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In this article a scheme which preserves the dispersion relation for convective terms is

proposed for solving the two-dimensional incompressible Navier–Stokes equations on

nonstaggered grids. For the sake of computational efficiency, the splitting methods of

Adams-Bashforth and Adams-Moulton are employed in the predictor and corrector steps,

respectively, to render second-order temporal accuracy. For the sake of convective stability

and dispersive accuracy, the linearized convective terms present in the predictor and correc-

tor steps at different time steps are approximated by a dispersion relation-preserving

(DRP) scheme. The DRP upwinding scheme developed within the 13-point stencil frame-

work is rigorously studied by virtue of dispersion and Fourier stability analyses. To validate

the proposed method, we investigate several problems that are amenable to exact solutions.

Results with good rates of convergence are obtained for both scalar and Navier–Stokes

problems.

1. INTRODUCTION

When solving the two-dimensional convection-diffusion equation, the disper-
sion error, which is defined as the difference between the effective and actual wave
numbers, cannot be completely eliminated. A reliable scheme for solving the practi-
cally and academically important convection-dominated convection-diffusion trans-
port equation and Navier–Stokes equations at high Reynolds numbers must have the
ability to avoid convective instability. To overcome the convective instability, many
upwind schemes have been proposed; see, e.g., [1–5]. This author has also proposed
monotonic upwind schemes by virtue of the underlying idea of an M-matrix to
enhance convective stability [6, 7]. One theory that may be adopted to enhance
convective stability is to take the dispersive nature of the investigated first derivative
term into consideration [8].

The scheme used for approximation of the convection term can preserve the
dispersion relation if it accommodates the same dispersion relation as that of the
original first-order partial derivative term [8]. This relation, which is derived by
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taking the spatial Fourier transform of the first-derivative term, reveals how the
angular frequency relates to the wave number of the spatial variable [9]. The main
reason for employing a dispersion relation-preserving (DRP) scheme is that the
resulting dispersiveness, dissipation, and group and phase velocities of each wave
component supported by the first-order derivative can be well modeled [10]. In the
above light, we conduct in this article a standard modified equation analysis, which
involves truncated Taylor series, together with a Fourier transform analysis [11],
which enables us to derive the same or almost the same dispersion relation as the
original partial differential equation, in the approximation of convective terms.

This article is organized as follows. Section 2 presents the working Navier–
Stokes equations in primitive-variable form. This is followed by presentation of
the rationale for advocating the segregated solution algorithm on nonstaggered
grids. Section 4 presents a splitting method for the sake of computational efficiency,
and Section 5 describes the two-dimensional DRP scheme for the approximation of
first-order derivative terms. Section 6 addresses the dispersion and Fourier (or von
Neumann) stability analyses of the proposed CDR discretization scheme. Section
7 presents simulated results, by which the proposed DRP upwinding method is vali-
dated. In Section 8 we give concluding remarks.

2. WORKING EQUATIONS

In this study we investigate the incompressible viscous fluid flow, which is gov-
erned by the continuity and Navier–Stokes equations for the chosen pair of primitive
variables (u; p):

r � u ¼ 0 ð1Þ
qu
qt

þ u � ru ¼ �rpþ 1

Re
r2uþ f ð2Þ

Given an initial divergence-free velocity field, the velocity vector u and pressure p are
sought subject to the boundary velocity. The length is scaled by L, the velocity com-
ponents by u1, the time by L=u1, and the pressure by qu21, where q denotes the con-
stant fluid density. The Reynolds number Re shown in Eq. (2) appears as a
consequence of the above normalization.

NOMENCLATURE

a, b convective velocities defined in Eqs. (9)

and (46)

f force per unit volume

k diffusion coefficient defined in Eqs. (9)

and (46)

km wave number defined in Eq. (50)

L characteristic length

n unit outward normal vector

Pe Peclet number defined in Eq. (51)

Pr Prandtl number

Ra Rayleigh number

r reaction coefficient defined in Eqs. (9)

and (46)

Re Reynolds number (� qu1L=m)
u1 reference velocity

ci modified wave number defined in Eq. (28)

n Courant number defined in Eq. (51)

q fluid density
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Momentum equations can be solved together with the constraint equation (1).
With this unconditional fluid incompressibility, the resulting matrix system may be
ill-conditioned. Under the circumstances, convergent solutions for (u; p) become very
difficult to obtain using the computationally less expensive iterative solvers [12]. The
peripheral storage for the matrix equations may exceed our available computer
power and disk space. These drawbacks prompted the use of the pressure Poisson
equation (PPE) approach [13] to eliminate the difficulty encountered in the mixed
formulation. Within the segregated analysis framework, equation for p is, thus,
derived to replace Eq. (1). By applying a divergence operator on Eq. (2), we are
led to derive the following Poisson equation:

r2p ¼ r � qu
qt

þ 1

Re
r2u� u � ruþ f

� �
ð3Þ

The above PPE approach is subject to theoretically rigorous integral boundary con-
dition [14]. Equation (2) is, therefore, computationally more challenging to solve.
For this reason, we adopt in this study the conventional differential-type boundary
condition given below:

qp
qn

¼ � qu
qt

þ 1

Re
r2u� u � ruþ f

� �
�n ð4Þ

In the above, n denotes the unit outward normal vector to the domain boundary.

3. DISCRETIZATION OF INCOMPRESSIBLE NAVIER–STOKES EQUATIONS
ON NONSTAGGERED GRIDS

Use of staggered grid approaches, which have been successfully applied to sup-
press oscillations arising from even–odd coupling, increases the coding complexity
and may consume more computational time. This provided the motivation for dis-
cretizing the partial differential equations over a domain in which both the velocities
and pressure are stored at the same point. In the nonstaggered mesh, care should be
taken for rp order to avoid spurious oscillations in the pressure field.

Our idea behind avoiding even–odd decoupling solutions is to take the nodal
value of pj into account when approximating rp at an interior node j [15]. Rather
than attempting to explicitly approximate px at node j, the value of pxjj is obtained
implicitly along with two adjacent values pxjj�1. Define Fj as

Fj ¼ h pxjj ð5Þ

where h denotes the constant mesh size. The method adopted in the present study for
solving the nodal value of F is the following implicit equation:

c1Fjþ1 þ c2Fj þ c3Fj�1 ¼ c4ðpjþ2 � pjþ1Þ þ c5ðpjþ1 � pjÞ
þ c6ðpj � pj�1Þ þ c7ðpj�1 � pj�2Þ ð6Þ

The seven undetermined coefficients are determined by expanding Fj�1 in Taylor

series with respect to Fj, and pj�1 and pj�2 with respect to pj. By substituting these
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expansions into Eq. (6) and using Eq. (5), a simultaneous set of algebraic equations
can be obtained for uniquely determining c1 � c7. On physical grounds, it is legit-
imate to set c1 ¼ c3 since p is elliptic in nature owing to the Poisson equation given
in (3). Having set c1 ¼ c3, other coefficients can be determined as c1 ¼ 1=5, c2 ¼ 3=5,
c4 ¼ 1=60, c5 ¼ 29=60, c6 ¼ 29=60, and c7 ¼ 1=60. As for the derivation of working
equation for F at a node immediately adjacent to the right boundary point (for
example), we can employ Eq. (6) at the limiting condition of c1 ¼ c4 ¼ c5 ¼ 0. With
the expression for boundary F via Eq. (6), interior values of Fj (2 � j � jmax � 1) can

be obtained with less computational expense from the banded tridiagonal matrix
equations.

4. SPLITTING SCHEME FOR NAVIER–STOKES EQUATIONS

When solving the momentum equation (2) for velocity components and the
Poisson equation (3) for pressure, considerable iterations are needed to reach conver-
gence for equation nonlinearity. To avoid excessive computing time, the predictor–
corrector splitting scheme will be employed together with explicit treatment of the
pressure term [16]. In the predictor step, the predictor velocity is solved using the
second-order-accurate Adams-Bashforth scheme. In the corrector step, the momen-
tum equation is then solved using the second-order-accurate Adams-Moulton
scheme:

Explicit predictor step:

euunþ1 � un

Dt
þ 3

2
ðu � ruÞn � 1

2
ðu � ruÞn�1

� �
¼ þ 3

2
ð�rpÞn � 1

2
ð�rpÞn�1

� �
þ 3

2

1

Re
r2u

� �n
� 1

2

1

Re
r2u

� �n�1
" #

þ f nþ1=2 ð7Þ

Implicit corrector step:

unþ1 � un

Dt
þ 1

2
euunþ1 � runþ1
� �

þ un � runð Þ
h i

¼ þ 3

2
ð�rpÞn � 1

2
ð�rpÞn�1

� �
þ 1

2

1

Re
r2u

� �nþ1

þ 1

Re
r2u

� �n
" #

þ f nþ1=2 ð8Þ

This is followed by solving the Poisson equation for pressure (3) using the updated
velocity to complete the calculation within one time interval. Note that the above
splitting algorithm involves only two convection-diffusion-reaction (CDR) scalar
equations in the corrector step and one Poisson equation. No iteration is needed.

5. DISPERSION RELATION-PRESERVING CONVECTION SCHEME

Considering the following constant coefficient convection-diffusion-reaction
model equation, which is the semidiscretized equation for/t þ a/x þ b/y � kr2/ ¼ f :
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/nþ1 � /n

Dt
þ a/x þ b/y � kr2/ ¼ f ð9Þ

Note that the above equation bears a close similarity to Eq. (8). In this study, we
employ the standard second-order central difference for the diffusion term. In the
grid system schematic in Figure 1, the first-order spatial derivative terms shown in
(9) are approximated as follows in the case of Dx ¼ Dy ¼ h. Taking /x as an
example, it can be approximated as follows:

/xðx; yÞ’
1

h
a1 /i�1;j�1 þ a2 /i;j�1 þ a3 /iþ1;j�1 þ a4 /i�1;j

�
þ a5 /i;j þ a6 /iþ1;j þ a7 /i�1;jþ1 þ a8 /i;jþ1 þ a9 /iþ1;jþ1

þ a10 /i;j�2 þ a11 /i;jþ2 þ a12 /i�2;j

�
a > 0 ð10Þ

and

/xðx; yÞ ’
1

h
a1 /i�1;j�1 þ a2 /i;j�1 þ a3 /iþ1;j�1 þ a4 /i�1;j

�
þ a5 /i;j þ a6 /iþ1;j þ a7 /i�1;jþ1 þ a8 /i;jþ1 þ a9 /iþ1;jþ1

þ a10 /i;j�2 þ a11 /i;jþ2 þ a13 /iþ2;j

�
a < 0 ð11Þ

In what follows, the scheme will be presented for the case with a > 0. By apply-
ing the Taylor series expansions for /i�1;j, /i�2;j, /i;j�1, /i;j�2, /i�1;j�1, the leading 11

Figure 1. Schematic of the 13 stencil points.
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error terms /, /x, /y, /xx, /xy, /yy, /xxy, /xyy, /xxx, /yyy, and /xxyy shown in the
resulting modified equation will be eliminated to derive the following system of
algebraic equations:

a1 þ a2 þ a3 þ a4 þ a5 þ a6 þ a7 þ a8 þ a9 þ a10 þ a11 þ a12 ¼ 0 ð12Þ
�a1 þ a3 � a4 þ a6 � a7 þ a9 � 2a12 ¼ 1 ð13Þ

�a1 � a2 � a3 þ a7 þ a8 þ a9 � 2a10 þ 2a11 ¼ 0 ð14Þ
a1 þ a3 þ a4 þ a6 þ a7 þ a9 þ 4a12 ¼ 0 ð15Þ

a1 � a3 � a7 þ a9 ¼ 0 ð16Þ
a1 þ a2 þ a3 þ a7 þ a8 þ a9 þ 4a10 þ 4a11 ¼ 0 ð17Þ

�a1 � a3 þ a7 þ a9 ¼ 0 ð18Þ
�a1 þ a3 � a7 þ a9 ¼ 0 ð19Þ

�a1 þ a3 � a4 þ a6 � a7 þ a9 � 8a12 ¼ 0 ð20Þ
�a1 � a2 � aþ 3þ a7 þ a8 þ a9 � 8a10 þ 8a11 ¼ 0 ð21Þ

a1 þ a3 þ a7 þ a9 ¼ 0 ð22Þ

One more equation is needed for uniquely determining the coefficients a1–a12 shown
in (10).

As convection highly dominates diffusion, approximation of /x to retain the
dispersion relation, which signifies the relation between the angular frequency of
the wave and the wave number of the spatial variable, is essential for effective sup-
pression of the possible convective instability in the course of approximating /x [17].
It is, thus, desirable that the right-hand side of (10) is made to have nearly the same
Fourier transform in space as the original partial derivative shown in the left-hand
side of (10). Within the DRP analysis framework [8, 18], which has been applied with
great success to approximate /x in the one-dimensional context, define first the
Fourier transform and its inverse for /ðx; yÞ in two space dimensions as follows:

e//ða; bÞ ¼ 1

ð2pÞ2
Z þ1

�1

Z þ1

�1
/ðx; yÞ e�iðaxþbyÞ dx dy ð23Þ

/ðx; yÞ ¼
Z þ1

�1

Z þ1

�1
e//ða; bÞ eiðaxþbyÞ da db ð24Þ

By conducting Fourier transform on terms shown in both sides of (10), we are led to
derive the first component of the actual wave-number vector a ¼ ða;bÞ:

a ’�i

h
a1e

�i ðahþbhÞ þ a2e
�i bh þ a3e

i ðah�bhÞ þ a4e
�i ah

�
þ a5 þ a6e

i ah þ a7e
�i ðah�bhÞ þ a8e

i bh þ a9e
i ðahþbhÞ

þ a10e
i ð�bhÞ þ a11e

i ðbhÞ þ a12e
i ð�ahÞ

�
ð25Þ

In approximation sense, the effective wave number eaa in eaa ¼ ðeaa; ebbÞ can be regarded as
the right-hand side of (25) [8]:
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Figure 2. Plots of kr and ki against ðc21; c22Þ and ðc1; c2Þ, respectively, for the proposed scheme considered

at Pex ¼ Pey ¼ 103;Rx ¼ Ry ¼ 0, and nx ¼ ny ¼ 0:2 : ðaÞ kr; ðbÞ ki.
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eaa ¼ �i

h
a1e

�i ðahþbhÞ þ a2e
�i bh þ a3e

i ðah�bhÞ þ a4e
�i ah þ a5 þ a6e

i ah
�
þ a7e

�i ðah�bhÞ þ a8e
i bh þ a9e

i ðahþbhÞ

þ a10e
i ð�bhÞ þ a11e

i ðbhÞ þ a12e
i ð�ahÞ

�
ð26Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
. Similarly, we can derive

ebb ¼ �i

h

�
b1e

�iðahþbhÞ þ b2e
�ibh þ b3e

iðah�bhÞ þ b4e
�iah

þ b5 þ b6e
iah þ b7e

�iðah�bhÞ þ b8e
ibh þ b9e

iðahþbhÞ

þ b10e
ið�2bhÞ þ b11e

ið2bhÞ þ b12e
ið�2ahÞ

�
ð27Þ

To make a be close to eaa, it is rational to require that jah� eaahj2 ( or the follow-
ing integrated error E) should approach zero in the following weak sense [8, 9, 17]:

EðaÞ ¼
Z p=2

�p=2

Z p=2

�p=2
jah� eaahj2 dðahÞdðbhÞ ¼ Z p=2

�p=2

Z p=2

�p=2
jic1 � ecc1j2 dc1dc2 ð28Þ

where ðc1; c2Þ ¼ ðah; bhÞ. In the discrete system for /x, the modified wave-number
range should be sufficiently wide to define a period of sine (or cosine) wave. This
explains why the integral range shown in (28) is chosen to be �p=2 � c1; c2 � p=2.

Figure 3. Plots of the group velocity ratio Cg=Ce against the modified wave number ðc1; c2Þ at

Pex ¼ Pey ¼ 103;Rx ¼ Ry ¼ 0, and nx ¼ ny ¼ 0:2.
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Figure 4. Plots of jGj and h=he against ðc1; c2Þ at Pex ¼ Pey ¼ 103;Rx ¼ Ry ¼ 0; and nx ¼ ny ¼ 0:2 : (a)

amplification factor jGj; (b) phase angle ratio h=he.
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To make E a minimum value, we enforce

qE
qa6

¼ 0 ð29Þ

With the above extreme condition applied at the point 6 schematic in Figure 1, we
are able to obtain the nine introduced coefficients from Eqs. (29) and (12)–(22):

Figure 5. Simulated solutions for the two problems considered in Section 7.1: (a) simulated Gaussian

solution profile; (b) simulated hyperbolic tangent solution profile; (c) rate of convergence for problem

(a); (d) rate of convergence for problem (b).
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a1 ¼ a3 ¼ a7 ¼ a9 ¼ 0 ð30Þ

a2 ¼ a8 ¼
1

9

pð3p� 10Þ
ð3p� 8Þ ð31Þ

a4 ¼ �1 ð32Þ

a6 ¼
1

3
ð33Þ

a5 ¼
1

6

3p2 � 19pþ 24

ð3p� 8Þ ð34Þ

a10 ¼ a11 ¼ � 1

36

pð3p� 10Þ
ð3p� 8Þ ð35Þ

a12 ¼
1

6
ð36Þ

The resulting modified equation for /x is shown to have spatial accuracy order of
three:

/x ’ h3

12
/xxxx þ

h3

36

pð3p� 10Þ
ð3pþ 8Þ /yyyy �

h4

30
/xxxxx þ

h5

72
/xxxxxx þ � � � þHOT ð37Þ

where HOT stands for higher-order terms.
Similarly, for the case of b > 0, the 13-point stencil approximation equation for

/y that accommodates the dispersion feature can be derived under the conditions

Figure 6. Schematic of the convection-diffusion problem considered in Section 7.2.
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that b4 ¼ b6 ¼ a2, b2 ¼ a4; b8 ¼ a6; b10 ¼ a12; b12 ¼ b13 ¼ a10, and bj ¼ aj ðj ¼
1; 3; 5; 7; 9Þ. The modified equation for /y is derived as

/y ’
h3

12
/yyyy þ

h3

36

pð3p� 10Þ
ð3pþ 8Þ /xxxx �

h4

30
/yyyyy þ

h5

72
/yyyyyy þ � � � þHOT

Figure 7. Simulated solution for / and their distributions at x ¼ 1

5
;
2

5
;
3

5
;
4

5
: ðaÞ�ðbÞ k ¼ 10�2; ðcÞ�ðdÞ

k ¼ 10�3.
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Another choice that can be employed to determine the weighted coefficients
a1�a12 is to eliminate the term /yyyy instead of enforcing /xxyy ¼ 0 for /x. In the case
of a > 0, we can derive the following coefficients:

a1 ¼ a3 ¼ a7 ¼ a9 ¼
1

18

pð3p� 10Þ
ðp2 � 6pþ 8Þ ð38Þ

a2 ¼ a8 ¼ � 1

9

pð3p� 10Þ
ðp2 � 6pþ 8Þ ð39Þ

a4 ¼ � 4

9

ð3p2 � 16pþ 18Þ
ðp2 � 6pþ 8Þ ð40Þ

a6 ¼ � 8

9

ðp� 3Þ
ðp2 � 6pþ 8Þ ð41Þ

a5 ¼
1

18

21p2 � 94pþ 72

ðp2 � 6pþ 8Þ ð42Þ

a10 ¼ a11 ¼ 0 ð43Þ

a12 ¼
1

6
ð44Þ

The corresponding modified equation for /x can be also shown to have spatial accu-
racy order of three:

/x ’ h3

12
/xxxx þ

h3

18

pð3p� 10Þ
ðp2 � 6pþ 8Þ/xxyy �

h4

30
/xxxxx þ

h5

72
/xxxxxx þ � � � þHOT ð45Þ

Figure 8. Schematic of the Smith-Hutton problem considered in Section 7.3.

DISPERSION RELATION-PRESERVING UPWIND SCHEME 555



It is found that the coefficient of the scheme’s leading error term is larger than that
with the weighted coefficients given in (30)–(36). In what follows, we will consider
the DRP scheme for /x by Eqs. (10) and (30)–(36).

6. DISPERSION AND VON NEUMANN STABILITY ANALYSES

6.1. Dispersive Analysis

Fundamental study of the two-dimensional linear scalar CDR equation will be
conducted within the implicit Euler time-stepping framework:

Figure 9. Simulated / at different diffusivities k for the problem considered in Section 7.3 using the DRP

scheme with coefficients given in Eqs. (30)–(36): (a)–(b) k ¼ 10�12; (c)–(d) k ¼ 10�14.
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/nþ1 � /n

Dt
þ a/x þ b/y � kr2/þ c/ ¼ 0 ð46Þ

Given /ðx; y; t ¼ 0Þ ¼ exp½iðaxþ byÞ�, the exact solution for Eq. (46) can be easily
derived in terms of ða; bÞ:

/ðx; y; tÞ ¼ expf�½kða2 þ b2Þ þ c�tg expfi½aðx� atÞ þ bðy� btÞ�g ð47Þ

The 13-point stencil discrete equation at an interior point ði; jÞ is assumed to take the
following form:

A1/
nþ1
i�1;j�1 þ A2/

nþ1
i;j�1 þ A3/

nþ1
iþ1;j�1 þ A4/

nþ1
i�1;j þ A5/

nþ1
i;j

þ A6/
nþ1
iþ1;j þ A7/

nþ1
i�1;jþ1 þ A8/

nþ1
i;jþ1 þ A9/

nþ1
iþ1;jþ1

þ A10/
nþ1
i;j�2 þ A11/

nþ1
i;jþ2 þ A12/

nþ1
i�2;j þ A13/

nþ1
iþ2;j ¼ /n

i;j ð48Þ

The exact solution for Eq. (46) is given below to account for the inevitable amplitude
and phase errors:

Figure 10. Schematic of the eddy centers in the lid-driven cavity.
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e//ðx; y; tÞ ¼ exp �
��

ka2 þ c

2

�
kr

c21
þ
�
kb2 þ c

2

�
kr

c22

�
t


 �

� exp i

�
a

�
x� a

ki
c1

t

�
þ b

�
y� b

ki
c2

t

��
 �
ð49Þ

or

e//ðx; y; tÞ ¼ A expð�ppþ i�qqÞ exp½ikmðxþ yÞ� ð50Þ

Figure 11. Comparison of the simulated and Ghia’s velocity profiles uðx; 0:5Þ and vð0:5; yÞ at Re ¼ 5;000:

(a) solutions obtained at different mesh sizes; (b) solutions obtained by DRP scheme for coefficients given

in Eqs. (30)–(36) and DRP scheme for coefficients given in Eqs. (38)–(44); (c) simulated contours of stream

function for the lid-driven cavity problem investigated at Re ¼ 5;000.
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With ðc1; c2Þ ¼ ðah; bhÞ defined in Section 5, where nx ¼ aDt=h; ny ¼ bDt=h;
Pex ¼ ah=k; Pey ¼ bh=k; Rx ¼ ch=a, and Ry ¼ ch=b, the following equation can
be easily desired:

�

��

ka2 þ c

2

�
kr

c21
þ
�
kb2 þ c

2

�
kr

c22

�
þ i

�
aa

ki
c1

þ bb
ki
c2

��
Dt

¼ �

��

ka2 þ c

2

�
kr

ðahÞ2
þ
�
kb2 þ c

2

�
kr

ðbhÞ2
�

þ i

�
aa

ki
ah

þ bb
ki
bh

��
Dt ð51Þ

Dispersion analysis of the discrete equation for (46) involves substituting /i;j ,
/i�1;j , /i;j�1, /i�2;j, /i;j�2, and /i�1;j�1, which are obtained from Eq. (49), into
Eq. (46). After some algebra, kr and ki for the respective amplitude and phase errors
are derived as

Table 1. Comparison of the simulated eddy centers (primary eddy P, corner eddies BL and BR, and eddy

T near the cavity roof) with those reported in [23] for the cases with Re ¼ 400, 1,000, 3,200, and 5,000

Symbol Authors

Re

400 1,000 3,200 5,000

Primary Present 0.5599, 0.6062 0.5332, 0.5658 0.5180, 0.5453 0.5138, 0.5356

Ghia 0.5547, 0.6055 0.5313, 0.5625 0.5165, 0.5469 0.5117, 0.5352

T Present — — 0.0532, 0.8965 0.0643, 0.9149

Ghia — — 0.0547, 0.8984 0.0625, 0.9141

BL Present 0.0495, 0.0468 0.0846, 0.0787 0.0838, 0.1102 0.0730, 0.1337

Ghia 0.0508, 0.0469 0.0859, 0.0781 0.0859, 0.1094 0.0703, 0.1367

BR Present 0.8859, 0.1235 0.8640, 0.1098 0.8203, 0.0876 0.8000, 0.0760

Ghia 0.8906, 0.1250 0.8594, 0.1094 0.8125, 0.0859 0.8086, 0.0742

Mesh points Present 101 129 129 129

Ghia 257 129 129 257

Figure 12. Schematic of the backward-facing-step flow problem.
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kr ¼
�p

ðnx=PexÞ þ ðnx=PexÞ þ
1

2
ðnxRxþ1Þ

c2
1

h i
þ ðnyRyþ1Þ

c2
2

h in o ð52Þ

ki ¼
�q

nx þ ny
ð53Þ

The derivation is followed by substituting the exact expressions for /i;j , /i�1;j, /i;j�1,
/i�2;j, /i;j�2, /i�1;j�1 into Eq. (48) to yield:

Table 2. Simulated reattachment and separation points x1;x2; x3, schematic in Figure 12, for the bench-

mark backward-facing-step flow problem (Note that DRP and DRP� correspond to the schemes with

weighting coefficients Eqs. (30)–(36) and Eqs. (38)–(44), respectively)

x1=h x2=h x3=h

Gartling [25] 6.10 4.85 10.48

Betts and Sayma [24] 5.605 4.40 10.43

Srinivasan and Rubin [24] 6.22 5.09 10.25

Barton [24] 6.015 4.82 10.48

Present work, DRP (Eq. (30–36)) 5.97 4.88 10.21

Present work, DRP� (Eq. (38–44)) 5.93 4.83 10.19

Figure 13. Simulation results for the backward-facing-step flow problem investigated at Re ¼ 800:

(a) u contours; (b) v contours; (c) p contours.
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e�pp
�
A1e

ið�qq�xÞ þ A2e
ið�qq�c2Þ þ A3e

ið�qqþyÞ þ A4e
ið�qq�c1Þ þ A5e

iq

þ A6e
ið�qqþc1Þ þ A7e

ið�qq�yÞ þ A8e
ið�qqþc2Þ þ A9e

ið�qqþxÞ þ A10e
ið�qq�2c2Þ

þ A11e
ið�qqþ2c2Þ þ A12e

ið�qq�2c1Þ þ A13e
ið�qqþ2c1Þ

�
¼ 1 ð54Þ

where x ¼ c1 þ c2 and y ¼ c1 � c2. In the above, q and p can be derived respectively
from the imaginary and real parts as follows:

�qq ¼ tan�1 n

m
ð55Þ

Figure 14. Simulated velocity profiles for the backward-facing-step flow problem investigated at

Re ¼ 800: (a) u profile; (b) comparison between the two DRP schemes for coefficients given in Eqs.

(30)–(36), Eqs. (38)–(44), and Gartling solutions.
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p ¼ ln
1

m cos qþ n sin q


 �
ð56Þ

where

m ¼ ðA1 þ A9Þ cos xþ ðA2 þ A8Þ cos c2 þ ðA3 þ A7Þ cos yþ ðA4 þ A6Þ cos c1 þ A5

þ ðA10 þ A11Þ cosð2c2Þ þ ðA12 þ A13Þ cosð2c1Þ ð57Þ

n ¼ ðA1 � A9Þ sin xþ ðA2 � A8Þ sin c2 þ ðA3 � A7Þ sin yþ ðA4 � A6Þ sin c1
þ ðA10 � A11Þ sinð2c2Þ þ ðA12 � A13Þ sinð2c1Þ ð58Þ

It is observed from Figure 2, which plots kr and ki against ðnx; nyÞ
and ðPex;PeyÞ [fixed ðRx;RyÞ�, that ki agrees perfectly with ðc1; c2Þ in the small
wave-number range. The larger the wave numbers, the less satisfactory is the pre-
dicted phase. In contrast to ki, the amplitude error is exhibited even in the small
wave-number range. In Figure 3, we plot the ratio of numerical group velocity
Cg � 1=2½ðdx=dc1Þ þ ðdx=dc2Þ�f g with respect to the analytical wave velocity,
where x ½� aaðki=c1Þ þ bbðki=c2Þ� is obtained from the dispersion equation.

6.2. Fourier or von Neumann Stability Analysis

We also conduct Fourier (or von Neumann) stability analysis [19]. Let
vx ¼ vy ¼ ð2pm=2LÞh ðm ¼ 0; 1; 2; 3; . . . ; MÞ, h be the grid size, and 2L be
the period of fundamental frequency ðm ¼ 1Þ. Then the amplification factor

Figure 15. Schematic of the natural-convection problem.
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G ð� /nþ1
i;j =/n

i;jÞ can be derived as

G ¼ epðcos qþ i sin qÞ ð59Þ

As seen in Figure 4a, the magnitude of jGj is always smaller than one. The proposed
scheme is, thus, unconditionally stable. The amplification factor shown in (59) can
be rewritten in exponential form as G ¼ jGjeih, where h is the phase angle:

h ¼ tan�1 ImðGÞ
ReðGÞ

���� ���� ð60Þ

Figure 16. Simulated results for the natural-convection problem investigated at Ra ¼ 106: (a) temperature

contours; (b) stream function contours.

Figure 17. Simulated results for the natural-convection problem considered at Ra ¼ 106: (a) vorticity con-

tours; (b) pressure contours.
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The exact phase angle he can be derived as �ðvxnx þ vynyÞ. Therefore, we can derive
the following relative phase shift error:

h
he

¼ tan�1 jImðGÞ=ReðGÞj
�ðvxnx þ vynyÞ

ð61Þ

For clearness, h=he is plotted against ðvx; vyÞ; ðnx; nyÞ; ðPex;PeyÞ; and ðRx;RyÞ in
Figure 4b.

Figure 18. Simulated results for the natural-convection problem considered at Ra ¼ 107: (a) temperature

contours; (b) stream function contours.

Figure 19. Simulated results for the natural-convection problem considered at Ra ¼ 107: (a) vorticity

contours; (b) pressure contours.
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7. NUMERICAL STUDIES

7.1. Gaussian and Hyperbolic Tangent Problem

The model equation (9) in ½0; 1� � ½0; 1� is solved at ða; bÞ ¼ ð1; 0Þ, k ¼ 10�10

and c ¼ 0. Two source terms f are specified as follows to render the respective exact
solutions [20]:

/ðx; yÞ ¼ exp �ðx� 0:5Þ2

0:2
� 3ðy� 0:5Þ2

0:2

 !
ð62Þ

/ðx; yÞ ¼ 1

2
1� tanh

x� 0:5

0:05

� �� �
ð63Þ

Simulations were carried out at Dx ¼ Dy ¼ 1=10; 1=20; 1=40; 1=80, and 1=160 to
calculate the finite-difference errors cast in L2-norm form. This is followed by
plotting in Figure 5 the value of logðerr1=err2Þ against logðh1=h2Þ, where err1 and
err2 error norms are obtained at the consecutively refined mesh sizes h1 and h2,
to calculate the scheme’s rate of convergence. Good agreement with the exact solu-
tions and good rate of convergence are both demonstrated in the simulated
solutions.

7.2. Skew Convection-Diffusion Problem [21]

In Figure 6, the cavity of unit length is divided into two by the straight line that
passes through ð0; 0Þ and has a slope of tan�1ðb=aÞ, where a and b are shown in
Eq. (9). We consider here the unit velocity vector ða; bÞ, which is parallel to the divid-
ing line, in 121� 121 and 201� 201 uniformly discretized mesh systems for fluids
with k ¼ 10�2 and k ¼ 10�3, respectively. Subject to the boundary condition for
the working variable, a shear layer is seen in the vicinity of the dividing line. In
Figure 7, no oscillatory solution is found to occur in regions near and away from
the dividing line for k with its value as small as 10�3.

7.3. Convection-Diffusion Problem of Smith and Hutton

The problem of Smith and Hutton [22] is investigated at a ¼ 2yð1� x2Þ and
b ¼ �2xð1� y2Þ. Along the inlet schematic in Figure 8, / is prescribed as follows:

/ð�1 � x � 0; y ¼ 0Þ ¼ 1þ tanh 2xþ 1ð Þ � 10½ � ð64Þ

Along x ¼ �1, y ¼ 1 and x ¼ 1, we prescribe / ¼ 1� tanhð10Þ, while at the outlet
ð0 � x � 1; y ¼ 0Þ, a zero gradient condition is specified for /. For the cases with
k ¼ 10�14 and 10�12, the results investigated at Dx ¼ Dy ¼ 10�2 are shown in
Figure 9 to reveal the efficacy of the proposed DRP method.
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7.4. Lid-Driven Cavity Flow Problem

The lid-driven cavity problem schematic in Figure 10 is investigated in a square
with 101� 101 and 129� 129 meshes. At Re ¼ 5;000, the predicted velocity profiles
uð0:5; yÞ and vðx; 0:5Þ in Figure 11 are compared with the steady-state benchmark
solutions of Ghia [23]. As can be seen from the extremely good agreement between
the simulated and benchmark solutions, the applicability of the proposed scheme to

Table 3. Comparison of the simulated streamfunctions at (0.5, 0.5) with other solutions reported in [26]

Ra 103 104 105 106 107

De Vahl Davis 1.174 5.071 9.111 16.32

Ramaswamy, Jue, and Akin 1.170 5.099 9.217 16.68 29.436

Le Quéré 16.38 29.362

Dennis and Hudson 1.175 5.074 9.113

Kalita, Dalal, and Dass 1.175 5.080 9.123 16.42 29.382

Present work 1.175 5.071 9.113 16.42 29.432

Table 4. Comparison of the simulated Vmax at (0.5, y) with other solutions reported in [26]

Ra 103 104 105 106 107

Chenoweth and Paolucci 3.695 19.62 68.63 220.8 699.0

De Vahl Davis 3.697 19.62 68.63 219.4

Ramaswamy, Jue, and Akin 19.62 68.64 232.97 717.04

Le Quéré 220.56 699.2

Saitoh and Hirosh 19.62 216.76

Ho and Lin 3.697 19.63 68.63 219.86 705.3

Hortmann, Peric, and Scheure 19.63 68.64 220.46

Dennis and Hudson 3.698 19.63 68.64

Kalita, Dalal, and Dass 3.697 19.61 68.61 221.66 696.2

Present work 3.695 19.61 68.55 219.88 695.6

Table 5. Comparison of the simulated Nu with other solutions reported in [26]

Ra 103 104 105 106 107

Chenoweth and Paolucci 1.118 2.244 4.520 8.822 16.82

De Vahl Davis 1.118 2.243 4.519 8.800

Le Quéré 8.825 16.52

Hortmann, Peric, and Scheure 2.245 4.521 8.825

Saitoh and Hirosh 2.242 8.712

Ball and Kuo 1.118 2.248 4.528 8.824 16.52

Ho and Lin 1.118 2.248 4.528 8.824 16.52

Comini, Cortella, and Manzan 4.503 8.825 16.53

Kalita, Dalal, and Dass 1.118 2.245 4.522 8.829 16.52

Present work 1.118 2.242 4.528 8.822 16.80
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high Reynolds number flow simulations is confirmed. For the sake of completeness,
the centers of three eddies at T, BL, and BR, schematic in Figure 10, are summarized
in Table 1 for Re ¼ 400, 1,000, 3,200, and 5,000. Good agreement with the compari-
son data [23] is confirmed.

7.5. Backward-Facing-Step Problem

The backward-facing-step problem schematic in Figure 12 is investigated at
Re ¼ 800 with L chosen as the characteristic length. The step geometry chosen for
the current study has a step height of 1=2, a channel height of 1, and the length is
20. The simulated solution plotted in Figure 13 in the uniform mesh 201� 41 is com-
pared with other results tabulated in Table 2 [24]. In Figure 14, comparison with the
benchmark solution of Gartling [25] is also made at x ¼ 7. With good agreement in
the comparison studies, the proposed method is verified again.

7.6. Natural-Convection Problem

The natural-convection problem schematic in Figure 15 is considered at
Ra ¼ 103; 104; 105; 106; 107, which are calculated with L as the characteristic length,
and Pr ¼ 0:71. Uniform mesh 81� 81 is employed for the case with Ra ¼ 103; 104,
and 129� 129 for the cases with Ra ¼ 105; 106; 107. The simulated solutions plotted
in Figures 16–19 compare well with other simulated solutions given in [26] and are tabu-
lated in Tables 3, 4, and 5.

8. CONCLUDING REMARKS

The two-dimensional dispersion-relation-preserving convection scheme is
presented to solve the unsteady convection-diffusion transport equation. Both
dispersive and dissipative natures of the developed DRP model have been explored.
To validate the proposed scheme, we have considered problems amenable to exact
solutions. The computed L2-error norms and their resulting rates of convergence
demonstrate the advantage of employing the proposed scheme to solve for problems
having smooth as well as sharply varying solution profiles. A high Reynolds number
lid-driven cavity flow problem, a backward-facing-step flow problem, and a natural-
convection problem in a square are also studied. All the simulated solutions are
shown to have good agreement with the benchmark solutions.
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