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Abstract

The present study aims to develop a new method for obtaining the non-oscillatory incompressible Navier–Stokes solutions on the
non-staggered grids. Within the segregated grid framework, the divergence-free equation is chosen to replace one of the momentum
equations so as to preserve the fluid incompressibility. For the sake of numerical accuracy, the five-point stencil convection–diffu-
sion–reaction scheme is developed to obtain the nodally exact solution for this chosen momentum equation. The validity of the proposed
mass-preserving Navier–Stokes method is justified by solving the three problems which are amenable to analytical solutions. The sim-
ulated solution quality is shown to outperform that of the conventional segregated approach, besides gaining a very high spatial rate of
convergence.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Simulation of the practically important incompressible
fluid flow is academically difficult because analysis of this
class of fluid flow governing equations is subjected to the
divergence-free constraint condition and is susceptible to
the numerical instability. As it is well known that the cen-
tral approximation of advective terms tends to yield oscil-
lations primarily in the velocity field. To eliminate this
instability problem, one can apply advective schemes which
accommodate the upwinding characteristics [1]. Another
numerical instability problem mentioned frequently in the
analysis of incompressible flow equations, cast in primitive
variables, is manifested by showing two separate pressure
solutions at the alternating nodes. In general, the SIMPLE
algorithm [2], a frequently applied pressure-based method,
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is implemented on the staggered grid system to prevent the
decoupling between the velocity and pressure. This grid
system is, however, technically rather complicated for pro-
gramming and requires a large amount of computer stor-
age. The collocated grid system is therefore employed, in
particular, for real-world applications. On the non-stag-
gered (collocated) grids, the simulated oscillatory solutions
are evident if the central differencing (or linear interpola-
tion) is used to approximate the pressure gradient term in
the momentum equations and the cell-face velocity in the
continuity equation [3]. As a consequence, the end result
is an oscillatory pressure field. For these reasons, we are
motivated to eliminate the checkerboarding problem with-
out resorting to staggered grid approaches. One of the most
popular methods to prevent the decoupling of pressure and
velocity in the co-located grid system is the Rhie–Chow
interpolation method [4]. As the spatial dimension exceeds
one, the numerical approximation of advective terms can
give rise to false diffusion error [5]. Therefore, it is essential
that the chosen flux discretization scheme should eliminate
the cross-wind error without sacrificing the scheme stability.
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The need to suppress oscillations of different origins (veloc-
ity and pressure) without accuracy deterioration motivated
the current study.

Another computational challenge in the simulation of
incompressible Navier–Stokes equations is the enforcement
of divergence-free constraint condition for the velocity
field. One trivial way to preserve the mass conservation is
to employ the mixed formulation for solving the equations
of motion together with the incompressible constraint con-
dition. The resulting coupled equations are, however, less
diagonally dominant. In addition to the increased matrix
size, the poor eigenvalue distribution makes the calculation
of primitive variables much more difficult. To overcome the
conventional difficulties encountered in the mixed formula-
tion, the segregated algorithm has been proposed to sepa-
rately solve the momentum equations for the velocity
components and the Poisson equation for the pressure. In
the literature, numerical methods developed within the
PPE (pressure Poisson equation) framework [6] have been
employed successfully in the simulation of incompressible
Navier–Stokes equations. Slow convergence has, however,
been frequently reported in the literature due to the neg-
ligence of the lower-order coupling terms [1]. For this
reason, we are motivated to revisit the PPE method in a
rigorous way.

The rest of this paper is organized as follows. In Section
2, the working equations in the primitive-variable descrip-
tion are solved subjected to the boundary conditions for
the pressure Poisson equation. This is followed by present-
ing the currently developed segregated solution algorithm
on non-staggered grids. In Section 4, the underlying con-
vection–diffusion–reaction (CDR) scheme is employed to
solve the momentum equations with the emphasis on its
fundamental analysis. In Section 5, validation of the model
is accomplished by solving problems which are all amena-
ble to the analytical solutions. Finally, some conclusions
are drawn in Section 6.
2. Working equations

In this study our attention is focused on the two-dimen-
sional fluid flow governed by the following continuity
equation and the Navier–Stokes equations, respectively:

r � u ¼ 0; ð2:1Þ
ou

ot
þ ðu � rÞu ¼ �rp þ 1

Re
r2u: ð2:2Þ

For the purpose of closure, primitive variables (u,p) are
subjected to an initial divergence-free velocity field and
the specified boundary velocity. All the lengths are scaled
by L, the velocity components by u1, the time by L/u1
and the pressure by qu2

1, where q denotes the fluid density.
The Reynolds number Re(�qu1L/l) is the consequence
of the normalization of momentum equations.

Conservation of mass can be directly achieved by taking
into account the divergence-free constraint equation (conti-
nuity equation). The eigenvalues of the resulting matrix
equation become, however, increasingly ill-conditional
and the incompressible flow solutions are very difficult to
obtain. Besides this disadvantage, the required peripheral
storage for the system of matrix equations may exceed
the available computer power and disk space. Such a draw-
back discourages the use of coupled formulation and
prompts the use of computationally less demanding PPE
approach [7]. This class of projection methods can elimi-
nate the pressure variable from the momentum equations
by applying a curl differential operator to derive the follow-
ing Poisson equation for pressure in lieu of the divergence-
free continuity equation (2.1):

r2p ¼ 2
ou
ox

ov
oy
� ou

oy
ov
ox
� Q2

2

� �
þ 1

Re
r2Q�DQ

Dt

� �
; ð2:3Þ

where Q = $ Æ u.
We now justify whether the incompressible Navier–

Stokes solutions for (u,p) can be rigorously obtained from
Eqs. (2.2) and (2.3). As Eq. (2.1) shows, it is trivial that
Q = 0 within the differential context. Eq. (2.3) can, thus,
be simplified as

r2p ¼ 2
ou
ox

ov
oy
� ou

oy
ov
ox

� �
: ð2:4Þ

Subtraction of (2.4) from (2.3) leads to the following
nonlinear partial differential equation for Q:

1

Re
r2Q�DQ

Dt
� Q2 ¼ 0: ð2:5Þ

As mentioned earlier, the closure initial condition for Eqs.
(2.1) and (2.2) is Q(t = 0) = 0, which is the trivial solution
for Eq. (2.5). In continuous sense, one can rationally re-
place Eq. (2.1) by Eq. (2.3) or (2.4) in the analysis of incom-
pressible Navier–Stokes equations. At the discrete level, Q

is not at all equal to zero because of the indispensable ma-
chine and discretization errors. Since Eq. (2.1) serves as the
equation for the Lagrangian multiplier, any error that may
lead to Q 5 0 is prohibited. This potential drawback in the
conventional PPE solution algorithm [8–10] motivated us
to discard one of the two momentum equations, say u (or
v), and replace it with the divergence-free Eq. (2.1) for
the equation v (or u). Within this newly proposed mass-pre-
serving segregated solution framework, the chosen govern-
ing equations for (u,p) are as follows:

r � u ¼ 0; ð2:1Þ
ov
ot
þ ðu � rÞv ¼ � op

oy
þ 1

Re
r2v; ð2:6Þ

r2p ¼ 2
ou
ox

ov
oy
� ou

oy
ov
ox

� �
: ð2:4Þ

Employment of Eq. (2.4) is theoretically subjected to the
integral boundary condition for p [11]. The computa-
tionally difficult integral pressure boundary condition is
avoided by applying the following Neumann-type pressure
boundary condition [12]:
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op
on
¼ 1

Re
r2u� ðu � rÞu� ou

ot

� �
� u; ð2:7Þ

where n denotes the unit outward normal vector to the
physical boundary.

Now, the convective term in the elliptic–parabolic equa-
tion (2.6) is linearized based on the Newton–Raphson
method [13–15]. For a product term ST, where S and T
are two chosen variables, ST is expanded in Taylor series
about its current value and the terms with orders higher
than one are neglected. Then the result is as follows [16]:

Snþ1T nþ1 ¼ SnT n þ o

oS
ðST Þn

� �
ðSnþ1 � SnÞ

þ o

oT
ðST Þn

� �
ðT nþ1 � T nÞ þ � � � þH:O:T:

¼ Snþ1T n þ SnT nþ1 � SnT n þ � � � þH:O:T: ð2:8Þ

In the following derivation, the superscripts n and n + 1 de-
note the variables evaluated at the previous solutions and
the most updated iteration (active quantities of the vari-
ables), respectively. According to Eq. (2.8), (uv)y and (v2)y

are linearized as

ðuvÞnþ1
x ¼ unþ1

x vn þ unþ1vn
x þ un

xvnþ1 þ unvnþ1
x � un

xvn � unvn
x ;

ð2:9Þ
ðv2Þnþ1

y ¼ vnþ1
y vn þ vnþ1vn

y þ vn
y vnþ1 þ vnvnþ1

y � vn
y vn � vnvn

y :

ð2:10Þ

Substituting (2.9) and (2.10) into (2.6), the linearized
y-momentum equation can be expressed by the following
convection–diffusion–reaction (CDR) equation for v:

ovnþ1

ot
þ ðun � rÞvnþ1 � 1

Re
r2vnþ1 þ vn

y vnþ1

¼ �pnþ1
y þ ðun � rÞvn � vn

xunþ1: ð2:11Þ

By omitting the underlined terms from the above Newton-
linearized equation, the conventional coefficient-frozen
equation is obtained.

3. Discretization of equations on non-staggered grids

By defining Fj at the grid index j, we get the following
equation:

ou
ox

����
j

¼ F j

h
¼ �ov

oy

����
j

; ð3:1Þ

where h denotes the uniform grid size. The nodal value
for u at j can be implicitly calculated from

a2ujþ1 þ b2uj þ c2uj�1 ¼ b1F jþ2 þ b2F jþ1 þ b3F j

þ b4F j�1 þ b5F j�2: ð3:2Þ

By expanding uj±1, Fj±1 and Fj±2 with respect to j in Taylor
series, we get
uj�1¼ uj�h
ou
ox
þh2

2!

o2u
ox2
�h3

3!

o3u
ox3
þh4

4!

o4u
ox4
�h5

5!

o5u
ox5
þ�� �

ð3:3Þ

F j�1¼ F j�h
oF
ox
þh2

2!

o
2F

ox2
�h3

3!

o
3F

ox3
þh4

4!

o
4F

ox4
�h5

5!

o
5F

ox5
þ�� �

ð3:4Þ

F j�2¼ F j�ð2hÞoF
ox
þð2hÞ2

2!

o
2F

ox2
�ð2hÞ3

3!

o
3F

ox3
þð2hÞ4

4!

o
4F

ox4

�ð2hÞ5

5!

o5F
ox5
þ�� � ð3:5Þ

By substituting (3.3)–(3.5) into (3.2), the following
equation is obtained in lieu of the definition given in
(3.1):

ða2þ b2þ c2Þujþ ða2� c2Þh
ou
ox
þ ða2þ c2Þ

h2

2!

o2u
ox2

þ ða2 � c2Þ
h3

3!

o
3u

ox3
þ ða2þ c2Þ

h4

4!

o
4u

ox4
þ ða2 � c2Þ

h5

5!

o
5u

ox5
þ � � �

¼ ðb1þ b2þ b3 þ b4þ b5ÞF jþ ð2b1þ b2� b4� 2b5Þh
oF
ox

þ ð4b1þ b2þ b4 þ 4b5Þ
h2

2!

o2F
ox2

þ ð8b1þ b2� b4 � 8b5Þ
h3

3!

o
3F

ox3

þ ð16b1þ b2þ b4 þ 16b5Þ
h4

4!

o
4F

ox4

þ ð32b1þ b2� b4 � 32b5Þ
h5

5!

o
5F

ox5
þ � � � ð3:6Þ

Let a2 + b2 + c2 = 0, a2 � c2 = 1 and b1 + b2 + b3 + b4 +
b5 = 1, 1

2!
ða2 þ c2Þ ¼ ð2b1 þ b2 � b4 � 2b5Þ, 1

3!
ða2 � c2Þ ¼

1
2!
ð4b1 þ b2 þ b4 þ 4b5Þ, 1

4!
ða2 þ c2Þ ¼ 1

3!
ð8b1 þ b2 � b4�8b5Þ

and 1
5!
ða2 � c2Þ ¼ 1

4!
ð16b1 þ b2 þ b4 þ 16b5Þ. Also, b1 = 0

and b5 = 0 are assumed at the left and right points, respec-
tively, to derive the following three-point stencil discretiza-
tion equations:

left node
19

30
ujþ1þ

�4

15
ujþ
�11

30
uj�1

¼�1

90
F jþ2þ

4

15
F jþ1þ

19

30
F jþ

1

9
F j�1 ð3:7Þ

center node
1

2
ujþ1�

1

2
uj�1

¼ �1

180
F jþ2þ

17

90
F jþ1þ

19

30
F jþ

17

90
F j�1þ

�1

180
F j�2

ð3:8Þ

right node
11

30
ujþ1þ

4

15
ujþ
�19

30
uj�1

¼ 1

9
F jþ1þ

19

30
F jþ

4

15
F j�1þ

�1

90
F j�2: ð3:9Þ

By virtue of the modified equation analysis for (3.7)–(3.9),
it is easy to show that the above approximations render the
fifth order accuracy.



T.W.H. Sheu et al. / Comput. Methods Appl. Mech. Engrg. 196 (2006) 502–515 505
Eq. (3.8) reveals that the void diagonal term can desta-
bilize the matrix equation. To diagonalize the matrix equa-
tion, Eqs. (3.7) and (3.9) are shifted towards the left and
right by one stencil point, respectively, to get

19

30
ujþ2 þ

�4

15
ujþ1 þ

�11

30
uj

¼ �1

90
F jþ3 þ

4

15
F jþ2 þ

19

30
F jþ1 þ

1

9
F j; ð3:10Þ

11

30
uj þ

4

15
uj�1 þ

�19

30
uj�2

¼ 1

9
F j þ

19

30
F j�1 þ

4

15
F j�2 þ

�1

90
F j�3: ð3:11Þ

By virtue of w Æ (3.10) + (1 � w) Æ (3.8) and w Æ (3.8) +
(1 � w) Æ (3.11), the following two equations are derived,
respectively,

19

30
ujþ2þ

7

30
ujþ1þ

�11

30
ujþ
�1

2
uj�1

¼�1

90
F jþ3þ

47

180
F jþ2þ

37

45
F jþ1þ

67

90
F jþ

17

90
F j�1þ

�1

180
F j�2;

ð3:12Þ
1

2
ujþ1þ

11

30
ujþ
�7

30
uj�1þ

�19

30
uj�2

¼ �1

180
F jþ2þ

17

90
F jþ1þ

67

90
F jþ

37

45
F j�1þ

47

180
F j�2þ

�1

90
F j�3:

ð3:13Þ

In what follows, the free parameter w is chosen as 1
10

.
It is well known that use of the staggered approaches for

the incompressible flow simulation can effectively suppress
the pressure oscillations arising from the even–odd
coupling but these approaches can increase the coding
complexity. Therefore, in the literature, discretization of
differential equations over a domain, where the velocities
and pressure are stored at the same point, has been pro-
posed. Approximation of $p must be carefully done in
the non-staggered mesh system, otherwise, spurious oscilla-
tions in the pressure field will be inevitable. The underlying
idea of avoiding the even–odd decoupling solutions is to
employ pj while approximating $p at an interior node j.
Instead of explicitly approximating op

ox at node j, its value
is obtained implicitly with two additional adjacent values
op
ox jj�1. Define Fj as F j ¼ h op

ox jj, where h denotes the uniform
mesh size. The method to calculate the nodal value of F is
based on the following implicit equation [16,17]:

a1F jþ1 þ b1F j þ c1F j�1 ¼ a1ðpjþ2 � pjþ1Þ þ a2ðpjþ1 � pjÞ
þ a3ðpj � pj�1Þ þ a4ðpj�1 � pj�2Þ:

ð3:14Þ

The above seven coefficients are obtained by expanding
Fj±1 in Taylor series with respect to Fj, and pj±1 and pj±2

with respect to pj. This is followed by substituting these
expansion equations into Eq. (3.14) and by employing
the definition for Fj to derive a simultaneous set of alge-
braic equations. It is legitimate to set a1 = c1 due to the
elliptic nature of pj. Then, the other coefficients are deter-
mined as a1 ¼ 1
5
, b1 ¼ 3

5
, a1 ¼ 1

60
, a2 ¼ 29

60
, a3 ¼ 29

60
, and

a4 ¼ 1
60

. For example, the equation for Fj at a node imme-
diately adjacent to the right boundary point, is derived
from Eq. (3.14) at a1 = a1 = a2 = 0.
4. CDR scheme and its fundamental studies

4.1. Five-point CDR scheme

In view of Eq. (2.11), the following model equation for
/(/ = v) is considered:

a
o/
ox
þ b

o/
oy
� kr2/þ c/ ¼ f : ð4:1Þ

To eliminate the convective instability and to retain the
prediction accuracy in the approximation of the above
CDR equation, the following general solution to Eq.
(4.1) is employed:

/ðx; yÞ ¼ A1ek1x þ A2ek2x þ A3ek3y þ A4ek4y þ f
c
; ð4:2Þ

where A1 � A4 are the four constants. By substituting Eq.
(4.2) into Eq. (4.1), k1 � k4 are derived as

k1;2 ¼
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4ck
p

2k
and k3;4 ¼

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4ck

p
2k

: ð4:3Þ

The discrete equation at an interior node (i, j) is assumed to
take the following five-point stencil form:

� a
2h
� m

h2
þ c

12

� �
/i�1;j þ

a
2h
� m

h2
þ c

12

� �
/iþ1;j

þ 4
m

h2
þ 2c

12

� �
/i;j þ � b

2h
� m

h2
þ c

12

� �
/i;j�1

þ b
2h
� m

h2
þ c

12

� �
/i;jþ1 ¼ fi;j: ð4:4Þ

Then, by substituting the exact solutions /i;j ¼ A1ek1xiþ
A2ek2xi þ A3ek3yj þ A4ek4yj þ f

c, /i�1;j ¼ A1e�k1hek1xi þ A2e�k2h

ek2xi þ A3ek3yj þ A4ek4yj þ f
c and /i;j�1 ¼ A1ek1xi þ A2ek2xiþ

A3e�k3hek3yj þ A4e�k4hek4yj þ f
c into Eq. (4.4), m is derived as

m ¼ ah
2

sinh k1 cosh k2 þ
bh
2

sinh k3 cosh k4

�

þ ch2

12
ðcosh k1 cosh k2 þ cosh k3 cosh k4 þ 10Þ

�
.
ðcosh k1 cosh k2 þ cosh k3 cosh k4 � 2Þ; ð4:5Þ

where ðk1; k2Þ ¼ ðah
2k ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðah

2k Þ
2 þ ch2

k

q
Þ and ðk3; k4Þ ¼

ðbh
2k ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbh

2k Þ
2 þ ch2

k

q
Þ.

In view of the banded matrix with the components given
in Eq. (4.4), it is possible to get aij 6 0 with i 5 j and jaiijPP
jaijjði 6 jÞ. Under these circumstances, the matrix equa-

tion is irreducible and also diagonally dominant. The
matrix of this type is called as M-matrix. Since the inverse
matrix of {ai,j} (or A�1) is greater than zero, namely,
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Fig. 1. Plots of kr and ki against a2 and a, respectively, at Rx = Ry = 10, Pe and m, (a,b) Pe = 10; (c,d) Pe = 102; (e,f) Pe = 103. Note that a is the modified
wave-number.
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A�1 > 0, the solutions computed from the M-matrix equa-
tion are unconditionally monotonic. By following the M-
matrix theory [18], it is appropriate to employ the proposed
scheme to resolve any possible sharp profile of / in the flow.

Throughout the present paper, the second derivative
terms for the velocities are approximated by the compact
scheme [16,17]. For example, consider /xx at j. Calculation
of /xxjj starts by assuming /xxjj ¼

Sj

h2, then value of Sj is
implicitly computed from

h2ða3Sjþ1 þ b3Sj þ c3Sj�1Þ ¼ c1/jþ2 þ c2/jþ1 þ c3/j

þ c4/j�1 þ c4/j�2: ð4:6Þ
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Expanding Sj±1 with respect to Sj and /j±1, /j±2 with re-
spect to /j in Taylor series and then substituting them into
the expression for Sj; ða3;b3; c3; c1; c2; c3; c4; c5Þ ¼ 1; 11

2
;

�
1; 3

8
; 6;� 51

4
; 6; 3

8
Þ are obtained from the eight algebraic

equations for a3, b3, c3, c1, c2, c3, c4 and c5.
Note that the above CDR scheme breaks down at the

limiting conditions of ui = 0 and c3 = 0. Discretization of
Eq. (2.4) should be treated differently. One way to accu-
rately approximate pxx and pyy is to employ Eq. (4.6) at
a3 = c3 = 0. Other free parameters can be determined using
the same method described earlier. The resulting discrete
equation for $2p at an interior point (i, j) is given by

r2pji;j ¼ ðpiþ1;jþ1 þ pi�1;jþ1 þ piþ1;j�1 þ pi�1;j�1Þ
� 20pi;j þ 4ðpiþ1;j þ pi�1;j þ pi;jþ1 þ pi;j�1Þ: ð4:7Þ

The quality of approximating Eq. (2.4) depends highly
on the first derivative terms shown in the right hand side
of that equation. Depending on the sign of u, the value of
ux at the left boundary is obtained by assuming a3 =
c3 = 0 in Eq. (4.6). The remaining coefficients are deter-
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mined as b3 ¼ 1; c1 ¼ � 1
12
; c2 ¼ 4

3
; c3 ¼ � 5

2
; c4 ¼ 4

3
and

c5 ¼ � 1
12

.

4.2. Dispersion and Fourier analysis of the CDR

discretization scheme

With the initial condition /(x,y, t = 0) = exp [ikm(x +
y)], Eq. (4.1) analyzed at f = 0 has the following exact
solution:

/ðx; y; tÞ ¼ exp½�ð2kk2
m þ cÞt� expfikm½ðxþ yÞ � ðaþ bÞt�g;

ð4:8Þ

where km denotes the wave-number. Choosing h

(�Dx = Dy) as the mesh size and Dt as the time step, the
discrete equation for (4.1) is as follows:

B1/
nþ1
i�1;j þ B2/

nþ1
iþ1;j þ B3/

nþ1
i;j þ B4/

nþ1
i;j�1 þ B5/

nþ1
i;jþ1 ¼ /n

i;j;

ð4:9Þ
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where

B1;2 ¼ �m� mx

2
þ mxRx þ 2

24
; ð4:10Þ

B3 ¼ 4 mþ mxRx þ myRy þ 2

12

� �
; ð4:11Þ

B4;5 ¼ �m� my

2
þ myRy þ 2

24
: ð4:12Þ

In the above equations, ðmx; myÞ ¼ ðaDt
h ;

bDt
h Þ. By defining

ðPex; PeyÞ ¼ ðah
k ;

bh
k Þ and ðRx;RyÞ ¼ ðch

a ;
ch
b Þ, m shown in Eqs.

(4.10)–(4.12) is expressed as

m¼
�
mx

2
sinhk1

	 coshk2
	 þ my

2
sinhk3

	 coshk4
	 þ mxRxþ myRyþ2

24


ðcoshk1
	 coshk2

	 þ coshk3
	 coshk4

	 þ10Þ
�

.
coshk1

	 coshk2
	 þ coshk3

	 coshk4
	 �2

� 	
; ð4:13Þ
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Fig. 3. Plots of the amplification factor jGj in (a), (c), (e) and the phase angle r
Pe and m, (a,b) mx = my = 0.01; (c,d) mx = my = 0.2; (e,f) mx = my = 1.0.
where ðk1
	; k2

	Þ ¼ Pex
2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPex

2
Þ2 þ Pex

mx

q
 �
and ðk3

	; k4
	Þ ¼

Pey

2
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPey

2
Þ2 þ Pey

my

q
 �
.

Owing to the indispensable amplitude and phase errors,
the exact solution to the five-point stencil equation (4.1) is
assumed to take the following form:

/ðx; y; tÞ ¼ exp �tð2kk2
m þ cÞ kr

a2
t

� �


 exp ikm ðxþ yÞ � ðaþ bÞ ki

a
t

� �� 

: ð4:14Þ

The modified wave-number given in the above equation is
denoted as a = kmh. Dispersion analysis involves the sub-
stitution of /i,j, /i±1,j and /i,j±1, which are obtained from
Eq. (4.14), into Eq. (4.1). After some algebra kr and ki,
which are responsible for the respective amplitude and
phase errors, are derived as
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in (b), (d), (f) against the modified wave-number a at Rx = Ry = 10,



T.W.H. Sheu et al. / Comput. Methods Appl. Mech. Engrg. 196 (2006) 502–515 509
kr ¼ �
p

mx

Pex
þ my

Pey
þ mxRx þ myRy

2a2

; ð4:15Þ

ki ¼ �
q

mx þ my
; ð4:16Þ

where ðmx; myÞ ¼ ðaDt
h ;

bDt
h Þ, ðPex; PeyÞ ¼ ðah

k ;
bh
k Þ, ðRx;RyÞ ¼

ðch
a ;

ch
b Þ and
q ¼ tan�1 ðB1 � B2 þ B4 � B5Þ sin a
ðB1 þ B2 þ B4 þ B5Þ cos aþ B3

� �
; ð4:17Þ

p ¼ ln
1

cos q½ðB1 þ B2 þ B4 þ B5Þ cos aþ B3� þ sin q½ðB1 � B2 þ B4 � B5Þ sin a�

� 

: ð4:18Þ
In Fig. 1, the plots for kr and ki against (Pex,Pey) and
(mx,my) (at the fixed values of Rx and Ry) enlighten that ki

agrees perfectly with a in the small modified wave-number
range. It is observed that the larger the modified wave-
number, the less satisfactory is the predicted numerical
phase. In contrast to ki, the amplitude error is not well re-
solved even in the small wave-number range. Also, in Fig. 2
the numerical group velocity Cgð� dW

dkm
Þ is plotted, where

W ð� km
ki
a uÞ is obtained from the dispersion equation. It

can be seen that Cg has a magnitude smaller than the ana-
lytical propagation speed. The proposed scheme is, thus, of
the phase-lagging type.

The Fourier (or von Neumann) stability analysis [19,20]
is also conducted in the present study. Let a ¼ 2pm

2L h
(m = 0,1,2, . . . ,M), h be the grid size and 2L be the period
of fundamental frequency (m = 1). Then the amplification
factor Gð� /nþ1

i;j =/
n
i;jÞ is derived as

G ¼ A� iB

A2 þ B2
; ð4:19Þ

where

A ¼ 4m

h2
ð1� cos aÞ þ 1

6
ðmxRx þ myRy þ 2Þðcos aþ 2Þ; ð4:20Þ

B ¼ ðmx þ myÞ sin a: ð4:21Þ

The proposed implicit scheme is unconditionally stable in
the sense that jGj 6 1.

The amplification factor shown in (4.19) is rewritten as
G = jGjeih, where h is the phase angle:

h ¼ tan�1 ImðGÞ
ReðGÞ

����
���� ¼ tan�1 �B

A

� �
: ð4:22Þ

The exact phase angle is derived as he = �kmh(mx + my),
where km � 2pm

2L ; m ¼ 0; 1; 2; . . . ;M
� 	

denotes the wave
number and ðmx; myÞ ¼ ðuDt

h ;
vDt
h Þ are the Courant numbers

(h be the grid size). Using the exact phase angle, the relative
phase shift error over an arbitrary time step is given by

h
he

¼ tan�1ð�B=AÞ
�aðmx þ myÞ

: ð4:23Þ
In Figs. 3 and 4, h/he against a, (mx,my), (Pex,Pey) and
(Rx,Ry) are plotted. When the relative phase error exceeds
the value one at the specified values of m and Pe, the numer-
ical wave has a speed greater than the exact wave speed.
The resulting error is called the phase-leading error. Con-
versely, the error is called the lagging phase error. As the
figure shows, the proposed scheme is classified as phase-
lagging scheme since it has a phase-lagging error irrespec-
tive of the values of m, Pe and R.

5. Numerical results

5.1. Validation of the proposed linearization method

To verify the proposed Newton linearization method,
the following nonlinear convection–diffusion equation for
u is investigated in 0 6 x, y 6 1:

u
ou
ox
þ b

ou
oy
� kr2u ¼ f ðx; yÞ: ð5:1Þ

Under the circumstances of k = x2, b = y and f(x,y) =
2x3(y4 � x), the solution to Eq. (5.1) was exactly derived
as u(x,y) = x2y2. Good agreement between the simulated
and exact solutions is seen in Table 1. Assessment is made
on the proposed linearization model and the standard
relaxation method given by unew = cunew + (1 � c)uold,
where 0 6 c 6 1. As Fig. 5 shows, the number of nonlinear
iterations has been considerably reduced in view of the
number of iterations needed for the cases considered at
c = 0.2, 0.4, 0.6 and 0.8. The tolerance, defined as

1
N

P
ðunew � uoldÞ2

h i1=2

, set for each calculation is 10�15,

where N denotes the number of nodal points.

5.2. Validation of the proposed Navier–Stokes method

To verify the proposed Navier–Stokes methodology, the
problem amenable to the analytic solution is considered.
Within the two-dimensional domain X = [0, 1] · [0, 1], the
Navier–Stokes equations are solved at Re = 103 along with
the following analytical boundary velocities [21]:

uðx; yÞ ¼ ðx sinð2xyÞ þ y cosð2xyÞÞ expðx2 � y2Þ; ð5:2Þ
vðx; yÞ ¼ ðx cosð2xyÞ � y sinð2xyÞÞ expðx2 � y2Þ: ð5:3Þ

The exact pressure is derived as

pðx; yÞ ¼ c1 �
1

2
ðx2 þ y2Þ exp½2ðx2 � y2Þ�: ð5:4Þ



Table 1
The computed error norms and the corresponding rates of convergence C

Mesh points ku � uexactk C

6 · 6 6.772 · 10�8

11 · 11 1.897 · 10�8 1.835
21 · 21 5.001 · 10�9 1.923
31 · 31 2.261 · 10�9 1.957
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In Fig. 6 and Table 2, the rate of convergence for /(=u,p)
is calculated according to the solutions obtained at the
successively refined domains of uniform grid sizes h1 and
h2

C ¼ logðE2=E1Þ
logðh2=h1Þ

: ð5:5Þ
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Table 2
The computed error norms and the corresponding rates of convergence C

for u, v and p

Mesh
points

ku � uexactk C kv � vexactk C kp � pexactk C

6 · 6 1.374 · 10�3 1.651 · 10�3 2.404 · 10�3

11 · 11 3.757 · 10�4 1.870 3.145 · 10�4 2.392 6.085 · 10�4 1.982
21 · 21 8.817 · 10�5 2.091 7.653 · 10�5 2.039 1.421 · 10�4 2.098
41 · 41 1.863 · 10�5 2.242 1.361 · 10�5 2.491 3.446 · 10�5 2.044
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The error E is measured in the L2-norm form as

E ¼
XN

i¼1

ð/ij � UijÞ2dxidyj

" #1=2

: ð5:6Þ

In the above equation, / = /(xi,yj) denotes the nodal exact
solution at a point (i, j) and Uij is the corresponding com-
puted solutions. The L2-norms of $ Æ u are calculated and
plotted in Fig. 7 against the nonlinear iteration to show
that the divergence-free condition is indeed achieved. For
the sake of completeness, reduction of the residuals for u

and p is also plotted against the nonlinear iteration num-
bers in Fig. 8. The simulated velocity vector and pressure
contours are also plotted in Fig. 9.

Encouraged by the above success in validating the
steady-state problems, the transient Navier–Stokes equa-
tions are solved in a unit square for the problem having
the following exact solutions:

uðx; y; tÞ ¼ 1þ 2 cos½2pðx� tÞ� sin½2pðy � tÞ�e�8p2mt; ð5:7Þ
vðx; y; tÞ ¼ 1� 2 sin½2pðx� tÞ� cos½2pðy � tÞ�e�8p2mt; ð5:8Þ
pðx; y; tÞ ¼ c2 � fcos½4pðx� tÞ� þ cos½4pðy � tÞ�ge�16p2mt:

ð5:9Þ
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All the solutions are obtained in 0 6 x, y 6 1. In Fig. 10,
the simulated contours are plotted for u, v and p at t = 1,
m = 10�3, Dx ¼ Dy ¼ 1

20
and Dt = 10�2. Computations are

also performed over a range of four mesh sizes h ¼ 1
2n,

where n = 4, 5, 6, 7, at m = 10�3 and Dt = 10�2 for the sake
of completeness. The proposed method is validated based
on the L2-norm errors plotted in Fig. 11.

5.3. Lid-driven cavity flow problem

The Navier–Stokes fluid flow in a square cavity, which is
driven by a constant upper lid velocity ulid, is studied. With
L as the characteristic length and ulid as the characteristic
velocity, the Reynolds number under investigation is cho-
sen as 5000. We continuously refine the mesh and plot
the grid-independent mid-plane velocity profiles u(0.5,y)
and v(x, 0.5) in Fig. 12. For the sake of comparison, the
steady-state benchmark solutions of Ghia [22] and Erturk
[23] are also plotted in the same figure. Besides the good
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agreement between the present and previous solutions,
much improved convergent histories are also seen in
Fig. 13. The applicability of the proposed scheme is, thus,
confirmed.

6. Conclusions

The proposed mass-preserving segregated Navier–
Stokes method for solving the incompressible flow equa-
tions has two main features: one is its ability to circumvent
the spurious pressure oscillations on the non-staggered grid
and the other is the transformation of the convection–dif-
fusion differential equation into its convection–diffusion–
reaction counterpart. Both the dissipative and dispersive
natures of the proposed five-point stencil CDR scheme
have been rigorously revealed. Good agreement between
the simulated and analytical solutions is demonstrated for
the two test problems. Also, the spatial rate of convergence
is observed to be very high.
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