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In this article, two three-level methods employing the same prolongation operator are

proposed for efficiently solving the incompressible Navier-Stokes equations in a two-grid

system. Each method involves solving one smaller system of nonlinear equations in the

coarse mesh. The chosen Newton- or Oseen-type linearized momentum equations along with

a correction step are solved only once on the fine mesh. Within the three-level framework,

the locally analytic prolongation operator needed to bridge the convergent Navier-Stokes

solutions obtained at the coarse mesh and the interpolated velocities at the fine mesh is

developed to improve the prediction quality. To increase prediction accuracy, the linearized

momentum equations are discretized within the alternating direction implicit context using

our previously developed nodally exact convection-diffusion-reaction finite-difference

scheme. Two proposed three-level methods are rigorously assessed in terms of simulated

accuracy, nonlinear convergence rate, and elapsed CPU time.

1. INTRODUCTION

Numerical simulation of incompressible viscous flow equations often encoun-
ters stability problems for velocities in the approximation of multidimensional
advective terms [1]. Moreover, many upwind advection schemes can introduce false
diffusion error [2]. Therefore, splitting the equations becomes an attractive means to
dispense with crosswind diffusion error without sacrificing scheme stability [3].
Another trivial benefit of applying the operator splitting technique is that solutions
can be obtained efficiently within the one-dimensional framework. When simulating
the incompressible Navier-Stokes equations in collocated grids, it is necessary to
eliminate the node-to-node oscillatory pressure solutions arising from the decoupling
velocity and pressure fields [4–6]. This motivated the calculation of incompressible
flow solutions on nonstaggered grids for ease of programming [7].
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Linearization of incompressible flow equations is another major bottleneck.
Inappropriate linearization of the convective terms may retard solution convergence
and sometimes can even cause the divergence of the solution. Computational
expense is therefore considerable. Among earlier proposed methods, the multilevel
method has gained some attraction to avoid time-consuming calculation of the non-
linear Navier-Stokes equations [8–10]. To accelerate the nonlinear convergence, we
are motivated to apply the multilevel method, which solves the differential equations
on continuously refined mesh points. For example, in a two-level method, initially
the nonlinear differential system is solved in the coarse mesh, followed by carrying
out a computationally more expensive calculation for the same differential system
of equations in the fine mesh. To communicate the two solutions obtained at the
coarse and fine meshes, a prolongation step is needed to approximate u� shown in
ðu� � rÞu in the fine mesh, where u� is the convergent velocity vector obtained from
the full Navier-Stokes equations in the coarse mesh. To the authors’ knowledge,
there exist some multilevel methods that have been successfully applied to solve
semilinear systems of elliptic equations [11], scalar partial differential equations [12],
nonlinear reaction-diffusion equations [13], and the Navier-Stokes equations [14].

In multilevel Navier-Stokes flow analysis, the Newton equation, which is
implemented either in a fixed mesh [15] or in several successive meshes [16], has been
referred to. For a high Reynolds number problem, use of the Newton linearization
method can result in an asymmetric matrix that is highly indefinite [1]. The matrix
asymmetry and indefiniteness, which are the two major difficulties in solving the
matrix equation, arise from the convective term and the reaction (or production)
term, respectively. To resolve the indefiniteness problem, Layton and Lenferink [9]
neglected the reaction term shown in the Newton linearized equation [8]. Hence,
the Oseen-type Navier-Stokes algebraic system becomes relatively easier to be solved
and, in fact, has been extensively employed in the past. One can refer to the work of
Layton and Tobiska [14] for more information about this class of methods. Since the
computational efficiency of multilevel Navier-Stokes methods depends strongly on
the linearization method chosen, the defect-correction step can be integrated into
the modified Picard method (or Oseen two-step method plus correction step) [10]
to improve the convergence [14] for a computation carried out in the coarse mesh.

The remainder of this article is organized as follows. In Section 2, the momen-
tum equations in primitive-variable form are solved along with the pressure Poisson
equation. This is followed by a presentation of the three-level methods employed. In
Section 4, the underlying convection-diffusion-reaction (CDR) spatial discretization
scheme is applied alternatively in each spatial direction based on the alternating

NOMENCLATURE

f body force per unit volume

K diffusion coefficient defined in Eq. (16)

K0ðmÞ modified Bessel function defined

in Eq. (27)

L characteristic length

n unit outward normal vector

Re Reynolds number (�q u1L=m)

ulid characteristic velocity

u1 reference velocity

c Euler’s constant

n delta function

q fluid density
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direction implicit (ADI) method when solving the momentum equations. To improve
the solution accuracy in the fine mesh, we develop in Section 5 an analytic pro-
longation operator so as to communicate the simulated coarse-mesh Navier-Stokes
solutions with those needed in the fine mesh. In Section 6, the model is validated by
solving a problem which is amenable to exact solution. Also, the lid-driven cavity
problem is investigated at different Reynolds numbers. Finally, some conclusions
are drawn in Section 7.

2. WORKING EQUATIONS

The viscous incompressible flow motion governed by the following continuity
equation and momentum equations is investigated at the Reynolds number
Reð�qu1L=mÞ, where m is denoted as the fluid viscosity:

r � u ¼ 0 ð1Þ

ðu � rÞu ¼ �rpþ 1

Re
r2uþ f ð2Þ

All lengths are normalized by L, the velocity components by u1, the time by L=u1,
and the pressure by qu2

1, where q denotes the fluid density. The chosen primitive
variables u and p are sought subject to the boundary velocities. It is noted that
specification of boundary condition for p is not permitted for the differential system
given by (1)–(2) [17–19].

To preserve the incompressibility condition, momentum conservation equa-
tions can be solved together with the divergence-free constraint condition [or
continuity equation (1)]. This coupled method cannot, however, result in a well-
conditioned matrix and, in turn, may yield a poor matrix eigenvalue spectrum.
For a large-sized problem, it is very difficult to obtain ðu; pÞ solutions from (1)–(2)
using either a computationally less expensive iterative solver [20] or a memory-
demanding direct solver. These two drawbacks make the use of the coupled formu-
lation to solve Eqs. (1)–(2) less attractive. One strategy to circumvent this difficulty is
to apply the well-known pressure Poisson equation (PPE) approach [2, 21]. By
applying a curl operator on the momentum equations, the following pressure
Poisson equation can be derived in lieu of the divergence-free equation (1):

r2p ¼ r 1

Re
r2u� ðu � rÞuþ f

� �
ð3Þ

For the purpose of closure, analysis of Eq. (3) needs to be supplemented with
the rigorous integral-type pressure boundary condition derived in [17]. In the current
study, such a theoretical integral pressure boundary condition is not implemented,
for ease of computation. Instead, the following Neumann-type pressure boundary
condition for Eq. (3) is adopted [22]:

qp

qn
¼ 1

Re
r2u� ðu � rÞuþ f

� �
� n ð4Þ

In the above equation, n denotes the unit outward normal vector to the boundary. Note
that Eq. (4) is legitimate only when the discrete divergence-free condition is satisfied.
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Subjected to the velocity boundary conditions, Eqs. (2)–(4) are discretized in a
domain in which the velocity and pressure unknowns are stored at the same point.
Within this nonstaggered-mesh framework, the pressure gradient term must be
appropriately approximated to avoid checkerboard pressure oscillations. The
approach chosen to suppress the notorious even–odd solution pattern is to take
the nodal value of pj into account while discretizing rp at the interior node j. Our
approximation of rpjj involves solving the following implicit equation for Fj

(Fj ¼ hpj, where h denotes the uniform mesh size) [23]:

a Fjþ1 þ b Fj þ c Fj�1 ¼ c1ðpjþ2 � pjþ1Þ þ c2ðpjþ1 � pjÞ
þ c3ðpj � pj�1Þ þ c4ðpj�1 � pj�2Þ ð5Þ

The seven coefficients are determined by expanding Fj�1 in Taylor series with respect
to Fj and pj�1, pj�2 with respect to pj. This is followed by substituting the resulting
expansions into Eq. (5) to derive a set of algebraic equations for a, b, c, c1, c2, c3, and
c4. Note that it is legitimate to set a ¼ c owing to the elliptic nature of Eq. (3) for p.
Setting a ¼ c, the rest of the coefficients shown in Eq. (5) are determined as b ¼ 3=5,
c ¼ 1=5, c1 ¼ 1=60, c2 ¼ 29=60, c3 ¼ 29=60, and c4 ¼ 1=60. The readers may refer to
the other compact schemes for the first-derivative terms discussed in [24,25].

3. TWO-GRID, THREE-LEVEL METHODS

3.1. Linearization of Momentum Equations

In this study, the Newton-Raphson method is chosen to linearize the convec-
tive terms shown in Eq. (2). For linearization, a product term, say ST , at the current
iteration k þ 1 is expanded with respect to that evaluated at the previous iteration
k to yield the first-order-accurate expression for Skþ1 Tkþ1 � Skþ1 Tkþ
Sk Tkþ1 � Sk Tk þ � � � þH.O.T; where H.O.T. ¼ higher-order terms [26]. Thanks
to this approximation, the nonlinear terms ðu2Þkþ1

x and ðu vÞkþ1
y shown in the

x- and y-momentum equations are linearized as

ðu2Þkþ1
x ¼ ukþ1

x uk þ ukþ1 uk
x þ uk

x ukþ1 þ uk ukþ1
x � uk

x uk � uk uk
x ð6Þ

ðu vÞkþ1
y ¼ ukþ1

y vk þ ukþ1 vk
y þ uk

y vkþ1 þ uk vkþ1
y � uk

y vk � uk vk
y ð7Þ

Substitution of the above two equations into Eq. (2) enables us to derive the linear-
ized x- and y-momentum equations, respectively, as shown below:

uk ukþ1
x þ vk ukþ1

y � 1

Re
r2ukþ1 þ uk

x ukþ1 ¼ �pkþ1
x þ uk uk

x þ vk uk
y � uk

y vkþ1 ð8Þ

uk vkþ1
x þ vk vkþ1

y � 1

Re
r2vkþ1 þ vk

y vkþ1 ¼ �pkþ1
y þ uk vk

x þ vk vk
y � vk

x ukþ1 ð9Þ

The underlined terms denote the extra corrections to the classical linearization
method.
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The convective terms in the linearized equations (8)–(9) are responsible for the
presence of matrix asymmetry, which increases memory storage requirements, and
for the decreasing diagonal dominance, which can destabilize the discrete system.
Numerical instability of this kind can be, in theory, resolved by applying any
upwinding scheme for the convective terms. The indefinite nature of the reaction
term ruk � ukþ1 shown in Eqs. (8)–(9) can cause another type of numerical instability
to occur [1]. This is the reason for omitting the potentially destabilizing positive-
valued linear production (or reaction) term shown in the Newton linearized equa-
tion. We can therefore consider the resulting Oseen linearization method [10] as
the approximated Newton linearization method.

3.2. Two Investigated Three-Level Methods

The level of difficulty in solving the Navier-Stokes equations increases with
decreasing mesh size because of the increasingly reduced spectrum for eigenvalues.
To accelerate convergence, a multilevel method, which involves calculations at the
coarse and fine grid levels, has been proposed [8, 9]. For example, in a two-level
method, the convergent solutions for Eqs. (1) and (3) are solved from a compara-
tively conditioned matrix system on the coarse mesh. This is followed by solving
the linearized Navier-Stokes equations only once in the fine mesh. Two-level meth-
ods differ from each other solely in the chosen (linear) equations which are solved in
the fine mesh.

The Navier-Stokes equations, namely, ðuH � rÞuH � ð1=ReÞru2
H ¼ �rpH þ f,

are initially solved in a coarse mesh of width H until the convergent solutions
ðuH ; pHÞ are obtained. This is followed by exporting the converged uH solution to
the corresponding nodes in the fine mesh of grid width h. Depending on the chosen
Newton- or Oseen-type linearization method, in the second step the solutions for
ðuh; phÞ in the fine mesh are sought from Eqs. (3)–(4), and the corresponding linear-
ized momentum equations are given below:

Newton equation for uN
h [8]

ðuH � rÞuN
h �

1

Re
r2uN

h þ ðuN
h � rÞuH ¼ �rpN

h þ ðuH � rÞuH þ f ð10Þ

Oseen equation for uO
h [9]

ðuH � rÞuO
h �

1

Re
r2uO

h ¼ �rpO
h þ f ð11Þ

The above Newton- and Oseen-type linearized equations are then solved only once in
the fine mesh.

Although the solutions for ðuH ; pHÞ can be more easily obtained in the coarse
mesh, the simulated solution accuracy may be less than satisfactory. However, a
defect correction can be implemented in the coarse mesh to improve the accuracy.
Define uN

h ¼ uO
h þ eOC

H and pN
h ¼ pO

h þ eOC
H and then substitute them into Eq. (11).
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The equation for the correction term eOC
H can be derived accordingly as [11, 14]

r � eOC
H ¼ 0 ð12Þ

ðuH � rÞeOC
H � 1

Re
r2eOC

H þ ðeOC
H � rÞuH ¼ �reOC

H þ ½ðuH � uOÞ � r�uH þ f ð13Þ

Similarly, by the definitions of uh ¼ uN þ eH and ph ¼ pN þ eH , the following
Newton defect-correction equation for eNC

H can be derived from Eq. (10) as [9, 14]

r � eNC
H ¼ 0 ð14Þ

ðuH � rÞeNC
H � 1

Re
r2eNC

H þ ðeNC
H � rÞuH ¼ �reNC

H þ ½ðuH � uNÞ � r�ðuN � uHÞ ð15Þ

For clarity, the equations for the Newton, Oseen, modified Picard (Oseen two-step
method plus correction step), and modified Newton (Newton two-step method plus
correction step) methods are summarized in the Appendix.

4. DISCRETIZATION OF EQUATIONS IN THE COLLOCATED MESH

As Eqs. (8)–(9) reveal, the Newton linearized Navier-Stokes equations take the
following convection-diffusion-reaction (CDR) form:

A/x þ B/y � Kr2/þ C/ ¼ F ð16Þ

The presence of the convection and production terms can simultaneously destabilize
the scheme stability. Moreover, while solving the above two-dimensional transport
equation, the simulated result is susceptible to false diffusion error [2]. Because of
these three numerical difficulties, we resort to the operator splitting technique of
Peaceman and Rachford [27] to obtain a solution alternatively along each spatial
direction.

A/�x � K/�xx þ C/� ¼ F1 ð17Þ

B/nþ1
y � K/nþ1

yy þ C/nþ1 ¼ F2 ð18Þ

The source terms shown in the above two equations are expressed as
F1 ¼ F� � B/n

y þ K/n
yy and F2 ¼ F nþ1 � A/�x þ K/�xx, respectively.

Within the spatial splitting framework, many well-established one-dimensional
discretization schemes can be applied. To obtain an accurate solution from the
two-dimensional equation (16), an accurate CDR scheme has been developed for
the one-dimensional model equation given by �uu/x � �kk/xx þ �cc/ ¼ �ff [3]. The general
solution for this model equation is given by / ¼ a1 ek1x þ a2 ek2x þ �ff =�cc, where

k1 ¼
�
�uu� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uu2 þ 4�cc�kk

p �
=2�kk and k2 ¼

�
�uu� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uu2 þ 4�cc�kk

p �
=2�kk. At an interior node i,
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the discretized equation is assumed to take the following form:

� �uu

2h
� m

h2
þ �cc

6

� �
/i�1 þ 2

m

h2
þ �cc

3

� �
/i þ

�uu

2h
� m

h2
þ �cc

6

� �
/iþ1 ¼ �ff ð19Þ

Substitution of the exact solutions for /i ¼ a1ek1xi þ a2ek2xi þ �ff =�cc,
/iþ1 ¼ a1 ek1h ek1xi þ a2 ek2h ek2xi þ �ff =�cc, and /i�1 ¼ a1e�k1hek1xi þ a2e�k2hek2xi þ �ff =�cc
into the Eq. (19) enables us to derive m as follows [5]:

m ¼ h2 ð�cc=3Þ þ ð�cc=6Þ coshðk1Þ coshðk2Þ þ ð�uu=2hÞ sinhðk1Þ coshðk2Þ
coshðk1Þ coshðk2Þ � 1

" #
ð20Þ

where

ðk1; k2Þ ¼
�uuh

2�kk
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uuh

2�kk

� �2

þ�cch2

�kk

s0
@

1
A

5. DERIVATION OF THE LOCALLY ANALYTIC PROLONGATION OPERATOR

The method for calculating the solution ðuH ; pHÞ in the coarse mesh remains
unchanged for each multilevel method investigated. In the fine mesh, the linearized
equations are solved only once. Therefore, the quality of the multilevel method
employed depends mainly on the way chosen to map the convergent values of uH

obtained at the nodes ‘‘&’’ (see schematic in Figure 1) in the coarse mesh to those
in the fine mesh. In this study, an attempt is made to develop an analytic pro-
longation operator so as to be able to communicate effectively the solutions obtained
at nodes with different levels of grid resolution.

Figure 1. Schematic of the coarse and fine mesh systems (�, fine mesh; &, coarse mesh).
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The prolongation operator, which is the key element of the current study, is
derived in detail as shown below. Consider the following constant-coefficient
equation in a simply connected domain V :

a /x þ b /y � kr2/þ c / ¼ 0 ð21Þ

The convective velocity components a and b represent the two constants along the x
and y directions, respectively. Two coefficients k and c shown above are known as
the diffusion coefficient and the reaction coefficient, respectively. For the sake of
simplicity, Eq. (21) is solved subject to the condition / ¼ g on the boundary qV .
Equation (21) can be rewritten as

r2/ ¼ 2 A /x þ 2 B /y þ d ð22Þ

where A ¼ a=2k, B ¼ b=2k, and d ¼ c=2k. By virtue of the mapping equation

/ðx; yÞ ¼ eAxþBy f ðx; yÞ ð23Þ

Eq. (21) for / can be transformed to the following Helmholtz equation for f :

r2f � �kk
2
f ¼ 0 ð24Þ

where �kk
2 ¼ A

2 þ B
2 þ d. How the above Helmholtz equation for f is discretized

turns out to be the key issue in the numerical simulation of the CDR equation for /.
Derivation of the prolongation operator is followed by introducing the scalar

function G, which is governed by the following inhomogeneous Helmholtz equation:

r2G � �kk
2
G ¼ dðx� nÞ ð25Þ

In the above equation, n represents the delta function. The reason for conducting
the transformation given by Eq. (23) is that the resulting auxiliary equation (25) is
amenable to the exact solution given by

G ¼ 1

2p
K0ð�kkjx� njÞ ð26Þ

Here, the modified Bessel function K0ðmÞ is expressed as

K0ðmÞ ¼ � ln
m

2

� 	
þ c

h i
1þm2

22
þ m4

22 42
þ m6

22 42 62
þ � � �

� �
þm2

22

þ m4

22 42
1þ 1

2

� �
þ m6

22 42 62
1þ 1

2
þ 1

3

� �
þ � � � ð27Þ

The Euler’s constant c ½� lim 1þ ð1=2Þ þ ð1=3Þ þ � � � þ ð1=nÞ � lnðnÞ� shown above
is equal to 0.5772156649. By performing ½f � ð25Þ � G � ð24Þ�, the following equation
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is derived:

f ðr2G � �kk
2
GÞ � Gðr2f � �kk

2
f Þ ¼ f dðx� nÞ ð28Þ

Integration of Eq. (28) in a volume VðnÞ enables us to derive the following equation:Z
VðnÞ
½f r2G � Gr2f � dV ¼ eðxÞ f ðxÞ ð29Þ

where

eðxÞ ¼
1 x 2 V

0 otherwise



ð30Þ

By conducting an integration by parts on Eq. (29), the equivalent equation
along Sð�qVÞ, which is the boundary of VðnÞ having an outward normal direction
of n, is derived as Z

S

f
qG

qn
� G

qf

qn

� �
dS ¼ eðxÞ f ðxÞ ð31Þ

In a single element with its centroid located at ði; jÞ, f is approximated by the bi-
quadratic polynomials Ni to render f ¼

P9
k¼1 Nk fk. By employing the expression

of G as defined in Eq. (26), along with qG=qn, and substituting f into Eq. (31),
the implicit nine-point stencil equation at node 5 in the schematic in Figure 2 is
derived as

A1 f1 þ A2 f2 þ A3 f3 þ A4 f4 þ A6 f6 þ A7 f7 þ A8 f8 þ A9 f9 ¼ f5 ð32Þ

The coefficients Ai ði ¼ 1	4 and 6	9Þ shown above take the following form:

Ai ¼
R

S½�NiðqG=qnÞ þ GðqNi=qnÞ� dSR
S½N5ðqG=qnÞ � GðqN5=qnÞ� dS

ð33Þ

Figure 2. Schematic of the stencil points 1–9.
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By integrating Eq. (31) in each cell from the left to the right end and then from the
bottom to the top, the global matrix equation for f is constructed.

6. NUMERICAL RESULTS

6.1. Validation and Assessment Studies

The classical Kovasznay flow problem [28], which is amenable to the following
analytic solution, is investigated to justify the proposed three-level methods:

u ¼ 1� ekx cosð2pyÞ ð34Þ

v ¼ k
2p

ekx sinð2pyÞ ð35Þ

p ¼ c1 þ
1

2
ð1� e2kxÞ ðc1 is a constantÞ ð36Þ

Figure 3. Plots of the rates of convergence C based on the computed L2-error norms obtained at different

mesh sizes using the three-level methods investigated: (a) modified Picard method; (b) modified Newton

method.

Table 1. Computed L2-error norms using (a) direct method, (b) modified Picard method, and (c) modified

Newton method for the validation problem given by (34)–(36)

kuext � usolk kvext � vsolk kpext � psolk

Mesh point (a) (b) (c) (a) (b) (c) (a) (b) (c)

21
 21 7.65E-04 1.34E-03 1.06E-03 6.70E-04 1.32E-03 1.06E-03 2.30E-05 4.72E-05 4.52E-05

41
 41 2.22E-04 7.02E-04 6.03E-04 1.95E-04 7.21E-04 6.03E-04 6.88E-06 2.18E-05 8.98E-06

61
 61 1.01E-04 5.01E-04 3.52E-04 8.96E-05 4.87E-04 3.52E-04 3.19E-06 7.81E-06 5.34E-06

81
 81 5.79E-05 9.01E-05 7.97E-05 5.07E-05 8.81E-05 7.97E-05 1.79E-06 3.85E-06 3.25E-06

101
 101 3.68E-05 6.03E-05 5.30E-05 3.24E-05 5.59E-05 5.30E-05 1.00E-06 2.12E-06 1.79E-06
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where

k ¼ Re

2
� Re2

4
þ 4p2

� �1=2

The solutions are calculated at several uniform meshes to obtain the rates of conver-
gence. It is clearly seen from the simulated L2-error norms shown in Figure 3 that the
computed and the exact solutions agree very well. Moreover, the rates of conver-
gence C plotted in Figures 3a and 3b for the two three-level methods investigated
are greater than 2 for both the velocities and pressure.

For the sake of completeness, the computational performance of the two three-
level methods investigated is assessed in comparison with that of the one-level
method (or direct method), which is implemented in the finest mesh using the meth-
ods described in Section 2 for rp and in Section 4 for /x and /y. The present assess-
ment study is made in terms of the predicted L2-error norms, the elapsed CPU
seconds needed to reach the user’s specified tolerance (10 � 12 set for the nonlinear

Table 2. Required CPU time (s) and needed number of iterations N for solving the nonlinear momentum

equations using (a) direct method, (b) modified Picard method, and (c) modified Newton methoda

(a) (b) (c)

Mesh point CPU N CPU N CPU N

21
 21 188.86 163 28.96 25 28.96 25

41
 41 226.93 205 42.96 33 42.96 33

61
 61 546.10 481 93.09 82 93.09 82

81
 81 1498.64 1308 255.51 223 255.51 223

101
 101 2269.31 1974 390.86 340 390.86 340

aNote that the needed grid numbers in each spatial direction for (b) and (c) are half of that used in (a).

Figure 4. Comparsion of the CPU time required (s) for the three steps involved, in the two three-level

methods investigated, at different mesh points: (a) modified Picard method; (b) modified Newton method.
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iteration), and, of course, the total number of nonlinear iterations. In the comparison,
the solutions for u and p have been calculated on five uniformly discretized domains
with 212, 412, 612, 812, and 1012 mesh points. As Table 1 shows, the accuracy of the
simulated three-level Navier-Stokes solutions is slightly less than that of the solution
obtained from the one-level method. The accompanying negligibly increased
L2-error norms, however, can result in a considerable saving of CPU time, as is clearly
demonstrated in Table 2. The total number of nonlinear iterations N is also seen to be
considerably reduced. The expense to obtain the solution from the tri-diagonal matrix

Figure 5. Simulated velocity profiles for uðx; 0:5Þ and vð0:5; yÞ at various Reynolds numbers: (a) Re ¼ 400;

(b) Re ¼ 1,000; (c) Re ¼ 3,200; (d) Re ¼ 5,000.
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is also decreased because the matrix size has been reduced for the calculations carried
out in the coarse mesh. From Table 2 it is observed that the slightly improved accu-
racy, which is even indistinguishable, using the one-level method is at the expense of
CPU time and the number of iterations needed. The advantage of employing the
three-level method we use now becomes apparent.

In employing the multilevel method, it is interesting to note the CPU time con-
sumed in the step accounting for the nonlinear Navier-Stokes calculation in the
coarse mesh, the prolongation step, and the step accounting for the linearized
Navier-Stokes calculation in the fine mesh. To show this, the CPU times for the
two three-level methods carried out at different mesh sizes are plotted in Figure 4.
The present simulated results show that much of the CPU time is consumed in the

Figure 6. Comparison of the ratios of the CPU times for the two proposed three-level methods against the

single-grid method: (a) 412; (b) 812; (c) 1012; (d) 1292.
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nonlinear calculation, which involves fewer mesh points. This demonstrates the
importance of accelerating the Navier-Stokes flow calculation in the coarse mesh.

6.2. Lid-Driven Cavity Flow Analysis

The flow driven by a constant upper lid velocity ulid ð¼1Þ in a square cavity is
also investigated. With L ð¼1Þ as the characteristic length, ulid as the characteristic
velocity, and n as the fluid viscosity, the lid-driven cavity flow problem is investi-
gated at Re ¼ 400, 1,000, 3,200, and 5,000. In each case, the mesh needs to be con-
tinuously refined so as to obtain a grid-independent solution. The simulated velocity
profiles uð0:5; yÞ and vðx; 0:5Þ plotted at the mid-plane in Figure 5 compare excel-
lently with the benchmark solutions of Ghia [29] and Erturk [30]. The applicability
of the proposed scheme is thus confirmed. To demonstrate the efficiency of the pro-
posed three-level methods, the ratios of the CPU time for the modified Picard
and modified Newton methods performed at different mesh points are plotted in
Figure 6. For completeness, the CPU times needed for computations carried out
at different Re values in a single grid are plotted in Figure 7.

Figure 7. Compassion of the CPU time required (s) for the calculations carried out in the single grid at

various mesh points at various Reynolds numbers.
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7. CONCLUDING REMARKS

The three-level Navier-Stokes methods employed for solving the incompress-
ible flow equations are featured with the theoretically derived prolongation operator
to communicate the solutions obtained at two different mesh levels. Besides improv-
ing the prediction quality in the fine mesh using the proposed prolongation operator,
another distinct feature of the proposed method is the transformation of the convec-
tion-diffusion differential equation into its convection-diffusion-reaction counter-
part. For the sake of computational efficiency, the ADI solution algorithm of
Peaceman and Rachford is adopted so that the nodally exact one-dimensional
convection-diffusion-reaction scheme can be applied. Good agreement between the
simulated and analytical solutions is clearly demonstrated for the test problems con-
ducted at different mesh sizes. The present study clearly shows that a slightly
engaged deterioration in the prediction accuracy is accompanied by a considerable
reduction of CPU time and the number of nonlinear iterations. It can be concluded
that the larger the problem, the greater will be the saving of computational time.
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APPENDIX

One-Level Method (Direct Method Implemented in a Single Grid)

uH � rð ÞuH ¼ �rpH þ
1

Re
r2uH þ f ðA:1Þ

Two-Grid, Two-Level Methods

Newton method for uN
h

1-step : uH � rð ÞuH ¼ �rpH þ
1

Re
r2uH þ f ðA:2Þ

2-step : uH � rð ÞuN
h �

1

Re
r2uN

h þ uN
h � r

� �
uH

¼ �rpN
h þ uH � rð ÞuH þ f ðA:3Þ

Oseen method for uO
h

1-step : uH � rð ÞuH ¼ �rpH þ
1

Re
r2uH þ f ðA:4Þ

2-step : uH � rð ÞuO
h �

1

Re
r2uO

h ¼ �rpO
h þ f ðA:5Þ

Two-Grid, Three-Level Methods

Modified Picard method (Oseen two-step method plus correction step)

1-step : uH � rð ÞuH ¼ �rpH þ
1

Re
r2uH þ f ðA:6Þ

2-step : uH � rð ÞuO
h �

1

Re
r2uO

h ¼ �rpO
h þ f ðA:7Þ

3-step : uH � rð ÞeOC
H � 1

Re
r2eOC

H þ eOC
H � r

� �
uH

¼ �reOC
H þ f þ ½ðuH � uOÞ � r�uH ðA:8Þ

Modified Newton method (Newton two-step method plus correction step)

1-step : uH � rð ÞuH ¼ �rpH þ
1

Re
r2uH þ f ðA:9Þ

2-step : uH � rð ÞuN
h �

1

Re
r2uN

h þ uN
h � r

� �
uH

¼ �rpN
h þ ðuH � rÞuH þ f ðA:10Þ

3-step : uH � rð ÞeNC
H � 1

Re
r2eNC

H þ ðeNC
H � rÞuH

¼ �reNC
H þ f þ ½ðuH � uNÞ � r�ðuN � uHÞ ðA:11Þ
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