u/x � k/xx þ c/ ¼ f ð3:4Þ

Comparing Eq. (3.4) with Eqs. (3.2) and (3.3), it can be noted that ðu; k; c; f Þ ¼
ð�uu; �kk;�cc; f1Þ and ð�vv; �kk;�cc; f2Þ. Discretization of Eq. (3.4) involves employing the general
solution for Eq. (3.4), namely, /ðxÞ ¼ c1 ek1x þ c2 ek2x þ f =c, where c1 and c2 are
constants. Substituting this equation into Eq. (3.4), we obtain

ðk1; k2Þ ¼
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4ck
p

2k
;
u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4ck
p

2k

 !

The discrete equation at an interior node j is expressed as

� u

2h
� ak

h2
þ c

6

� �
/j�1 þ 2

ak

h2
þ c

3

� �
/j þ

u

2h
� ak

h2
þ c

6

� �
/jþ1 ¼ f ð3:5Þ

In the above discrete equation, h denotes the mesh size. By substituting the exact
solutions /j ¼ c1ek1xj þ c2ek2xj þ f =c; /jþ1 ¼ c1ek1hek1xj þ c2ek2hek2xj þ f =c; and
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/j�1 ¼ c1 e�k1hek1xj þ c2e�k2hek2xj þ f =c into Eq. (3.5), a can be derived analytically
in terms of Pe ¼ uh=k and R ¼ ch=u as

a ¼ ðPe R=3Þ þ ðPeR=6Þ coshðk1Þ coshðk2Þ þ ðPe=2Þ sinhðk1Þ coshðk2Þ
coshðk1Þ coshðk2Þ � 1

ð3:6Þ

where ðk1; k2Þ ¼ ðPe=2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPe=2Þ2 þ Pe R

q
Þ. Note that the resulting prediction error

stems solely from f .
The simulation quality for Eq. (2.1) depends solely on how /x, /y, /xx, and /yy

shown in the source term are approximated. To obtain a physically rational approxi-
mation of /x, for example, we apply the following fourth-order-accurate, wavenumber-
extended, upwind-biased finite-differencing scheme [26] for the positive-velocity case
uj > 0; that for the negative-velocity case uj < 0 is analogous to the former scheme.

/xjj ¼
1

h
ð�0:055453 /j�3 þ 0:360600 /j�2 � 1:221201 /j�1

þ 0:554534 /j þ 0:389400 /jþ1 � 0:027880 /jþ2Þ ð3:7Þ

Note that /iði < jÞ at the upstream side of the nodal point j should be considered in the
convection-dominated case. At the two boundary nodes (j ¼ 1 and jmax) and at the
nodes next to the two most left and right interior points, the following expressions
for /x are applied:

/xjleft ¼
1

12h

ð�25 /j þ 48 /jþ1 � 36 /jþ2 þ 16 /jþ3 � 3 /jþ4Þ j ¼ 1
ð�3 /j�1 � 10 /j þ 18 /jþ1 � 6 /jþ2 þ /jþ3Þ j ¼ 2; 3

�
ð3:8Þ

/xjright¼
1

12h

ð25/j�48/j�1þ36/j�2�16/j�3þ3/j�4Þ j¼ jmax

ð�/j�3þ6/j�2�18/j�1þ10/jþ3/jþ1Þ j¼ jmax�1; jmax�2

�
ð3:9Þ

On physical grounds, /xx is approximated by employing the following fourth-
order-accurate centered scheme:

/xxjj¼
1

12h2
ð�/j�2þ16/j�1�30/jþ16/jþ1�/jþ2Þ ð3:10Þ

Similarly, for the approximation of /xx at and adjacent to the two end boundaries, the
following equations are employed:

/xxjleft¼
1

12h2

ð35/j�104/jþ1þ114/jþ2�56/jþ3þ11/jþ4Þ j¼1
ð11/j�1�20/jþ6/jþ1þ4/jþ2�/jþ3Þ j¼2;3

�
ð3:11Þ

/xxjright¼
1

12h2

ð35/j�104/j�1þ114/j�2�56/j�3þ11/j�4Þ j¼ jmax

ð�/j�3þ4/j�2þ6/j�1�20/jþ11/jþ1Þ j¼ jmax�1; jmax�2

�
ð3:12Þ
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4. FUNDAMENTAL STUDIES

Theoretical study of the multistep schemes detailed in Sections 2 and 3 is car-
ried out using their equivalent one-step equation. For this reason, Eqs. (2.14) and
(2.15) are first added, and then the definitions given in (2.12)–(2.13) are employed
to derive the following one-step implicit equation:

/nþ1 ¼ 1

2
ð/nþ1=6 þ /nþ5=6Þ þ Dt

12
ðF nþ1 � Fn þ 3F nþ1=6 þ 3Fnþ5=6Þ ð4:1Þ

Subject to the initial solution /ðx; t ¼ 0Þ ¼ expðikmxÞ, the model equation

/t þ u/x � k/xx þ c/ ¼ 0 ð4:2Þ
can be easily shown to have an exact solution given by

/ðx; tÞ ¼ exp½�ðkk2
m þ cÞt� exp ½ikmðx� utÞ� ð4:3Þ

In the above expression, km denotes the wavenumber. Denoting hð� DxÞ as the mesh
size and Dt as the time increment, the proposed discrete equation for (4.2) is shown
to be equivalent to

A1/
nþ1
j�1 þ A2/

nþ1
j þ A3/

nþ1
jþ1 ¼ 6

�
/nþ1=6

j þ /nþ5=6
j

�
� Dtð�u/n

x þ k/n
xx � c/nÞ

þ 3Dt
�
� u/nþ1=6

x þ k/nþ1=6
xx � c/nþ1=6

�
þ 3Dt

�
� u/nþ5=6

x þ k/nþ5=6
xx � c/nþ5=6

�
ð4:4Þ

The tridiagonal coefficients A1, A2, and A3, which are written in terms of v ¼ u Dt=h
and R ¼ ch=u, are expressed as

A1 ¼ �
an
Pe
� n

2
þ nRþ 12

6
A2 ¼ 2

an
Pe
þ nRþ 12

3

� �
A3 ¼ �

an
Pe
þ n

2
þ nRþ 12

6

According to the definition of Peð¼ uh=kÞ, a is derived theoretically as

a¼h2 ½ðnRþ12Þ=3�þ½ðnRþ12Þ=6� coshðk1
�Þcoshðk2

�Þþðn=2Þ sinhðk1
�Þcoshðk2

�Þ
coshðk1

�Þcoshðk2
�Þ�1

( )

ð4:5Þ
where k1

� ¼Pe=2 and k2
� ¼ ½ðPe=2Þ2þPeðRþ12=nÞ�1=2:

Owing to the discretized amplitude and phase errors, the exact solution for the
discrete equation (4.4) is assumed to take the following form:

/ðx; tÞ ¼ exp �ðkk2
m þ cÞ kr

b2
t

� �
exp ikm x� u

ki

b
t

� �� �
ð4:6Þ

The modified wavenumber shown above is expressed as b ¼ kmh. The dispersion
analysis of Eq. (4.4) starts by substituting /j and /j�1, which are obtained from
Eq. (4.6), into equation (4.4). After some algebra, the introduced kr and ki shown
in Eq. (4.6) for measuring the respective amplitude and phase errors are derived as

kr ¼ �
p

n½ð1=PeÞ þ ðR=b2Þ�
ð4:7Þ
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ki ¼
q

n
ð4:8Þ

where

p ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1�a� f2 �b

a2 þ b2

� �2

þ f1�bþ f2 �a
a2 þ b2

� �2
s2
4

3
5 ð4:9Þ

q ¼ tan�1 f1 �bþ f2 �a
f1 �a� f2 �b

� �
ð4:10Þ

In the above two equations, a ¼ ðA1 þ A3Þ cos bþ A2; b ¼ ðA1 � A3Þ sin b, where

f1 ¼ ðk1 þ 6Þ eð1=6Þp cos
1

6
qþ eð5=6Þp cos

5

6
q

� �
þ k1 � k2 eð1=6Þp sin

1

6
qþ eð5=6Þp sin

5

6
q

� �
ð4:11Þ

f 2¼ðk2þ6Þ eð1=6Þp sin
1

6
qþ eð5=6Þp sin

5

6
q

� �
�k2þk1 eð1=6Þp cos

1

6
qþ eð5=6Þp cos

5

6
q

� �
ð4:12Þ

In Eqs. (4.11) and (4.12), k1 and k2 are expressed as

k1¼B1 cos3bþB2 cos2bþB3 cosbþB4þB5 cosbþB6 cos2b ð4:13Þ

k2¼B1 sin3bþB2 sin2bþB3 sinb�B5 sinb�B6 sin2b ð4:14Þ

The expressions for B1�B6 are detailed in [27].
To reveal clearly the dissipative and dispersive errors, kr and ki are plotted

against Pe, Rð� ch=uÞ, and n in Figure 1. For the case considered at R ¼ 1, it is known
that kr and ki agree perfectly with b2 and b, respectively, in the small-modified-
wavenumber range. The larger the modified wavenumber, the less satisfactory agree-
ment is observed. Note that the proposed scheme is of the dissipative type since kr is
seen to have the positive value in the entire wavenumber range. For the sake of com-
parison with the other schemes investigated, kr and ki are also plotted in Figure 2.

In Figure 3, the numerical group velocity Cgð� dw=dkmÞ (in which w is
obtained from the dispersion relation) is observed to have a magnitude smaller than
the analytic propagation speed. The proposed scheme is thus classified to be phase-
lagging. For the sake of completeness, dispersion analysis of the investigated

schemes is also conducted. The derived s1 and s2 shown in kr ¼ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1 þ s2
2

q
Þ and

ki ¼ tan�1ðs2=s1Þ are detailed in [27].
After the fundamental study of the proposed fourth-order scheme, a Fourier

(or von Neumann) stability analysis is conducted so as to reveal its amplification
factor. Let b ¼ ð2pm=2LÞh ðm ¼ 0; 1; 2; 3; . . . ;MÞ, h being the grid size, and 2L
being the period of fundamental frequency ðm ¼ 1Þ; the amplification factor
jGjð� j/nþ1

j =/n
j jÞ is derived in terms of p and q shown in Eqs. (4.9) and (4.10), where

G ¼ epðcos qþ i sin qÞ. From Figure 4, it is observed that the proposed scheme is
unconditionally stable. The amplification factor shown above can be rewritten in
exponential form as G ¼ jGjeih, where the phase angle h is defined as
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Figure 1. Plots of kr and ki versus b2 and b for the case with R ¼ 1 and five chosen magnitudes of n:

(a) kr for Pe ¼ 5; (b) kr for Pe ¼ 100; (c) ki for Pe = 5; (d) ki for Pe ¼ 100. Note that b is the modified

wave-number.
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Figure 1. Continued.

78 T. W. H. SHEU AND R. K. LIN



Figure 2. Plots of kr and ki versus b2 and b for the case with R ¼ 1: (a) kr for n ¼ 0:2, Pe ¼ 2; (b) kr

for n ¼ 0:5, Pe ¼ 10; (c) ki for n ¼ 0:2, Pe ¼ 2; (d) ki for n ¼ 0:5, Pe ¼ 10.
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Figure 2. Continued.
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Figure 3. Plots of group velocity ratio Cg=Ce versus modified wavenumber b for the case with R ¼ 1 and

five chosen magnitudes of n: (a) Pe ¼ 5; (b) Pe = 100. Note that Cg and Ce are the numerical and exact

group velocities, respectively.

FOURTH-ORDER-ACCURATE TEMPORAL=SPATIAL SCHEME 81



Figure 4. Plots of amplification factor jGj versus modified wavenumber b for the case with R ¼ 1 and five

chosen magnitudes of n: (a) Pe ¼ 5; (b) Pe ¼ 100.
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Figure 5. Plots of phase angle ratio h=he versus modified wavenumber b for the case with R ¼ 1 and five

chosen magnitudes of n: (a) Pe ¼ 5; (b) Pe ¼ 100.
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h ¼ tan�1 jImðGÞ=ReðGÞj. To study the h variation with respect to the dimensionless
numbers Pe ¼ uh=k, R ¼ ch=u, and n ¼ u Dt=h, the exact phase angle he, which is
�nb, is derived. The ratio h=he plotted in terms of b is shown in Figure 5. The reader
can refer to [27] for the rest of the investigated schemes.

5. NUMERICAL STUDIES

5.1. One-Dimensional Problems

The first test problem is the diffusion-reaction equation defined in 0 � x � 1:

�k/xx þ c/ ¼ f ð5:1Þ

/ð0Þ ¼ /ð1Þ ¼ f ð0Þ ð5:2Þ

where

f ðxÞ ¼ �0:5 x x � 0:5
0:5 x > 0:5

�
ð5:3Þ

It is well known that this problem has the interior layer developed at x ¼ 0:5 and the
boundary layer formed at x ¼ 1 according to the solution derived as follows [28]:

/ ¼ 0:25 Aþ Bð Þ exp � 0:5� xffiffiffi
k
p

� �
� exp

�0:5þ xffiffiffi
k
p

� �� �
� 0:5x x � 0:5 ð5:4Þ

and

/ ¼ 0:25ðA� BÞ exp

�
� 1

2
ffiffiffi
k
p
��

exp

�
� x� 1ffiffiffi

k
p

�
� exp

�
� 1� xffiffiffi

k
p

��

þ 0:5

�
1� exp

�
� 1� xffiffiffi

k
p

��
x � 0:5 ð5:5Þ

In the above equations, A ¼ ½
ffiffiffi
k
p
� expð�1=2

ffiffiffi
k
p
Þ�=½1þ expð�1=

ffiffiffi
k
p
Þ� and B ¼

½1:5� expð�1=2
ffiffiffi
k
p
Þ�=½1� expð�1=

ffiffiffi
k
p
Þ�. For the case considered at kð¼ 10�2; 10�8Þ,

c ¼ 1, and h ¼ 1
41, the computed results shown in Figure 6 are found to reproduce the

sharply varying analytic solution. In Table 1 the solution quality of the proposed
equal-order finite-difference scheme is clearly shown to outperform the scheme of
Miller et al. [28].

Having verified the proposed steady-state scheme, we now turn our attention
to the time-dependent convection-diffusion equation in 0 � x � 1:

/t þ u/x � k/xx þ c/ ¼ 0 ð5:6Þ

Subject to /ðx; t ¼ 0Þ ¼ x2, the exact solution for the case with u ¼ 1, k ¼ x, and
c ¼ 1 takes the form /ðx; tÞ ¼ x2e�t. Calculations were also carried out on the con-
tinuously refined grid sizes of h ¼ 1

11 ;
1

21 ;
1

41 ;
1

81 ; and 1
101. This was followed by plotting
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Figure 6. Simulated / profiles for the problem defined in (5.1)–(5.3), investigated at two values of k:

(a) k ¼ 10�2; (b) k ¼ 10�8.
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logðerr1=err2Þ against logðh1=h2Þ for the L2-error norms err1 and err2 obtained at two
continuously refined grids h1 and h2. As Figure 7 shows, the rates of convergence are
obtained as 3.941/3.966 (temporal/spatial), which agree fairly well with the theoreti-
cal rates of convergence, using the proposed scheme. Assessment of the currently
investigated schemes is made using the simulated results /ðx; t ¼ 1Þ cast in the
L2-error norms tabulated in Table 2.

The validation is followed by solving the nonlinear transport equation
ut þ uux ¼ uxx. This model equation is defined in 0 � x � 1 and is solved subject
to the following initial and boundary conditions:

uðx; 0Þ ¼ ðp=2Þ sinðpxÞ þ 2p sinð2pxÞ
1þ 1

4 cosðpxÞ þ 1
2 cosð2pxÞ ð5:7Þ

uð0; tÞ ¼ uð1; tÞ ¼ 0 ð5:8Þ

The resulting exact solution takes the following form [29]:

uðx; tÞ ¼ ðp=2Þ½expð�p2tÞ sinðpxÞ þ 4 expð�4p2tÞ sinð2pxÞ�
1þ 1

4 expð�p2tÞ cosðpxÞ þ 1
2 expð�4p2tÞ cosð2pxÞ ð5:9Þ

All the calculations were carried out at Dt ¼ 10�3. Figure 8 shows the simulated
L2-error norms at t ¼ 1:0 and the rates of convergence for the proposed scheme.
The rapid convergence to the analytic solution (refer to Table 3) with a slope slightly
larger than 4 (refer to Figure 8) is clearly demonstrated for the simulated results
/ðx; t ¼ 1Þ.

5.2. Two-Dimensional Problems

The following pure advection (or inviscid Burgers’) equation is considered first:

/t þ u/x þ v/y ¼ 0 ð5:10Þ

Table 1. Simulated maximum pointwise errors for Eqs. (5.1)–(5.3) investigated at five discussion

coefficients of k and N nodal points

N ¼ 8 16 32 64 128 256 512 1,024

k ¼ 1 Present 2.67E-3 6.58E-4 1.63E-4 4.07E-5 1.01E-5 2.53E-6 6.34E-7 1.58E-7

Miller et al. [28] 3.78E-3 1.66E-3 7.95E-4 3.90E-4 1.93E-4 9.63E-5 4.80E-5 2.40E-5

10�2 Present 9.34E-3 2.19E-3 5.39E-4 1.33E-4 3.33E-5 8.33E-6 2.08E-6 5.20E-7

Miller et al. [28] 9.42E-3 3.75E-3 1.72E-3 8.25E-4 4.05E-4 2.01E-4 9.99E-5 4.98E-5

10�4 Present 5.48E-5 5.35E-5 4.38E-5 2.74E-5 1.46E-5 7.46E-6 3.75E-6 1.87E-6

Miller et al. [28] 9.49E-3 2.06E-3 6.45E-4 2.49E-4 1.08E-4 5.04E-5 2.43E-5 1.19E-5

10�6 Present 0.00Eþ 0 0.00Eþ 0 2.77E-17 5.55E-17 2.77E-17 5.55E-17 8.32E-17 2.77E-17

Miller et al. [28] 8.39E-3 4.86E-3 2.69E-3 1.37E-3 6.89E-4 3.45E-4 1.72E-4 8.62E-5

10�8 Present 0.00Eþ 0 0.00Eþ 0 0.00Eþ 0 0.00Eþ 0 0.00Eþ 0 2.77E-17 0.00Eþ 0 0.00Eþ 0

Miller et al. [28] 1.89E-2 9.09E-3 4.29E-3 2.04E-3 9.95E-4 4.90E-4 2.43E-4 1.21E-4
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Figure 7. Simulated rates of convergence for the problem given by Eq. (5.6): (a) temporal rate of conver-

gence; (b) spatial rate of convergence.
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where ðx; y; tÞ 2 ð0; 1Þ � ð0; 1Þ � ð0; 1Þ. The problem to be investigated has a steep
ramp function of width 0.01 and gradient 100. The analytic solution is given by

/ðx; y; tÞ ¼ 1:1þmax½minðd; 0Þ;�1� ð5:11Þ

where d ¼ 100ð0:1� 1
2 ðxþ yÞ þ tÞ, Dx ¼ Dy ¼ 1

41, and Dt ¼ 10�3. For the sake of
assessment, all the predicted L2-error norms at t ¼ 1 are tabulated in Table 4 to show
that the present scheme outperforms other schemes in terms of accuracy. Also,
no oscillatory solution is observed near the steep ramp using the proposed scheme.
In what follows, the required CPU times are also tabulated in (�) shown in the rest
of tables.

The following convection-diffusion problem, known as the viscous Burgers’
equation, defined in ðx; y; tÞ 2 ð0; 1Þ � ð0; 1Þ � ð0; 1Þ, is then considered:

/t þ u/x þ v/y ¼ nr2/ ð5:12Þ

The analytic solution is /ðx; y; tÞ ¼ wðx; tÞwðy; tÞ, where wðx; tÞ is derived as

wðx; tÞ ¼ 0:1Aþ 0:5Bþ C

Aþ Bþ C
ð5:13Þ

In the above, A ¼ e�0:05ðx�0:5þ4:95tÞ=n, B ¼ e�0:25ðx�0:5þ0:75tÞ=n, and C ¼ e�0:5ðx�0:375Þ=n.
Solutions were obtained at Dt ¼ 10�3 and Dx ¼ Dy ¼ 1

11 ;
1

21 ;
1
41 ;

1
81 ;

1
161 for the prob-

lem with u ¼ wðx; tÞ; v ¼ wðy; tÞ, and n ¼ 10�4. Convergence to the analytic solution
with the theoretical rate is revealed by the solutions computed at several uniform
meshes. Good agreement with the analytic solution is clearly demonstrated from
the tabulated L2-error norms for /ðx; y; t ¼ 1Þ in Table 5. Unlike other solutions
plotted in Figure 9, no oscillation is observed near the jump using the currently pro-
posed scheme.

Finally, the following two-dimensional nonlinear viscous Burgers’ equation is
considered in ðx; y; tÞ 2 ð0; 1Þ � ð0; 1Þ � ð0:25; 1:25Þ:

ut þ uux þ uuy ¼ nr2u ð5:14Þ

The initially smooth solution gradually evolves to produce the shocklike profile
given below, due to the nonlinear term uux shown in (5.14) [30]:

uðx; y; tÞ ¼ 1

1þ eB
ð5:15Þ

Table 2. Comparison of simulated L2-norm errors for the solutions obtained at Dt ¼ 10�1; 10�2;

10�3; and 10�4 for the second problem in Section 5.1 (divergent solutions are marked with —)

Dt

Present

Eq. (4.1)

AB

Eq. (2.30)

Gear (open)

Eq. (2.31)

RK

Eq. (2.29)

AM

Eqs. (2.21)–(2.22)

Gear (closed)

Eqs. (2.23)–(2.24)

RKF

Eq. (2.25)

10�1 2.846E-5 2.233E-6 2.115E-6 1.890E-6 2.579E-7 1.174E-6 9.431E-5

10�2 3.906E-7 — — — — — 5.141E-7

10�3 3.907E-9 — — 5.471E-10 — — 3.081E-9

10�4 3.206E-11 8.461E-9 — 2.129E-11 2.081E-9 9.974E-8 3.521E-11
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Figure 8. Simulated rates of convergence for the problem given by Eqs. (5.7)–(5.8): (a) temporal rate of

convergence; (b) spatial rate of convergence.
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where B ¼ xþ y� t=n. As a validation test, n was chosen to be 10�4. Three meshes,
21� 21, 41� 41, and 101� 101, were used to calculate uðx; y; tÞ under Dt ¼ 10�3 for
the present problem with the initial and boundary conditions from Eq. (5.15). The
results plotted in Figure 10 exhibit sharp solution profiles. To demonstrate that
the proposed fourth-order-accurate scheme outperforms the other schemes investi-
gated, the simulated L2-error norms are summarized in Table 6.

6. CONCLUDING REMARKS

The aim of this study was to develop a fourth-order-accurate temporal scheme
for the convection-diffusion transport equation investigated, without involving sto-
rage of several previously calculated solutions. Application of Pade’s approximation
for the time derivative term results in two explicit and two implicit spatial differential
equations. To increase predicted accuracy, the nodally exact CDR scheme for the
constant-coefficient inhomogeneous convection-diffusion-reaction equation was
applied in a domain of one dimension. Also, all the spatial derivatives in the source
term were approximated to yield fourth-order spatial accuracy. To fully assess the
proposed fourth-order-accurate temporal and spatial schemes, problems which are
all amenable to exact solutions were considered. The computed L2-error norms

Table 3. Comparison of simulated L2-norm errors for the solutions obtained at Dt ¼ 10�1;

10�2; 10�3; and 10�4 for the third problem in Section 5.1 (divergent solutions are marked with —)

Dt

Present

Eq. (4.1)

AB

Eq. (2.30)

Gear (open)

Eq. (2.31)

RK

Eq. (2.29)

AM

Eqs. (2.21)–(2.22)

Gear

(closed)

Eqs. (2.23)–(2.24)

RKF

Eq. (2.25)

10�1 1.045E-4 1.096E-1 4.359E-1 9.009E-3 1.628E-1 5.201E-2 2.760E-4

10�2 1.054E-6 3.851E-8 — 1.025E-6 2.617E-7 3.335E-4 8.902E-7

10�3 1.060E-8 2.136E-9 — 5.651E-9 4.401E-9 4.774E-5 8.408E-9

10�4 1.501E-10 2.127E-10 — 2.428E-10 2.350E-10 4.955E-6 3.031E-10

Table 4 Comparison of simulated solutions obtained at Dt ¼ 10�1, 10�2, 10�3, and 10�4 for the first prob-

lem in Section 5.2 [(�) denotes CPU time]

Dt

Present

Eq. (4.1)

AB

Eq. (2.30)

Gear (open)

Eq. (2.31)

RK

Eq. (2.29)

AM

Eqs.

(2.21)–(2.22)

Gear (closed)

Eqs.

(2.23)–(2.24)

RKF

Eq. (2.25)

10�1 3.949E-01 4.351Eþ 00 5.232Eþ 00 8.330Eþ 02 3.038Eþ 01 4.644Eþ 01 4.131Eþ 00

(0.687) (0.781) (0.625) (0.625) (0.856) (0.656) (0.694)

10�2 1.083E-02 3.882E-01 3.447E-01 4.138E-02 3.721E-01 4.357E-01 3.976E-02

(2.593) (2.234) (1.421) (2.125) (2.515) (1.781) (2.947)

10�3 2.056E-03 4.249E-03 1.667E-02 3.853E-03 3.965E-03 1.940E-03 3.813E-03

(21.500) (16.890) (9.234) (17.062) (21.296) (14.015) (26.147)

10�4 2.285E-04 4.544E-04 1.785E-03 4.543E-04 4.544E-04 2.225E-04 4.342E-04

(213.500) (216.828) (118.984) (218.500) (296.781) (180.750) (278.365)

90 T. W. H. SHEU AND R. K. LIN



T
a

b
le

5
.

C
o

m
p

ar
is

o
n

o
f

si
m

u
la

te
d

so
lu

ti
o

n
s

o
b

ta
in

ed
a

t
D

t
¼

1
0
�

1
,

1
0
�

2
,

1
0
�

3
,

a
n

d
1

0
�

4
fo

r
th

e
se

co
n

d
p

ro
b

le
m

in
S

ec
ti

o
n

5
.2

[(
�)

d
en

o
te

s
C

P
U

ti
m

e]

D
t

P
re

se
n

t

E
q

.
(4

.1
)

A
B

E
q

.
(2

.3
0

)

G
ea

r
(o

p
en

)

E
q

.
(2

.3
1

)

R
K

E
q

.
(2

.2
9

)

A
M

E
q

s.
(2

.2
1

)–
(2

.2
2

)

G
ea

r
(c

lo
se

d
)

E
q

s.
(2

.2
3

)–
(2

.2
4

)

R
K

F

E
q

.
(2

.2
5

)

1
0
�

1
3

.3
6

8E
-0

1
4

.2
0

6E
þ

0
0

4
.5

5
1

E
þ

0
0

2
.3

2
5E
þ

0
2

2
.2

5
7

E
þ

0
1

3
.2

1
2

E
þ

0
1

2
.3

1
2E
þ

0
0

(2
.3

1
2)

(1
.6

8
7)

(1
.4

5
3)

(1
.4

3
7

)
(1

.8
7

1)
(1

.5
9

3)
(2

.4
6

1)

1
0
�

2
2

.3
5

6E
-0

2
2

.3
3

2E
-0

1
2

.7
8

5
E

-0
1

2
.9

8
0E

-0
2

1
.2

1
0

E
-0

1
1

.3
6

0
E

-0
1

2
.5

6
3E

-0
2

(1
6

.7
18

)
(9

.5
6

2)
(7

.8
9

0)
(8

.9
8

4
)

(1
0

.2
50

)
(8

.3
1

2)
(1

8
.1

46
)

1
0
�

3
2

.1
6

7E
-0

3
2

.7
1

2E
-0

3
6

.7
4

9
E

-0
2

2
.6

8
9E

-0
3

2
.6

8
1

E
-0

3
1

.2
8

7
E

-0
2

2
.6

3
1E

-0
3

(1
6

2
.3

1
2

)
(8

7
.1

71
)

(7
6

.7
81

)
(8

6
.3

59
)

(9
1

.3
75

)
(8

6
.1

87
)

(1
9

2
.6

9
8

)

1
0
�

4
3

.3
7

2E
-0

4
6

.6
9

2E
-0

4
2

.5
9

7
E

-0
3

6
.6

8
4E

-0
4

6
.6

8
6

E
-0

4
3

.2
7

4
E

-0
4

5
.1

8
6E

-0
4

(2
2

2
5.

4
5

3
)

(8
8

6
.5

6
2

)
(1

2
3

8.
7

1
8

)
(1

1
9

5.
6

7
1

)
(1

4
5

2.
5

1
5

)
(1

3
5

4.
9

0
6

)
(2

6
4

7.
1

4
6

)

91



Figure 9. Simulated solution profiles for / at t ¼ 0:6 for the two-dimensional equation considered

in Section 5.2: (a) present; (b) Adams-Bashforth (AB); (c) Gear (open-type); (d) Runge-Kutta (RK);

(e) Adams-Moulton (AM); (f) Gear (closed-type).
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Figure 10. Simulated solution profiles at t ¼ 1:25 for the two-dimensional equation considered in Section

5.2: (a) present; (b) Adams-Bashforth (AB); (c) Gear (open-type); (d) Runge-Kutta (RK); (e) Adams-

Moulton (AM); (f) Gear (closed-type).
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and the simulated theoretical rates of convergence demonstrate the advantage of
applying the proposed convection-diffusion scheme. For the sake of completeness,
theoretical studies of the proposed scheme and assessment versus other temporal
schemes have also been conducted.
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