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ABSTRACT
In this article, a two-phase flow algorithm that uses an explicit
Adams–Bashforth scheme coupled with volume of fluid (VOF) method in a
uniform staggered Cartesian grid for surface tension dominant simulation
is presented. The interface reconstruction procedure is implemented using
the Weighed Linear Interface Calculation (WLIC) algorithm. The level set
(LS) function instead of VOF function is adopted for calculation of not only
the interface normal vectors in the WLIC algorithm but also the surface
tension terms in the Navier–Stokes equations. This VOF method is com-
pared with LS method and other experiment results in the literature for
vortex deforming, milk crown, droplet impacting into deep liquid pool and
bubble bursting at a free surface problems to show whether mass can be
well conserved and breaking and merging phenomena can be accur-
ately simulated.
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1. Introduction

Two-phase flow problems taking into account surface tension force have wide applications in
both scientific and industrial fields, and are closely related to physical phenomena such as particle
motion in droplet evaporation [1], bubble condensation in subcooled liquid [2], leaky dielectric
droplet [3], droplet impacting onto spheres [4], and droplet splashing on substrate [5, 6].
Numerical simulation of incompressible two-phase flow remains a challenge due to the difficulties
in the calculation of interface breaking or merging and surface tension force near the interface.
In addition, improper numerical methods can cause significant mass loss [7].

Interface tracking and capturing methods in fixed grids have been utilized to accurately and
efficiently obtain solutions to resolve the above problems of interfacial flows [8, 9]. In interface
tracking methods, the interface is tracked by using a moving surface mesh, and the interface
deformation is modeled by adopting a computationally expensive re-meshing procedure. Typical
examples of this kind of method include that of Unverdi and Tryggvason [10], and extensive
studies by Han and Tryggvason [11]. Interface capturing methods have an excellent advantage of
capturing strong topological changes with relative ease such as break up and merger of bubbles
or droplets [12]. Frequently used interface capturing methods include volume of fluid (VOF)
[13–18] and level set (LS) [19–24], both of which use a scalar indicator function to distinguish
two phases in the whole computational domain.
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The LS method was proposed by Sussman et al. [25], which can effectively simulate incom-
pressible two-phase flows when surface tension force needs to be considered. This method
adopts a continuous function /; defined as the signed distance to the interface and termed as
the LS function, to distinguish the two phases separated by the interface. / is positive in the
liquid, zero on the interface, and negative in the gas. Advection and re-initialization proce-
dures are commonly employed [26–28] in the LS method. The resolved velocity field is used
to solve the advection equation to obtain the evolution of the interface. A re-initialization
procedure is then performed to ensure the advected LS function remains a signed distance
function. The advantage of the LS method lies in the smoothness of the LS function which
makes it easy to calculate the interface curvature [29–31]. However, LS methods may result in
significant mass loss because the zero LS may deviate from the real position during the simu-
lation when solving the advection and re-initialization equations. A high-resolution scheme
known as weighted essentially non-oscillatory (WENO) reduces mass loss by solving the
advection equation in a Cartesian mesh, and is used to simulate a surface tension dominant
droplet impacting on a plate [32].

Different from the LS method which uses a continuous distance function, the VOF method
utilizes a discontinuous volume fraction function which refers to the volume fraction occupied by
the liquid within each cell, with a value between 0 and 1. The VOF function is discontinuous
across the interface, which makes it quite difficult to calculate interface curvature. There have
emerged two kinds of VOF methods for advection of the volume fraction over the past several
decades. One is the algebraic VOF method, where the VOF field is transported by a convective
term using discretization methods. However, if a high-resolution advection scheme is used to
approximate the convective term in the VOF transport equation, interface smearing which
reduces accuracy on the interface can be evident [33]. Xiao et al. have further developed an alge-
braic VOF method to resolve smearing problems by using a hyperbolic tangent function to com-
pute the numerical flux. This method, known as THINC (tangent of hyperbola for interface
capturing), suppresses oscillations without the need of an extra geometric reconstruction. This
method is particularly amenable to numerical simulation due to the relative ease of operating
parameters in hyperbolic tangent function [33]. Another VOF method which defines and recon-
structs the interface location within a cell using the volume fraction a and interface normal ra
can be used to overcome this problem. There have been numerous studies on interface recon-
struction. For example, simple line interface calculation (SLIC) proposed by Noh and Woodward
[34], piecewise linear interface calculation (PLIC) proposed by Youngs [35, 36], and weighted line
interface calculation (WLIC) which adjusts the SLIC method with a weight related to the geom-
etry at the interface [37].

By combining the mass conservation of VOF and the continuous function description of LS,
the coupled level set and volume of fluid (CLSVOF) method has been utilized on study of surface
tension dominant two-phase flows [38–43]. In these two-way coupling methods (CLSVOF), ini-
tialization and correction are carried out on the whole field, LS function and VOF function.
However, they are considerably complicated and computationally expensive compared to VOF

NOMENCLATURE

u velocity field
dð/Þ Dirac delta function
Hð/Þ smoothed Heaviside function
g gravitational acceleration
jð/Þ curvature of the interface
q density
C volume of fluid function

�Sð/0Þ smoothed sign function
Dx grid cell size
X characteristic function
p pressure
M viscosity
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and LS methods [44]. Sun and Tao [45] developed a coupled VOF and LS method for simulating
incompressible two-phase flows. In their method, only the advection equation of the volume frac-
tion a needs to be solved, while the LS function is directly calculated from a simple iterative geo-
metric operation, making this method even simpler than the CLSVOF method [46, 47].

In our method, a transport equation is solved only for VOF by using the THINC/WLIC
scheme, and the need for solving the transport equation for the LS method is obviated. Instead, a
LS is constructed from the interface (defined as the VOF ¼ 0.5 isosurface). This allows more
accurate calculations of the surface curvature using the LS. In Section 2, the governing equations
for the two fluids and the VOF method are presented. Section 3 describes the proposed solution
algorithm. In Section 4, vortex deforming, milk crown, droplet impacting into deep liquid pool,
and bubble bursting at a free surface problems are investigated to confirm the integrity of the
proposed two-phase flow model. Conclusions are drawn in Section 5.

2. Numerical model

2.1. Governing equations

We consider the following continuity, momentum, and VOF equations for two immiscible and incom-
pressible flows

r � u ¼ 0; (1)

q
@u
@t

þr � uu
� �

¼ �rpþr � l ruþruTð Þ� �
þ FB; (2)

@C
@t

þr � uCð Þ�Cr � u ¼ 0; (3)

where u is the velocity vector, p is the pressure, and C is the VOF function. The body force term
FB on the right-hand side of Eq. (2) contains the gravitational force qg and surface tension force
f sf terms. The surface tension force term can be calculated based on the standard continuum sur-
face force (CSF) model [48]

f sf ¼ rj /ð Þd /ð Þr/; (4)

where / is the LS function and j is the free surface curvature calculated by

jð/Þ ¼ �r �
� r/
jr/j

�
¼ �ð/2

x/yy � 2/x/y/xy þ /2
y/xx þ /2

x/zz � 2/x/z/xz þ /2
z/xx

þ /2
y/zz � 2/y/z/yz þ /2

z/yyÞ=ð/2
x þ /2

y þ /2
zÞ

3
2:

(5)

However, the implementation of the standard CSF model cannot reduce spurious currents for
surface tension dominant two-phase flows such as droplet splashing and bubble rising problems
[49]. Instead, the density-scaled CSF model proposed by Yokoi [49] which avoids spurious cur-
rents will be adopted in this study, where the following surface tension force term is specified:

f sf ¼ rj /ð Þdscaling /ð Þr/; (6)

where r is the surface tension coefficient of liquid in gas, and

dscaling /ð Þ ¼ 2H /ð Þd /ð Þ: (7)

In Eq. (7), Hð/Þ is a continuous function named smeared Heaviside function, whose value is
zero for negative argument and one for positive argument
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H /ð Þ ¼
0 ; if /< � e;

1
2

1þ /
e
þ 1
p
sin

p/
e

� �� �
; if j/j � e;

1 ; if /> e;

8>>><
>>>:

(8)

with e ¼ 1:5Dx and Dx being the mesh cell. It is noted that the delta function dð/Þ in Eq. (7) can
be obtained from the following equation

d /ð Þ ¼ dH /ð Þ
d/

¼
1
2e

1þ cos
p/
e

� �� �
; if j/j< e;

0 ; otherwise:

8<
: (9)

In Eq. (2), the two material properties, namely, density q and dynamic viscosity l, are given
as follows:

q ¼ qG þ qL� qGð Þ C; (10)

l ¼ lG þ lL� lGð Þ C; (11)

where qG and qL are the density in gas and liquid, respectively. C in Eqs. (10) and (11) is the vol-
ume fraction defined as

Ci;j ¼ 1
DxDy

ðDx
0

ðDy
0

v x; yð Þdxdy (12)

with

v x; yð Þ ¼
1; for x; yð Þ 2 the liquid;

� 1; for x; yð Þ 2 the gas:

(
(13)

Because of the diffuse yet bounded solution derived from low-order convective schemes and
conservative high-resolution schemes, smearing may occur in interfacial cells after advection
of the VOF field, as shown in Eqs. (14) and (15). This means that numerical oscillations can
be effectively prevented by using a conservative high-resolution scheme with a well-designed
flux limiter or slope limiter. However, the initial jump in the density function will be smeared
by this kind of scheme, thanks to its inherent numerical diffusions. Higher order schemes can
also be used, but when they are applied in scalar fields with sharp interfaces, the results may
become unstable and unbounded in the vicinity of the interface. In this study, we use the
THINC/WLIC scheme described in Section 2.3 to simulate the time-evolving volume frac-
tion field.

2.2. VOF advection

The VOF advection equation in this numerical model is discretized by utilizing the dimensional
splitting algorithm

C�
i;j ¼ Cn

i;j �
Fnx;iþ1=2;j � Fnx;i� 1=2;j

�x
�Cn

i;j

ux;iþ1=2;j � ux;i� 1=2;j

�x
�t; (14)

Cnþ1
i;j ¼ C�

i;j �
F�y;i;jþ1=2 � F�y;i;j� 1=2

�y
�Cn

i;j

uy;i;jþ1=2 � uy;i;j� 1=2

�y
�t; (15)

in which the terms Fx;iþ1=2;j and Fy;i;jþ1=2 denote the flux given below

Fx;iþ1=2;j ¼ �
ðyi;jþ1=2

yi;j� 1=2

ðxiþ1=2;j � ux;iþ1=2;jDt

xiþ1=2;j

vis;j x; yð Þdxdy; (16)
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Fy;i;jþ1=2 ¼ �
ðyi;jþ1=2 � uy;i;jþ1=2Dt

yi;jþ1=2

ðxiþ1=2;j

xi� 1=2;j

vi;js x; yð Þdxdy: (17)

The subscript is and js in Eqs. (16) and (17) are

is ¼ i; if ux;iþ1=2;j � 0;
iþ 1; if ux;iþ1=2;j < 0;

�
(18)

and

js ¼ j; if uy;i;jþ1=2 � 0;
jþ 1; if uy;i;jþ1=2 < 0:

�
(19)

2.3. THINC/WLIC method

In order to improve the transport of fluid interfaces involving geometric interface reconstruction,
the WLIC method proposed by Yokoi [37] is used. We present below the employed characteristic
function v shown in Eq. (20), which consists of the vertical interface vx;i;jðx; yÞ and horizontal
interface vy;i;jðx; yÞ

vi;j x; yð Þ ¼ xx;i;j ni;jð Þvx;i;j x; yð Þ þ xy;i;j ni;jð Þvy;i;j x; yð Þ; (20)

with weights xx;i;j and xy;i;j: The weighs are defined as

xx;i;j ¼
jnx;i;jj

jnx;i;jj þ jny;i;jj ; (21)

xy;i;j ¼
jny;i;jj

jnx;i;jj þ jny;i;jj ; (22)

where nx;i;j and ny;i;j are x component and y component of the surface normal. The surface nor-
mals can be obtained from the VOF function [37]. However, this may lead to inaccurate solutions
near the interface where the VOF function’s spatial derivatives are discontinuous.

To improve the calculation of surface normals, the representative LS function (or continuous
signed distance function) instead of VOF function in the above surface normal term, which is given by
ni;j ¼ ðr/Þi;j

jðr/Þi;jj ; will be approximated by the second-order central difference scheme. For example,

r/ð Þi;j ¼
/iþ1;j �/i� 1;j

2Dx
x̂ þ /i;jþ1 �/i;j� 1

2Dy
ŷ: (23)

To compute the characteristic functions of the vertical interface in Eq. (20), the THINC
scheme is employed. The characteristic function can be represented by the piecewise hyperbolic
tangent function, which is given below:

vx;i ¼
1
2

1þ atanh b
x� xi� 1

2

Dxi
� ~xi

� �� �� �
: (24)

The parameter a in Eq. (24) is specified as

a ¼ 1 if Ci� 1 <Ciþ1;

� 1 if Ci� 1 >Ciþ1:

(
(25)

Parameter b is chosen to be 3.5 to control the sharpness of the variation of the function. To
determine the jump center of the hyperbolic tangent function, another parameter ~xi is used and
is calculated as follows:
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Ci ¼ 1
Dxi

ðxiþ1=2

xi� 1=2

vx;~xi xð Þdx

¼ 1
Dx

ðxiþ1=2

xi� 1=2

1
2

1þ atanh b
x� xi� 1=2

Dx
� ~xi

� �� �� �
dx

(26)

with

~xi ¼ 1
2b

ln
a23 � a1a3
a1a3 � 1

� �
; (27)

where a1 ¼ exp ðba ð2Ci � 1ÞÞ and a3 � exp ðbÞ: Following this, we integrate THINC and WLIC
schemes to one scheme, THINC/WLIC, by substituting vi;jðx; yÞ derived in Eq. (20) into Eq. (16)
to calculate the numerical flux Fx;iþ1=2;j

Fx;iþ1=2;j ¼ �
ðyi;jþ1=2

yi;j� 1=2

ðxiþ1=2;j � uiþ1=2;jDt

xiþ1=2;j

vis;j x; yð Þdxdy

¼ �
ðyi;jþ1=2

yi;j� 1=2

ðxiþ1=2;j � uiþ1=2;jDt

xiþ1=2;j

xx;is;jvx;is;jdxdy

�
ðyi;jþ1=2

yi;j� 1=2

ðxiþ1=2;j � uiþ1=2;jDt

xiþ1=2;j

xy;is;jvy;is;jdxdy;

(28)

� Fx;x;iþ1=2;j xx;is;j; vx;is;jð Þ þ Fx;y;iþ1=2;j xy;is;j; vy;is;jð Þ: (29)

The numerical flux Fx;iþ1=2;j in Eq. (28) contains two terms, Fx;x;iþ1=2;j and Fx;y;iþ1=2;j; which
can be calculated using the THINC scheme in order to have less oscillation and smearing in the
fluid fraction function solution.

Fx;x;iþ1=2;j ¼ Fx;x;iþ1=2 ¼ �
ðxiþ1=2 � uiþ1=2Dt

xiþ1=2

xx;isvx;isdx

¼ �
ðxiþ1=2 � uiþ1=2Dt

xiþ1=2

xx;is

2
1þ atanh b

x� xis� 1=2

Dx
� ~xis

� �� �� �
dx

¼ � xx;is

2
xþ aDx

b
ln cosh b

x� xis� 1=2

Dx

� �
� ~xis

� �� �� �xiþ1=2 � uiþ1=2Dt

xiþ1=2

(30)

and

Fx;y;iþ1=2;j ¼ xy;is;jCis;jux;iþ1=2;jDt: (31)

2.4. Coupled VOF function with signed distance function

The present VOF method introduces a new LS field /; and the interface is also defined by the zero
LS / ¼ 0: In standard CLSVOF methods, both LS and VOF advection equations need to be solved
[38]; in the present VOF method, however, only the VOF advection equation (Eq. (12)) is solved.

After the volume fraction is advected (i.e. Eq. (3)), we convert the volume fraction into updated dis-
tance function /nþ1 at interfacial cells (0<C< 1). Two steps are required for the convert-
ing procedure:

STEP 1
Assume that the interface is defined at the contour C¼ 0.5, and use the advected VOF fraction

function to assign an initial value to the LS function:
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/0 ¼ 2C� 1: (32)

/0 is positive in the liquid and negative in the gas. Then, the interface defined by the C¼ 0.5
contour is converted into the zero LS contour /0 ¼ 0:

STEP 2
Following this, the following re-initialization equation is solved to ensure that the LS value /0

is a distance function, so that the interface normals in Eq. (20) and the surface tension terms in
Eq. (2) can be calculated [50]

/s ¼ �S /0ð Þ 1� jr/jð Þ þ kd /ð Þjr/j; (33)

where s is the artificial time step and �Sð/0Þ is the smoothed sign function:

�S /0ð Þ ¼ 2 H /0ð Þ � 0:5ð Þ: (34)

The parameter k in Eq. (33) is expressed as

k ¼ �
Ð
Xd /ð Þ �S /0ð Þ 1� jr/jð Þ	 


dXÐ
Xd

2 /ð Þjr/jdX : (35)

The above re-initialization equation is discretized by the fifth-order weighted essentially non-
oscillatory (WENO5) scheme in space by Jiang and Peng [51], and is discretized by the third-
order total variation diminishing Runge–Kutta (TVD-RK3) scheme in time by Shu [52].

3. Solution procedure for the proposed VOF method and two-phase flow algorithm

The Navier–Stokes equations are discretized on staggered grids, in which the pressure p is defined
at cell centers and the velocity vector u is located at centers of cell faces. The detailed solution
procedure in this study is summarized as follows:

STEP 1: Set the initial condition for velocity u and volume fraction function (C¼ 1 in the liquid
and C¼ 0 in the gas).
STEP 2: Calculate the LS function by /0 ¼ 2C� 1; and initialize the LS function by solving Eq.
(33) in order to obtain the signed distance function for /:
STEP 3: Calculate the curvature in Eq. (5) by using the signed distance function /:
STEP 4: Advect the VOF function by using the modified THINC/WLIC scheme introduced in
Section 2.3.
STEP 5: Approximate the diffusive terms in the momentum equation by using the second-order
accurate central difference scheme. Approximate the convective terms by using the following
second-order upwinding scheme:

u
@u
@x

¼ 1
2Dx

uþ 3ui;j;k � 4ui� 1;j;k þ ui� 2;j;kð Þ þ u� � uiþ2;j;k þ 4uiþ1;j;k � 3ui;j;kð Þ
	 


; (36)

where uþ ¼ 1
2 ðui;j þ jui;jjÞ and u� ¼ 1

2 ðui;j � jui;jjÞ:
STEP 6: Calculate unþ1=2 by the second-order explicit Adams–Bashforth scheme

unþ1=2 � un

Dt
þ 3

2
An � 1

2
An� 1

� �
¼ 0; (37)

where An ¼ un � run� 1
qn r � ½lnðrun þ ðrunÞTÞ� � FB

q :
STEP 7: Define physical properties qðCÞ and lðCÞ according to the VOF function Cnþ1:
STEP 8: Solve the Poisson equation r � ð 1

qnþ1 rpnþ1Þ ¼ 1
Dtr � unþ1=2 by the point-successive over-

relaxation (SOR) method for the pressure field pnþ1:
STEP 9: Solve unþ1 � unþ1=2

Dt ¼ � 1
qnþ1 rpnþ1 for velocity unþ1:

STEP 10: Repeat Steps 2–9 for one time loop.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 7



4. Numerical results

To demonstrate that the proposed VOF and LS [50] advection algorithm has the ability to pre-
serve mass and ensure accuracy, the vortex deforming problem is considered first. Note that the
advection terms for the LS method are discretized by the WENO scheme [51]. Following this,
three bubble/droplet problems which take surface tension force into consideration are investigated
to justify the proposed VOF method and incompressible two-phase flow solver. The loss of mass
under investigation involves VOF function given below

êM ¼ jMt �M0j
M0

	 100%; (38)

where M0 ¼
Ð
XCðt ¼ 0ÞdX and Mt ¼

Ð
XCðtÞdX are the mass at the beginning and at the end of

the computation, respectively.

4.1. Vortex deforming problem

One method to assess the accuracy of interface capturing methods is to apply it to the simulation
of a liquid sphere in a single vortex flow field [30]. The test is particularly challenging to interface
resolving methods when the resulting liquid ligament becomes thin compared with the grid size.

Figure 1. Snapshots of the predicted interfaces of the three-dimensional vortex deforming problem predicted in grids 1283.
From top to bottom, from left to right, t ¼ 0; 0:6; 1:2; 1:8; 2:4; 3:0: (a) Proposed method. (b) Pure level set method.

8 Z. H. GU ET AL.



Figure 2. Predicted mass loss of the three-dimensional vortex deforming problem. (a) Proposed method. (b) Pure level
set method.

Figure 3. Snapshots of the predicted interfaces of the milk crown problem predicted in grids 210	 210	 105:

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 9



The current VOF method is evaluated using this case and the results are compared with those by
LS results.

A sphere (radius r¼ 0.15) is initially located in a unit cube with its center placed at
ð0:35; 0:35; 0:35Þ: The velocity field is given by its components as

u x; y; z; tð Þ ¼ 2 sin pxð Þ2 sin 2pyð Þ sin 2pzð Þ cos pt
T

� �
;

v x; y; z; tð Þ ¼ � sin 2pxð Þ sin pyð Þ2sin 2pzð Þ cos pt
T

� �
;

w x; y; z; tð Þ ¼ � sin 2pxð Þ sin 2pyð Þ sin pzð Þ2 cos pt
T

� �
;

(39)

where t denotes time. T¼ 3.0 is the time required for a full rotation. Figure 1 shows the predicted
interfaces in 1283 grids using the proposed method and a pure LS method at several time instants
during the rotation. It can be seen that the proposed VOF method provides more accurate results
than the LS method. Figure 2 presents the mass error calculated from Eq. (38) for the proposed
VOF method and the LS method. The proposed VOF method conserves mass quite well, while
significant mass loss is found in the LS method.

4.2. Droplet impacting a thin liquid layer (milk crown)

We simulated droplet impacting a thin liquid layer by using the proposed VOF method. A
set of parameters were used: the densities qL ¼ 1; 000 kg=m3; qG ¼ 1:25 kg=m3; the viscosity
coefficients lL ¼ 1:7	 10� 3 Pa s; lG ¼ 1:0	 10� 6 Pa s; the surface tension coefficient r ¼
5	 10� 2 N=m; the gravity 9:8 m=s2; the initial droplet diameter D ¼ 5:33 mm; and the
depth of liquid layer 1mm. We simulated for Weber numbers (We ¼ qLU

2D
r ¼ 426), where

U ¼ 2 m=s is droplet impact speed [53]. Figure 3 shows the numerical results. The tiny drop-
let at the tip of the milk crown, which is called the spike, and the generation of spear-type
splash, which is the secondary splash formed after the milk crown, are realized well as seen

Figure 4. Predicted mass loss of the milk crown problem. (a) Proposed method. (b) Pure level set method.

10 Z. H. GU ET AL.



Figure 5. Snapshots of the predicted interfaces of the droplet impacting a deep liquid pool problem predicted in
grids 175	 175	 245:
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in the simulation. Mass conservation results of the proposed VOF and LS methods are also
compared as shown in Figure 4.

4.3. Droplet impacting into a deep liquid pool

The droplet impacting into a deep liquid pool is experimentally investigated in Ref. [54]. The
impacting velocity is theoretically derived from Newton’s law as follows:

V ¼ VTtanh
g
VT

� �
t þ tanh� 1 V0

VT

� �" #
; (40)

where g is the acceleration of gravity, and t; V0; and VT are the falling time, initial velocity after
pinch-off, and the terminal velocity of a drop obtained from the empirical formula [55]. Figure 5
shows the evolution of impacting craters due to drops falling with velocity V ¼ 0:964 m=s and
diameter d ¼ 5:65 mm: The Weber number We ¼ qV2d

r ¼ 77 and Froude number Fr ¼ V2

gd ¼ 17
are used, where q and r are density and surface tension of the drop, respectively. Figure 6 shows

Figure 6. Experimental snapshots of the problem of droplet impact into deep liquid pool. (a) Proposed method. (b) Pure level
set method.
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Figure 7. Snapshots of the predicted interfaces of the bubble burst at the free surface predicted in grids 90	 90	 180: From
left to right, t ¼ 0:5; 1:0; 1:5; 2:0:

Figure 8. Predicted mass loss of the bubble burst at the free surface problem.
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the experiment results [54]. The LS and VOF solutions agree well with experiment results without
deterioration of accuracy.

4.4. Bubble bursting at a free surface

A three-dimensional spherical bubble rising in water is considered in Ref. [56]. This rising bubble
is initially placed at ðx; y; zÞ ¼ ð0; 0; � 3:2Þ in a box of ½ � 2; 2� 	 ½� 2; 2� 	 ½� 6; 6�: No slip
boundary conditions are imposed on all walls of the box. The computational grid is 90	 90	
180 in this study. The dimensionless Reynolds and Weber numbers are Re ¼ 474;We ¼ 1;
respectively. Froude number is defined as Fr ¼ Uffiffiffiffi

gR
p ¼ 0:64; where R is the bubble radius. Note

that high viscosity and density ratios of water to air as 0.01 and 0.001 are adopted, respectively.
Four snapshots of the numerical solutions are present in Figure 7 at t¼ 0.5, t¼ 1.0, t¼ 1.5, and
t¼ 2.0. In Figure 7a, b, the present simulation by the VOF method is shown together with that
from the LS method. The proposed VOF method shows the pinch-off process of liquid jets and
the generation of liquid droplets that follows. The mass error as defined in Eq. (38) is almost
zero by using the proposed VOF method as Figure 8.

5. Concluding remarks

This article presents a VOF model for simulation of bubble/droplet two-phase flows. The pro-
posed VOF method conserves mass well and can easily estimate interface normals from the LS
function. The LS function is a continuous signed distance function, and is expressed by solving
the re-initialization equation. The milk crown, droplet impacting on a deep liquid pool, and bub-
ble bursting on a free surface problems are investigated. The numerical results agree well with the
experimental results for the droplet impacting on a deep liquid pool problem. In addition, this
model can effectively simulate problems with strong topological changes such as break up and
merging even when surface tension force needs to be considered.
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