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A numerical investigation has been conducted to explore the complex nonlinear nature of flow in a
backward-facing step channel by the simulated results, which include the bifurcation diagram, limit
cycle oscillations, power spectrums, and phase portraits. For small values of Reynolds number, the
flow was steady and laminar. When the Reynolds number was amplified, the flow becomes unsteady
with the initiation of a supercritical Hopf bifurcation. The flow path is trapped by the stable limit
cycles, and this system is made to proceed with a sustained oscillation. As the Reynolds number was
amplified further, the stability of the investigated system keeps decreasing through a sequence of
frequency-doubling bifurcations. The fundamental frequency of high amplitude was identical to the
most amplified mode of Kelvin-Helmholtz instability oscillations in the shear layer. Frequencies
with a small amplitude result in a slower development of the Kelvin-Helmholtz instability and are
responsible for the roll-up of the shear layer. The phase portrait shows the evolution of a chaotic
attractor from a simple periodic attractor. Prior to the onset of the chaotic motion, pitchfork
bifurcation showed its existence. © 2006 American Institute of Physics. �DOI: 10.1063/1.2261852�
I. INTRODUCTION

Nonlinear phenomena in pragmatic systems are often
observed in the experimental work. This is followed by con-
ducting the simulation study and the subsequent detailed
analysis to provide explanations for the observed experimen-
tal phenomena. One such investigation is the channel flow
with reversals. Moreover, if the analytical/numerical results
are unearthed, experiments are indispensable for verifying
these simulated results. One such experimental work of Nie
and Armaly,1 who extensively studied the flow in a
backward-facing step channel, provided a path to validate the
present simulated results. Though the flow over a backward-
facing step is simple in geometry, it nonetheless can exhibit
complex flow separation and reattachment. The flow in this
backward-facing step channel can be regarded as an entry
flow within the two parallel vertical endwalls, a roof and a
floor, followed by a confined recirculating flow behind a step
wall �as shown in Fig. 1�a��. This expansion flow has at-
tracted a great deal of attention over the last few decades.2–5

Also, this problem is a noteworthy example for the separated
flow that occurs in aerodynamic devices such as high-lift
aerofoils at high angles of attack. Flow separation may be
created by a strong adverse pressure gradient rather than by a
geometric perturbation. From the fundamental perspective,
the instability and the transition to turbulence in this open
channel flow are of great importance. Transition mechanisms
in parallel flows such as plane channels and pipes have re-
ceived substantial attention.6–8 This basic flow in the plane
channel can be more well understood than some of the non-
parallel flows arising in more complex geometries.

In this context the flow over a backward-facing step has
emerged as a prototype of a nontrivial yet simple geometry
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and is, thus, proper to examine the onset of turbulence.9–13

From a computational perspective, the steady two-
dimensional flow over a backward-facing step is an estab-
lished benchmark problem.14,15 The two-dimensional, abso-
lute, linear stability of this flow has been examined
extensively and was discussed in several publications.15–17

Computational studies have enlightened that this two-
dimensional laminar flow is linearly stable with respect to
the two-dimensional perturbations until a Reynolds number
�Re� of at least 600. Experiments by Armaly and others4 for
the airflow in a backward-facing step geometry with a nomi-
nal expansion ratio of approximately two provided a quanti-
tative measurement of two- and three-dimensional flows over
a large range of Re from 50 to 6000. Besides providing the
data on separation and reattachment points, the streamwise
velocity measurements are reported for several Re through-
out their study. They also showed that below Re=300 the
flow is essentially spanwise invariant, although a visible de-
viation from the two-dimensionality exists near the lateral
sidewalls of the channel.

Williams and Baker18 have conducted the three-
dimensional �3-D� simulations in a domain with lateral side-
walls having the same expansion and aspect ratios �spanwise
length to step height� used by Armaly and others,4 who re-
produced the experimental laminar 3-D flow. They noted that
the transition from two- to three-dimensional flow is not an
abrupt change but is rather a continuous penetration of the
3-D flow, fed by a wall jet, from the sidewall to the central
symmetry plane. They observed that the three-dimensionality
of the flow does not follow from a fundamental hydrody-
namic instability of the two-dimensional flow. More recently,
Nie and Armaly1 presented the 3-D experimental results for
Re in the range between 100 and 8000, thus covering the
laminar, transitional, and turbulent flow regimes. They

showed that for increasing Re the size of the reverse flow
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region increases and moves farther downstream in the lami-
nar flow regime; decreases and moves upstream in the tran-
sitional flow regime; and remains almost unchanged or di-
minishes in the turbulent flow regime. Armaly and others19 in
their experimental measurements revealed that a swirling jet-
like flow develops near the sidewall in the separated shear
layer, which could not be deduced in the two-dimensional
studies.

In the nonlinear flow system, many bifurcation types
leading to chaotic flow from simple laminar flow can be
observed. Typical examples are the pitchfork �symmetry-
breaking�, transcritical, saddle-node, Hopf, flip �or tangent�,
Niemark �or secondary Hopf�, homoclinic, period-doubling,
frequency-doubling, and catastrophic bifurcations. Bifurca-
tion can be defined as a qualitative change of the flow be-
havior in a nonlinear system. In the bifurcation theory, these
bifurcations can be classified as static and dynamic. In the
static bifurcations the most common and important bifurca-
tions are the saddle-node, transcritical, and pitchfork bifur-
cations. The Hopf, period-doubling, and frequency-doubling
bifurcations are the common dynamic bifurcations. Further-
more, the bifurcations can also be classified as local and
global types based on their equilibrium points. Local bifur-
cation involves one or more equilibrium solution points
while the global bifurcation involves the appearance or dis-
appearance of the equilibrium points. Our attention was paid
exclusively to the Hopf, frequency-doubling and pitchfork
bifurcations because of their existence in the currently inves-
tigated channel flow.

The bifurcation types illustrating the transition to chaos
are most commonly characterized by their power spectrums
and phase portraits. Hakin20 used the Lyapunov exponents
and Grassberger and Procaccia21 used the correlation dimen-

sion to distinguish various attractors quantitatively. To de-
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scribe the flow bifurcation, the legitimate bifurcation analy-
sis that goes beyond the linear stability analysis was
conducted. The nature of bifurcations, which arise as a result
of the developing disturbances, is deliberated based on the
limit cycle oscillation theory.22 The bifurcation types in-
volved in the present system were studied based on the L2

error norms, time-evolving solutions, power spectrums, and
phase portraits.

Due to the occurrence of periodic oscillations in the
present channel flow, the flow stability in the backward fac-
ing step channel is analyzed. The stability study of the non-
linear system is significant to determine whether this system
can exhibit self-sustained oscillations, i.e., whether the in-
voked system will oscillate even in the absence of an exter-
nal driving force �e.g., rhythms in the body temperature,
heartbeat, hormone secretion, and chemical reactions that os-
cillate spontaneously�. Also, from the stability analysis it can
be known whether the system can return to the stable limit
cycle if it is perturbed.

In spite of the several investigations of channel flow
over a backward-facing step that are available in the litera-
ture, we wish to address the following: the critical Re at
which the flow becomes unstable and the nature of bifurca-
tion leading to chaos. This is similar in spirit to the experi-
mental work of Nie and Armaly1 to quantify the transition to
three-dimensionality and, finally, to turbulence via the
backward-facing step simulations. Based on their work, an
attempt was made to examine 3-D convective instability of
the backward-facing step. This work was further extended to
nonlinear stability computations to determine whether the
bifurcations are supercritical or subcritical. The computa-
tional results presented in this paper will expand the database
for this nonlinear benchmark problem in three dimensions.

FIG. 1. �a� Schematic of the backward-facing step flow
problem under the current investigation; �b� schematic
of the generated 3-D mesh; �c� projection of the gener-
ated mesh on the xy plane at z /S=4; �d� streamlines for
Re=2000 at z /S=4.
The rest of the paper is organized as follows. In Sec. II
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we introduce the formulation of problem along with the
physical parameters. In Sec. III we address the computational
methods and the validation of the code that is used to carry
out the current simulation. In Sec. IV the results will be
analyzed based on the flow nature, vortex stability, and bi-
furcation theory for a wide range of Re. The bifurcation
types are identified based on the limit cycles, time-series,
power spectrums, phase portraits, and L2 error norms. Fi-
nally, in Sec. V, a summary of the present study is provided.

II. COMPUTATIONAL DOMAIN

In Fig. 1�a�, the 3-D schematic diagram of the investi-
gated backward facing step problem is shown. In this study,
the step geometry and the flow conditions considered by Nie
and Armaly1 were chosen to enable the direct comparisons
with the experimental results. The step height �S� and the
duct width �W� are assumed as 0.01 and 0.08 m, respectively.
The upstream �h� and downstream �H=h+S� duct heights of
the expansion are assumed to be 0.0098 and 0.0198 m, re-
spectively. This geometry provides a configuration with an
expansion ratio �ER=H / �H−S�� of 2.02 and an aspect ratio
�AR=W /S� of 8. The origin of the coordinate system is lo-
cated at the intersection of the bottom corner of the step wall
and vertical end wall, as shown in Fig. 1�a�. The directions of
the streamwise �x�, transverse �y�, and spanwise �z� coordi-
nates are also shown in the figure. The streamwise length of
the computational domain is 1.5 m in upstream and 0.75 m
downstream from the step wall, i.e., −150�x /S�75. This
choice was made to ensure that the flow at the inlet section
of the duct �x /S=−150� is not affected by the sudden expan-
sion in geometry. To justify the existence of fully developed
flow present at the exit plane, in Fig. 1�d� the streamlines at
z /S=4 for Re=2000 are shown. It is observed that the flow
at the exit section of the duct �x /S=75� can be treated as
fully developed. It was confirmed that the use of a longer
computational domain did not change the flow in the region
downstream from the step and discussed in Sec. III B. In the
present problem the physical properties of air are treated as
constants and are assumed as density ���=1.205 kg/m3, and
dynamic viscosity ���=1.81�10−5 kg m−1 s−1. Inlet flow
�x /S=−150, 1�y /S�1.98 for all z� was considered to be
hydrodynamically steady and fully developed with the
streamwise velocity component �u�. The other velocity com-
ponents �v and w� were set as zero at the inlet section. The
no-slip boundary condition �zero velocity vector� was ap-
plied at all the wall surfaces. Fully developed velocity con-
ditions were imposed at the exit section
�x /S=75, for all y and z� of the physical domain.

III. BASIC EQUATIONS AND METHOD OF SOLUTION

A. Basic equations

A study of the unsteady nature of a flow through the
currently investigated 3-D backward-facing step channel re-
quires the solution of the following nonlinear set of coupled
partial differential equations, which express the mass and
momentum conservations:

¯
� . V = 0, �1�
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�V̄

�t
+ �V̄ . ��V̄ = − �P +

1

Re
�2V̄. �2�

In the above elliptic-parabolic mixed-type differential equa-

tions, V̄= �u ,v ,w�, P, and t represent the velocity vector,
pressure, and time, respectively. In the following sections,
the three velocity components u, v, and w are referred to as
the streamwise, transverse, and spanwise velocities, respec-
tively. The Re is given by �u0Dh /�, where Dh is given as
2Wh / �W+h� and u0 denotes the average initial velocity.
Note that this definition for Re is the same as the one used by
Nie and Armaly.1

B. Computational details

The numerical simulation of the governing equations �1�
and �2� subjected to the boundary conditions described above
was performed by utilizing the commercial computational
fluid dynamics software CFDRC. The mesh is generated
from the structured block volume elements using the prepro-
cessor CFD-GEOM. The nonuniform grid distribution with
�xmin=0.15 cm; �ymin=0.039 26 cm; �zmin=0.2 cm �shown
in Figs. 1�b� and 1�c�� was selected to ensure high density
near the bounding walls and in the regions near the step,
where the high gradient solution profiles exist, so as to en-
sure the accuracy of the simulations. The 3-D continuity and
Navier-Stokes equations �1� and �2� for the investigated in-
compressible fluid flow were solved numerically using the
finite volume method. The AMG �Algebraic Multi Grid� al-
gorithm was used for the pressure-velocity coupling and the
momentum equations are discretized with the third-order up-
wind scheme in order to pursue higher accuracy of the simu-
lations. The SIMPLEC scheme has been adopted for the
pressure correction. For the unsteady calculations, the first-
order accurate unconditionally stable implicit backward Eu-
ler time stepping method was used. A typical time increment
was set as 0.001 s. At the end of each iteration, the residual
sum for each of the conserved variables was computed and

FIG. 2. Grid independent validation test for the case considered at
Re=100. The streamwise velocity solutions are plotted at the symmetry
plane and x /S=10.
stored to record the convergence history. The convergence
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criterion requires that the scaled residuals must be smaller
than 10−10 for the mass and the momentum equations. The
convergence of a solution was also checked from both mass
flow summaries. For example, at Re=740, the flow imbal-
ance �2.092 51�10−17� was 13 orders of magnitude smaller
than the inflow or outflow ��±5.834 31�10−4�. Hence this
is a well converged solution in the sense that an imbalance in
three to four orders of magnitude smaller than the inflow/
outflow typically indicates good convergence.

The mass flux was calculated to find out whether there
was any inflow through the outlet �x /S=75�. As the exit
section of the channel was drawn far enough from the step
wall, the mass flux was observed to be zero. When the down-
stream length was x /S�75, the flow disturbances near the
outlet lead the fluid to come back into the system. This im-
plies that the fully developed flow was not obtained and
gives rise to convergence problems. Hence in the present
study the downstream length was chosen as x /S=75. De-
tailed descriptions of the CFD code and the solution proce-
dures can be found in the CFDRC manual. The simulated
results were viewed and analyzed in the 3-D animated plot-
ting tools like the CFD-VIEW and the TecPlot.

FIG. 3. A comparison of the present, numerical, and experimental spanwise
x /S=12.3; �d� x /S=18.88.
Three stages of mesh refinement shown in Fig. 2 were
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investigated starting with 54 549 nodes, then with 100 608
nodes, and progressing to the final mesh of 186 984 nodes
for Re=100. From Fig. 2, it is observed that the streamwise
velocity did not show much variation when the 100 608
nodes were increased by 50%. Hence, the grid with 100 608
nodes was used for calculating all the results that are pre-
sented in this paper. A detailed study of the grid dependence
of the present results had not been performed with still finer
grids, because it would require a prohibitively large com-
puter capacity.

C. Code validation

The simulated spanwise velocity profiles were compared
with the numerical and experimental results of Williams and
Baker18 and Armaly et al.4 at y=7.5 mm for Re=648 and are
shown in Fig. 3. Armaly et al.4 reported that at this Re the
flow is fully three dimensional, as confirmed by the variation
in the axial velocity across the lateral span of the flow field.
In general, very good agreement is observed between the
present simulation and the numerical and experimental data
at all x stations. The persistent flow reversals near the side-

ity profiles for Re=648 at y=7.5 mm and �a� x /S=6.22; �b� x /S=9.29; �c�
veloc
wall, missed in the experiments owing to their limited range,
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are an indication of significant flow separation and, hence,
reversal along the duct sidewall for x /S�18.

Further, an attempt was made to compare the simulated
laminar results with the available experimental results of Nie
and Armaly1 and the resulting comparison is found to be
satisfactory, as shown in Fig. 4. The results in the transitional
and turbulent regions, presented by the same authors, are
hard to compare, since there exist no details about the time at
which the transient results are shown.

IV. RESULTS AND DISCUSSION

The flow structure depends on the geometrical param-
eters �H, h, S, and W� and the control parameter Re. In the
present work, the effect of Re was studied by keeping the
other geometrical parameters fixed. The computations were
started at Re=100. At this low Reynolds number the simu-
lated flow field was observed to be steady and laminar. Fig-
ure 5 shows the steady state solutions obtained at different
Re. With the increasing values of Re, the flow in the present
dynamical system was observed to transit from one equilib-
rium state to another due to the presence of a rapidly varying
disturbance field. It was found that the flow remained steady

FIG. 4. A comparison of the xu lines �skin-friction lines� on y /S=0.05 plane
between the present simulation �solid lines� and the experimental results of
Nie and Armaly �Ref. 1�.

FIG. 5. �Color online� The simulated time-evolving streamwise velocity for

various Re.
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until Re=735. At the slightly increasing Reynolds number
Re=738, the flow, however, starts to exhibit a time-periodic
solution. Since the unsteady equations were taken into
consideration, the computational results signify that for
Re�738 the flow became time asymptotically steady,
whereas at Re=738 it evolved to exhibit a limit cycle �or
periodic attractor�. The bifurcation diagram in Fig. 6 shows
the existence of two solutions for the streamwise velocity
component as Re�738. First, the flow topology was pre-
sented to show a global skeleton of the flow development in
the investigated backward step for Re=1000. Then, the non-
linear theory was studied based on the vortex stability and
bifurcation. The transitional flow leading to the chaotic flow
is analyzed with the aid of limit cycles, time-series, phase
portraits, power spectrums and L2 error norms for wide range
of Reynolds numbers.

A. Nature of the flow

To extract the meaningful flow physics from the 3-D
unsteady flow structure, the topology of the limiting stream-
lines �the streamlines passing very close to the solid wall� or
skin friction lines were depicted. Figure 7 illustrates the glo-
bal picture of the 3-D flow development in the backward-
facing step for the transitional flow region �Re=1000�. It is
seen from this figure the wavy streamlines along the symme-
try plane and the limiting streamlines adjacent to the step
wall, channel roof, floor, and vertical endwall at the instant
of maximum velocity in the downstream. This illustration
would help us to visualize the global structure of the vortical
flow. On the floor plane, the attachment and separation lines
are shown. These topologically singular lines appeared to be
the barriers in the flow field. The region within the lines of
separation and reattachment is hereinafter referred to as the

FIG. 6. The bifurcation diagram based on the simulated streamwise velocity
at the arbitrarily chosen location �10, 1, 4�.
recirculation region, which is our main interest in the present

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



084101-6 H. P. Rani and T. W. H. Sheu Phys. Fluids 18, 084101 �2006�
study. The flow physics in this recirculation zone will be
discussed in detail in the following sections. Two spiral
nodes are seen at all the planes. The nodes present below the
separated shear layer are referred to as the periodically pro-
duced hovering vortices. Such hovering vortices play a criti-
cal role in the formation of Kelvin-Helmholtz �KH� instabil-
ity, which will be discussed also later in detail. Beyond the
reattachment region, no vortex appears to exist, and the only
trace of the periodicity was the undulation of the streamlines.
The flow in the rear end of the step plane is found to be
divided into two regions from the symmetry plane, with one
region rotating in the clockwise direction while the other in
the counterclockwise.

To get a clear picture of the deformations about the re-
circulation region, the streamwise velocity is plotted against
time and is shown in Fig. 8�i�. It is observed that the flow
velocity oscillates periodically. The recirculation region un-
dergoes severe deformation during each time interval. To il-
lustrate the deformations, the flow was observed at four in-
stances that were marked as �a�–�d� in Fig. 8�i�. The
recirculation regions at these four time intervals are high-

FIG. 7. The simulated streamlines near the endwall at z /S=0.05, symmetry
plane at z /S=4, floor plane at y /S=0.05, roof plane at y /S=1.93, and the
step wall at x /S=0.05 for Re=1000 at t=4.04 s. The dark lines on the floor
plane denote the attachment/separation lines and N denotes the spiraling
nodes.
lighted in Figs. 8�ii�, �iii�, �iv�, and �v� by means of the zero
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contours of streamwise velocity. In the present study, atten-
tion is paid only to the recirculation region near the step wall
on the floor plane, due to its deforming nature, although
there are another two nondeformed recirculation regions
present near the roof plane in the downstream channel. Ini-
tially, when the velocity is maximum, i.e., at t=4.04 s, there
exists a single recirculation region near the step wall, as
shown in Fig. 8�ii�. Once the velocity starts to decrease, i.e.,
at t=4.05 s, this region is split into two regions, I and II
�large and small regions, respectively�, as shown in Fig.
8�iii�. Afterward, the region “II” bursts into small regions,
i.e., at t=4.07 s �Fig. 8�iv��. When the velocity reaches its
minimum, i.e., at t=4.08 s the region “II” disappears, as
shown in Fig. 8�v�. Thus, for the decreasing velocity, the
large recirculation region I will be split into small recircula-
tion region II and this region II finally disappears in the
subsequent time intervals, while for the increasing velocity
the above processes are reversed. By virtue of the informa-
tion about the deformation of the separation bubbles �recir-
culation region� provided in Fig. 8, it is possible to determine
the time interval �t between the appearance and disappear-
ance of the new separation bubble and the time at which the
recirculating flow reaches its maximum. In the present case
the maximum time interval was observed to be 0.04 s. For
every 0.08 s, the maximum reverse flow is reached or the
two bubbles are attached to each other.

The maximum streamwise extent of the recirculation re-
gion is observed to depend on the time and Re, which in turn
determine the duration of the deceleration period and the
strength of the deceleration, respectively. As a consequence,
at Re=1000 a faster growth of the periodic recirculation “re-
vival” of Region II was observed. Also, the apparently trig-
gered KH instability for Re=1000 leads to a faster roll-up of
the shear layer, illustrated by the fact that the maximum re-
verse flow was reached at an earlier phase to promote the
subsequent damage of the large separation region �I� as it
was convected downstream.

B. Nonlinear dynamics

1. Vortex stability and limit cycle oscillations „LCO…:
Supercritical Hopf bifurcation

In the stability analysis it is important to grasp the prop-
erty of the limit cycle �i.e., stable or unstable� when the
system condition is near the Hopf bifurcation. In particular,
the unstable limit cycle affects the global stability. In the
subsequent discussions emphasis is given to the numerically
predicted limit cycles around the vortex core at Re=1000.
The stability boundary formed by the limit cycle was as-
sessed as a function of the velocity component tangent to the
vortex core.

The vortex core shown in Fig. 9 was computed based on
the velocity gradient eigenmode method. The hairpin-like
vortex core line23 has its origin/termination on the bounding
floor plane. Figure 9�a� clearly shows the spiraling nature of
the stream traces around the vortex core. It is observed that
the system trajectory forms an orbit in the direction of the
vortex core. This implies that the kinetic energy along the

flow is wrapped around the vortex core. The spiraling stream
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traces showed the distinguished nature at the three locations
marked as L1, L2, and L3 in Fig. 9�a�. At these locations the
flow changed its direction and it is subjected to three alter-
nate stable and unstable processes, where the Hopf bifurca-
tion had its origin. These stable and unstable processes in-
duced the limit cycle oscillations �LCO�. At these three
locations the limit cycles were drawn along with the vortex
core and are shown in Fig. 9�b�. It is observed that the sizes
of limit cycles L2 and L3, which are of the same size, are
smaller in comparison with that of L1. The stability of these
limit cycles and the existence of a supercritical Hopf bifur-
cation are analyzed in the subsequent paragraphs.

To obtain a profound understanding of the vortex stabil-
ity and LCO, the velocity gradient ��� shown in Fig. 9�c�

FIG. 8. The simulated time series and the zero contour plots for the stream
regions�, where I and II denote the two recirculation regions for Re=1000. �i�
of regions I and II; �vi� breaking of region II; �v� disappearance of region I
was calculated along the vortex core line. From Fig. 9�c� it is

Downloaded 30 Nov 2006 to 140.112.26.10. Redistribution subject to 
observed that � changes its sign from positive to negative at
three locations. These locations are of primary importance.
The positive � values show the flow acceleration along the
vortex core and the negative � values indicate the flow de-
celeration along with the vortex breakdown. Also, the zero �

values hint the limit cycle formation at those locations. Fur-
ther, if � has n number of sign changes then there exists n
number of limiting cycles. There are three limit cycles found
in the present nonlinear flow system and they are marked as
L1, L2, and L3, as shown in Fig. 9�b�. It is seen from the
simulated limit cycles that they will separate the vortex into
the inner unstable region �moving away from the vortex
core� and the outer stable region �moving towards the vortex

velocity to illustrate the deformation of the recirculation regions �shaded
e versus velocity component u; �ii� merging of regions I and II; �iii� breaking
wise
Tim

I.
core�. This implies that the stable limit cycles exist in the
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current nonlinear system. From these stable limit cycles, the
existence of supercritical Hopf bifurcation is now acknowl-
edged.

The Hopf bifurcation is characterized by the appearance
of a periodic orbit �or a limit cycle or an attractor�, which can
be classified as supercritical and subcritical. The frequently
discovered supercritical Hopf bifurcation in the Navier-
Stokes system involves a stability change from the critical
point or a globally asymptotic stable equilibrium to the peri-
odic orbit or a limit cycle. By virtue of the observed limit
cycle the existence of supercritical Hopf bifurcation is ex-
plained as follows: From Fig. 9�a� it is seen that the larger
limit cycle lies in between the two smaller limit cycles. Its
presence is due to the fact that the stable equilibrium point
oscillates and develops into a stable limit cycle. The limit
cycle either grows until its magnitude becomes large enough
�i.e., L2 or L3 → L1� or diminishes as the flow returns to the
steady state �i.e., L1→L2 or L3�. Moreover, a branch of
stable periodic solutions �the outer region in Fig. 9�b�� over-
laps the branch of unstable solutions �the inner region in Fig.

9�b��. This class of Hopf bifurcation is, therefore, regarded as
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the combination of the unstable focus and the stable limit
cycle. It is implied that the stable limit cycle exists around
the unstable inner region and forms a global stability bound-
ary. The currently investigated 3-D backward-facing step
channel flow is, therefore, known to have a supercritical
Hopf bifurcation. As the flow path in the current nonlinear
system was trapped by the stable limit cycles, the system is
made to proceed with a sustained oscillation and does not
lose the synchronization when it is perturbed. On the con-
trary, in the subcritical Hopf bifurcation, which is not ob-
served in the current nonlinear flow system, a branch of un-
stable periodic solution overlaps the branch of stable
solutions. Hence this bifurcation can be regarded as the com-
bination of stable focus and unstable limit cycle.

2. Frequency-doubling bifurcation

The frequency-doubling bifurcation in the recirculation
region is analyzed in terms of the time-series, phase portrait,
and power spectrum of the simulated velocity components in

FIG. 9. Illustration of the supercritical Hopf bifurcation
for Re=1000 at t=8 s. The arrows indicate the flow
direction. L1, L2, and L3 denote the limit cycles. �a�
Stream traces around the vortex core line; �b� stability
of the limit cycles; �c� streamwise velocity gradient
along the vortical core line �s*�.
the symmetry plane near the step wall at the point �10, 1, 4�.
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If any other point is chosen in the downstream of the chan-
nel, the flow exhibits the same periodicity nature as that at
the point �10, 1, 4�, but with small amplitude. As u, v, and w
are the system’s variables, the 3-D phase portrait is depicted
by plotting u against v and w. Thus, the phase portrait is
nothing but the projection of the attractor on the x -y -z plane.
Figure 11 shows the time-series, phase portrait, and power
spectrum at Re=740. The time-varying solutions, in Fig.
10�a�, show the existence of maximum and minimum solu-
tions for the u-velocity component. Hence the corresponding
phase portrait in Fig. 10�b� exhibits a periodic attractor. Fur-
ther from the power spectrum plotted in Fig. 10�c� a domi-
nant frequency is noticed at f1=9 and the other weak fre-
quency at f2=18. It can be observed that these two
frequencies are arithmetically related to each other in the
sense that f2=2f1. Hence, there occurs a frequency-doubling
bifurcation. The presence of frequency-doubling bifurcation
is a precursor to the onset of chaos in the nonlinear system.
This frequency-doubling bifurcation occurred when the
simulated stable limit cycle became unstable with the pri-
mary frequency f1 and it is surrounded by the stable limit
cycle of twice the frequency of f1, i.e., f2=2f1. From Fig.
10�b�, it is observed that a solution point on the limit cycle
remained in the curve all the time and returned to the initial
point periodically with a small deviation due to the presence
of the subharmonic frequency, f2. When Re was increased,
the frequencies become higher although the bandwidths of
individual frequencies have become narrow.

Figure 11 shows the time-series solution, 3-D phase por-

FIG. 10. The simulated �a� time series; �b� phase portrait; �c� power spectru
f2�=2f1=18� denote the fundamental frequency and the arithmetically relate
trait, and a power spectrum at Re=1000. The 3-D phase
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portrait, shown in Fig. 11�b� �corresponding to the time-
series solution in Fig. 11�a��, changes its pattern from the
phase portrait of Re=740 due to the presence of two more
frequencies. The amplitude of the fundamental frequency has
increased from 0.0425 to 0.0975. Also, the four frequencies,
f1=18, f2=2f1, f3=3f1, and f4=4f1, are arithmetically re-
lated to each other. Those additional peaks were subhar-
monic to the fundamental frequency f1. These new spectral
peaks were the “sidebands” about the primary frequency f1

that came into existence through the frequency-doubling bi-
furcation of the frequency one orbit. Sidebands are the spec-
tral peaks distributed symmetrically on both sides of the fre-
quency peak at intervals equal to the integer multiples of the
modulating frequency.24,25

When Re was further amplified to 1363, the 3-D phase
portrait and the power spectrum �Fig. 12� show different
trends. In the power spectrum, although the amplitude of the
fundamental frequency is increased, as shown in Fig. 12�b�,
there exists an infinite number of arithmetically related fre-
quencies with a small amplitude. More generally, the power
spectrum of a frequency n orbit consists of a family of dis-
crete peaks for the primary frequency and its overtones. In
the periodic motion, all these peaks were rationally related to
the primary peak �resonance�.

The relationship between the frequency-doubling bifur-
cation and the KH instability can be explored as follows
from Figs. 10–12. In Fig. 11�c� the frequency spectra of the u
velocities at the points P1, P2, and P3 chosen at the channel
midspan are shown. The locations of these points and the

Re=740 based on the solutions obtained at the point �10, 1, 4�. f1�=9� and
quency.
m for
d fre
u-velocity contours are shown in Fig. 11�d�. The fundamen-
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tal frequency, f1, in the spectrum corresponds to the inflow
oscillation frequency and the most amplified mode of KH
instability. Also, for all the investigated cases, the inflow
oscillation of the fundamental frequency f1 is identical to the
most amplified mode of the KH instability. This direct trig-
gering of the most unstable KH mode results in a rapid
growth of the KH instability, which explains the stronger
triggering of the KH instability as Re is amplified from 740
to 1363. The small amplitude frequencies are arithmetically
related to each other and to the fundamental frequency.
These frequencies result in a slower development of the KH
instability, which is responsible for the roll-up of the shear
layer.

In the above discussion, it is shown that the maximum
streamwise extent of the separation region depends mostly
on Re. The increasing Re strongly triggers the KH instability
and promotes the decay of the recirculation region into small
regions �as shown in Fig. 8�. Hence triggering the most un-
stable KH instability by an appropriate choice of Re can
significantly promote the decay of the recirculation region.
Similar oscillation regimes were observed by Wissink26 in
the separating and transitional flow over a flat plate.

It was observed that the frequency-doubling bifurcation
kept occurring, but with the shorter and shorter interval of
increasing Re. Eventually, an infinite number of fundamental

FIG. 11. The simulated �a� time-series; �b� phase portrait based on the solu
Re=1000 in �c� is based on the time-series solutions obtained at the points P
frequency and the three arithmetically related frequencies. These four freque
arbitrary points P1 �10, 1, 4�, P2 �15, 1, 4�, and P3 �20, 1, 4� shown in �d� a
dark �orange� to light �blue� contour lines represent the maximum to minim
frequencies was observed and the path of the solution did not
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repeat any longer. At this moment chaos sets in. Figure 13
shows the onset of chaotic flow at Re=2000. The corre-
sponding phase portrait, and power spectrum are shown in
Figs. 13�i� and 13�ii�, respectively. The phase portrait in Fig.
13�i� exhibits a chaotic attractor. The corresponding power
spectrum in Fig. 13�ii� is marked with a rich spectral struc-
ture. Such a broadband power spectrum shows the existence
of a continuum of frequencies. The corresponding frequen-
cies cannot be predicted for this Re=2000. The simulated
nonlinear resonances are directly related to the unstable pe-
riodic orbits embedded within the chaotic attractor. As a re-
sult, the power spectrum for the predicted chaotic attractor
indeed can provide some information concerning the dynam-
ics of the system, namely, the existence of unstable periodic
orbits �nonlinear resonances� that can strongly influence the
recurrence properties of the chaotic orbit. Hence, at Re
=2000, the specific condition or system state at or near the
attractor is entirely unpredictable.

In Fig. 14 the unsteady solutions are analyzed at two
time intervals. One time interval is considered from
t=8 to 9 s and the other from t=9 to 10 s of the flow at
Re=2000. The time series before 9 s did not show the totally
disorganized flow nature. The corresponding 3-D phase por-
trait in Fig. 14�b� showed a nonchaotic attractor and the
power spectrum in Fig. 14�c� showed three visible arithmeti-

obtained at the point P1 �10, 1, 4� for Re=1000. The power spectrum for
, and P3. f1�=18�, f2�=2f1�, f3= �3f1�, and f4= �4f1� denote the fundamental
acknowledge the presence of the frequency-doubling bifurcation. The three
sen downstream of the centerline of the backward facing step channel. The
velocity, respectively.
tions
1, P2
ncies
re cho
cally related frequencies. When the time was amplified fur-

AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



084101-11 Nonlinear dynamics in a backward-facing step flow Phys. Fluids 18, 084101 �2006�
ther, i.e., t	9, the disorganized solutions were observed and
were shown in Fig. 14�d�. The corresponding 3-D phase por-
trait in Fig. 14�e� illustrated a chaotic attractor and the power
spectrum in Fig. 14�f� showed one principle frequency and
an infinite number of subharmonic frequencies. Normally,
these simulated chaotic attractors are generally found in the
turbulence problems only. These attractors turn the complex
system into turmoil. The configuration of attractors in phase
space can help us to determine whether the investigated sys-
tem is conservative or dissipative. The predicted attractors
are also useful to understand more about the chaotic behavior
of the system under current investigation. Ruelle27 called the
chaotic attractor of turbulence system as the strange attractor.
He found that this attractor pulled complex systems into a
space of fractional dimension.28

3. Pitchfork bifurcation

The presence of pitchfork bifurcation is observed at
Re=2000 and is characterized by the appearance of a
symmetry-breaking solution in the symmetric physical do-
main. In the literature, such a symmetry breaking flow phe-

FIG. 12. The simulated �a� 3-D phase portrait and �b� power spectrum for
Re=1363 based on the solutions obtained at the point �10, 1, 4�.
nomenon in the symmetric channels is termed as Coanda
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effect.29 Usually, the pitchfork bifurcation is of the static and
local type and involves one or more equilibrium solutions. In
the nonlinear system with the geometric and flow symmetry,
the perturbations of different sorts may initiate the pitchfork
bifurcation. The currently investigated backward-facing step
problem shows spanwise symmetry in both the geometry and
boundary conditions. As the solution started to bifurcate, the
geometrically symmetric fluid flow lost its symmetry and the
stable branch became unstable. This led to the formation of
two new stable branches. Hence this pitchfork bifurcation
solution is called as the symmetry-breaking solution.

In Fig. 15 the streamwise velocity contours along vari-
ous cross sections are compared at different time levels for
Re=2000. Figure 15 clearly illustrates the evolution of the
pitchfork bifurcation along x /S �=10� and y /S �
0.05,
1.9875� planes. It was observed that this bifurcation occurs
in the spanwise direction as shown in Fig. 15. At t=6 s the
flow showed the symmetric nature but when time proceeds
the flow lost its symmetric nature with respect to the sym-
metry plane �z /S=4�, as shown in Figs. 15�a�–15�c�. Exten-
sive numerical verification was made to ascertain that the
simulated pitchfork bifurcation was not of numerical origin.
Table I shows the u-velocity L2 error norms, at different
cutting planes during different time steps, between the two
halves of the channel. It is noted that at the smaller time
interval the L2 error norm is smaller. The L2 error norm
increases with time, which gives the evidence for the exis-
tence of the pitchfork bifurcation. Similar symmetry break-
ing observation was reported by Nie and Armaly1 in their
experimental work for the transitional flow. Thus, it can be
inferred that the chaotic motion starts with a Hopf bifurca-
tion, proceeds with frequency-doubling bifurcation, and fi-
nally ends with a pitchfork bifurcation.

V. CONCLUDING REMARKS

Nonlinear dynamics in the recirculation region that is

FIG. 13. For Re=2000, the �i� phase portrait; �ii� power spectrum based on
the solutions obtained at the point �10, 1, 4�.
developed adjacent to the step wall of a three dimensional
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backward-facing step flow is presented as a function of the
control parameter, namely, the Reynolds number. The simu-
lated results show the good agreement with the experimental
results of Nie and Armaly1 and Armaly and others.4 The
nonlinear theory was studied based on the vortex stability
and bifurcation. The transitional flow leading to the chaotic
flow is analyzed based on the limit cycles, time series, phase
portraits, power spectrums, and L2 error norms for a wide
range of Reynolds numbers. The flow simulation results of
the present study can be summarized as follows:

• The maximum streamwise extent of the recirculation
region depends on time and Re, which in turn deter-
mines the duration of the deceleration period and the
strength of the deceleration, respectively. The appar-
ently triggered Kelvin-Helmholtz �KH� instability leads
to a faster roll-up of the shear layer, illustrated by the
fact that the maximum reverse flow was reached at an
earlier phase to promote the subsequent damage of the
larger separation region, near the step wall, as it was
convected downstream.
• The flow path in the current nonlinear system consists

Downloaded 30 Nov 2006 to 140.112.26.10. Redistribution subject to 
of one large limit cycle surrounded by two small similar
limit cycles. These limit cycles divide the vortex into
the inner unstable region and the outer stable region.
Hence, the present channel flow was trapped by the
stable limit cycles and made to proceed with the sus-
tained oscillation, which confirms the existence of a su-
percritical Hopf bifurcation.

• Increasing Re strongly triggers the KH instability and
promotes the decay of the recirculation region. The
higher amplitude of the fundamental frequency corre-
sponds to the rapid growth of the KH instability while
the smaller frequency amplitudes correspond to the
roll-up of the shear layer.

• The frequency and amplitude of oscillations changed
with the increasing values of Re. The oscillation started
with one dominant fundamental frequency and its sub-
harmonic frequencies. All frequencies are arithmetically
related to each other, thus confirming the existence of
the frequency-doubling bifurcation.

• For Re=2000, the time series solutions showed the

FIG. 14. The simulated �a�, �d� time
series, �b�, �e� 3-D phase portrait, and
�c�, �f� power spectrum for the case
considered at Re=2000. �a�, �b�, �c�
are based on the simulated solutions
from t=8 to 9 s and �d�, �e�, �f� are
based on the simulated solutions from
t=9 to 10 s.
slow development of an aperiodic flow. A fast Fourier
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analysis of the simulated time-series velocity compo-
nent at the arbitrarily chosen point exhibited a single
fundamental frequency to an infinite number of fre-
quencies. Also in the power spectrum, a simple attractor

TABLE I. The simulated u velocity L2 error norms at Re=2000.

Plane t=6 s t=8 s

x /S=10 0.632 93�10−5 0.748 686�10−3

y /S=0.05 �floor� 0.984 213�10−5 0.384 08�10−3

y /S=1.975 �roof� 0.332 722�10−7 0.764 748�10−3

FIG. 15. The simulated streamwise velocity contours along various cross
sections with contour levels in numbers at �a� x=0.1 m, �b� floor �y
=0.0005 m�, and �c� roof �y=0.019 75 m� plane to show the existence of
pitchfork bifurcation for Re=2000 at various times. Solid and dotted lines
denote the symmetric and asymmetric contours, respectively.
Downloaded 30 Nov 2006 to 140.112.26.10. Redistribution subject to 
evolves to chaotic attractor as the time proceeds. More-
over, the initial symmetric solution became unsymmet-
ric leading to the pitchfork bifurcation.
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