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ABSTRACT
This article is aimed to simulate the gas-liquid flow of rising bubbles with
a mass-preserving level set method. To resolve the topological changes of
gas-liquid interface where the classic finite difference scheme may yield
oscillation solutions, the spatial terms in the level set advection equation
will be approximated by an optimized compact reconstruction weighted
essentially non-oscillatory (OCRWENO) scheme. This scheme achieves high-
order accuracy in smooth regions, and meanwhile avoid numerical oscilla-
tion near discontinuities. Two benchmark problems including vortex flow
and deforming field are chosen to compare the present simulation with
previous numerical researches. Several rising bubble problems are vali-
dated by the proposed level set method.
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1. Introduction

Many existing free surface flows in areas of bubble dynamics, water conservancy, coastal and off-
shore engineering involve the phenomenon of breaking surface wave. In such complex flows,
there exists considerable numerical challenges in simulating motions with large density differences
of components at the interface [1]. Level set (LS) methods compared to the Lagrangian-based
methods are usually more robust and suitable for modeling the time-evolving free surface with a
dramatically varying topology [2,3]. In addition, strong topological changes such as break up and
merging of bubbles of incompressible two-phase flows are efficiently simulated even when surface
tension needs to be considered [3].

In level set methods [4–7], the interface which separates gas and liquid is defined implicitly as
the zero level-set of a continuous signed distance function, which is positive in gas and negative
otherwise [8]. Continuity of the continuous level set function has brought about many advantages
to level set methods. For example, no reconstruction of the interface is needed, and the interface
curvature can be straightforwardly calculated [8]. Son and Dhir simulated film boiling on an
immersed solid surface with LS method to solve modified level set formulation. The accurate
evaluation of the liquid-vapor interface has been predicted in their scheme [9]. Hwang and Son
further applied LS method to particle motion in droplet evaporation through direct numerical
simulation (DNS) detailed in [10]. In [11], LS method serves as an important numerical approach
to simulating two-dimensional binary droplet collision. A relatively high Weber number is used
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to understand the mechanism of droplets in which formation of satellite droplets are also investi-
gated. Level set method without resolving the reinitialization process based on the new stabilized
finite element approach was proposed in [12] and the corresponding Zalesak’s disk and dam-
break flow problems were solved. The idea of LS method has been extended to the conservative
level set method in premixed turbulent flame simulations [13].

The drawback of the level set approach is due, however, to the introduction of significant
numerical dissipation errors in preserving mass conservation. In other words, the discretization
of the level set equation results in unnecessary numerical dissipation and then manifests itself as
a loss of mass in convex and concave solution regions [14]. The fifth-order weighted essentially
non-oscillatory (WENO) scheme for the discretization of level set method is applied to multi-
phase incompressible flows [15]. The WENO scheme in [16] was extended mainly for the pur-
pose of simulating compressible multiphase flows. On the basis of WENO scheme Kuriokaa and
Dowling [17] proposed high-order (7th to 11th) WENO scheme to preserve mass conservation
for gas-liquid free surface flows. WENO and its related weighted compact schemes have been the
subject of intensive studies for understanding its truncation error, dissipation and dispersion error
[18]. Use of WENO scheme for advection equation of level set method was recommended in
[19]. The WENO scheme for solving certain types of turbulence or two-phase problems shows
that the mass loss is still high due to the dissipation errors [15,20]. Volume-reinitialization
scheme which uses volume correction by solving an appropriate equation for level set function
after every time step to level set method has been proposed by Salih and Moulic [15].

In comparison with LS method for capturing interface, the coupled level set and volume of
fluid (CLSVOF) method proves to be very efficient in numerically modeling interface deformation
of bubbles or droplets [21]. In CLSVOF method, the interface is approximated using piecewise
linear reconstruction and the normal and curvature of the interface is evaluated from the con-
tinuous LS function. Fluid volume fluxes can be therefore calculated from reconstructed interface.
The need for reconstructed interface is particularly necessary to reinitialize the LS function for
mass conservation. Further improvement in CLSVOF method was studied and applied in
[2,3,22–25]. Another hybrid technique for improving mass conservation and calculating curvature
is coupled VOF and level set (VOSET) method [26–29]. An iterative geometric approach has
been proposed to calculate the level set function with an aim at getting accurate geometric prop-
erties. In addition, this methods developed on the basis of VOF approach is adopted to con-
serve mass.

In contrast to the LS methods developed normally under the re-initialization procedure, con-
servation level set method makes use of a smoothed Heaviside function instead of signed distance
function to predict interface in the compression-diffusion equation [30–32]. In [33–36], the inter-
face which is predicted in Eulerian transport is corrected by introducing Lagrangian markers.
This method, called hybrid particle level set (HPLS) method, can refine the original LS method to
obtain better mass conservation. The LS method characterized by relating various improvement

Nomenclature

u velocity field
dð/Þ Dirac delta function
�Hð/Þ smoothed Heaviside function
g gravitational acceleration
jð/Þ curvature of the interface
qð/Þ density
a

0
numerical wavenumber

EðaÞ error function
ak weights
/ level set function

�Sð/0Þ smoothed sign function
Dx grid cell size
fsf surface tension force
p pressure
lð/Þ viscosity
a exact wavenumber
b smoothness indicators
xk optimized weights
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techniques has been successfully applied to track the gas/liquid interface including adaptive level
set approach [37], structured adaptive mesh refinement [38], refined level set grid (RLSG) method
[39], and geometric mass-preserving redistancing scheme [40]. Note that the above three LS
methods were developed mainly for the purpose of preserving mass conservation and reducing
computational costs.

This article is organized as follows. Section 2 describes governing equations for the incom-
pressible two-phase flow. In Section 3, optimized compact reconstruction weighted essentially
non-oscillatory scheme is developed, which accommodates better dispersion relation and avoids
numerical oscillation to solve level set evolution equation. Section 4 presents validation of the
employed analysis code in vortex flow and deforming field problems. In Section 5, single bubble
rising, two-bubble merger and bubble bursting at a free surface with surface tension taken into
consideration are investigated to illustrate the scheme’s mass conservation property. Concluding
remarks are given in Section 6 based on the simulated results.

2. Mathematical model

2.1. Mass-preserving level set redistancing algorithm

2.1.1. Initialization step
The level set function of /0 which changes from negative (for the gas) to positive (for the liquid)
across the interface (zero level set) is reinitialized to a signed distance function / by solving the
following re-initialization equation

/s þ �S /0ð Þ jr/j�1ð Þ ¼ 0; (1)

where s is the pseudo-time and �Sð/0Þ denotes the smoothed sign function

�S /0ð Þ ¼ 2 �H /0ð Þ � 0:5
� �

; (2)

with the smoothed Heaviside function over a finite thickness e

�H /ð Þ ¼
0; if /<�e
1
2

1þ /
e
þ 1
p
sin

p/
e

� �� �
; if j/j � e

1; if />e:

8>><
>>: (3)

In Eq. (3), e usually relates to the grid cell size Dx and is chosen to be e ¼ 1:5Dx. A steady-
state solution for Eq. (1) can be obtained at time T ¼ LD, which is the largest length of the com-
putational domain when solving Eq. (1). It is noted that an initialization step is performed only
once at the initial time, while the following advection and re-initialization steps introduced in
Sections 2.1.2 and 2.1.3 respectively are performed at each time step [5].

2.1.2. Advection step
Subject to an initial condition computed form Eq. (1), the following level set evolution equation
is considered for the advection of / in a fluid with the velocity field u [41,42]:

/t þ u � r/ ¼ 0: (4)

To solve first derivative terms, one can use a high-resolution scheme such as essentially non-
oscillatory (ENO) [43] and weighted essentially non-oscillatory (WENO) [44]. The developed
ENO and WENO will inevitably introduce considerable dispersion and dissipation errors and
then possibly smear the predicted level set solutions. In other words, the level set function which
is defined implicitly /0ðxÞ, does not satisfy the condition of signed distance function. This leads
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to the problem that curvature of the interface cannot be calculated accurately, and the density
and viscosity near the interface cannot be calculated either.

2.1.3. Re-initialization step
To maintain level set function as a signed distance function, we solve the following time-depend-
ent partial differential equation (PDE) from the computed solution /0 from Eq. (4)

/s ¼ �S /0ð Þ 1�jr/jð Þ þ kf /ð Þ; (5)

with

k ¼ �
Ð
Xd /ð Þ �S /0ð Þ 1�jr/jð Þ� �

dXÐ
Xd /ð Þf /ð ÞdX : (6)

Note that the time-dependent k is derived by requiring mass conservation of the domain as fol-
lows

@

@t

ð
�H /ð Þ dX ¼

ð
�H 0 /ð Þ /s dX ¼

ð
�H 0 /ð Þ �S /0ð Þ 1�jr/jð Þ þ kf /ð Þ� 	

dX ¼ 0: (7)

In Eq. (7), the term f ð/Þ ¼ dð/Þjr/j clearly enlightens that only the interface has been cor-
rected and distance function property can definitely remain undisturbed away from the interface
[5]. The Dirac delta function dð/Þ in Eq. (6) can be obtained according to the d�Hð/Þ

d/

d /ð Þ ¼
1
2e

1þ cos
p/
e

� �� �
; if j/j � e;

0; otherwise:

8<
: (8)

While solving this re-initialization equation, it is essential to obtain only the signed distance
function within the transition zone using the proposed narrow band level set methods. In other
words, only e

Dt iteration steps are chosen.

2.2. Navier–Stokes equations and physical properties

The fluid velocities u and pressure p for the two incompressible immiscible fluids are written as

r � u ¼ 0; (9)
@u
@t

þ u � ru ¼ � 1
q
rpþ 1

q
r � l ruþ ruð ÞT


 �h i
þ gþ f sf ; (10)

where g is the gravitational acceleration. The other source term in Eq. (10) is the surface tension
force f sf , which is modeled using the continuum surface tension (CSF) method [22,45,46]

f sf ¼ rj /ð Þd /ð Þr/: (11)

In Eq. (11), r is the fluid surface tension coefficient and the curvature of the interface jð/Þ
can be defined as

j /ð Þ ¼ �r � r/
jr/j
� �

¼ � /2
x/yy�2/x/y/xy þ /2

y/xx þ /2
x/zz�2/x/z/xz þ /2

z/xx



þ/2

y/zz � 2/y/z/yz þ /2
z/yy

�
= /2

x þ /2
y þ /2

z


 �3
2
:

(12)
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The first and second derivative terms of level set function in the above mean curvature Eq.
(12) are discretized using the second-order accurate central difference scheme. In Eq. (10), the
physical properties density q and viscosity l will be smoothly approximated through smoothed
Heaviside function to resolve the contact discontinuity oscillations at the interface

q /ð Þ ¼ qG þ qL�qGð Þ�H /ð Þ;
l /ð Þ ¼ lG þ lL�lGð Þ�H /ð Þ; (13)

where the subscripts G and L correspond to gas and liquid, respectively.

3. Numerical scheme

Uniform grid spacings with Dx ¼ Dy ¼ Dz ¼ h are adopted in the proposed two-phase flow
solver. With a staggered grid arrangement, the discrete level set function / and pressure p are
located at cell centers while the discrete velocity field u is located at cell faces.

3.1. Level set method solver

3.1.1. Time marching scheme for the level set evolution equation
The level set evolution equation introduced in Section 2.1.2, can be written in conservative form
since u is a solenoidal vector field, namely,

/t þr � u/ð Þ ¼ 0: (14)

Using a semi-discrete conservative finite difference scheme for Eq. (14) results in an ordinary
differential equation (ODE)

d/i;j

dt
¼ L /i;j

� � ¼ � 1
Dx

Fiþ1
2;j
�Fi�1

2;j
� �� 1

Dy
Gi;jþ1

2
�Gi;j�1

2

� �
(15)

where F ¼ /u and G ¼ /v. The convective flux term shown in Eq. (15) is approximated in con-
servative form by OCRWENO scheme introduced in Section 3.1.2 to achieve fourth-order accur-
acy in smooth regions and avoid oscillations near discontinuities. Given the initial solution /ðnÞ,
the solution at next time step /ðnþ1Þ can be obtained using a total variation diminishing third-
order Runge–Kutta (TVD-RK3) scheme for Eq. (14)

/ 1ð Þ ¼ / nð Þ þ DtL / 0ð Þ

 �

; (16)

/ 2ð Þ ¼ 3
4
/ nð Þ þ 1

4
/ 1ð Þ þ 1

4
DtL / 1ð Þ

 �

; (17)

/ nþ1ð Þ ¼ 1
3
/ nð Þ þ 2

3
/ 2ð Þ þ 2

3
DtL / 2ð Þ

 �

: (18)

3.1.2. Approximation of spatial derivatives for the level set evolution equation
3.1.2.1. Optimized upwind compact difference scheme. Upwinding compact difference (UCD)
scheme with higher accuracy is a critical numerical tool to simulate fluid flow problems. Owing
to its capability in saving considerable computational costs with higher accuracy solutions in
fewer grid points, compact schemes have been intensively studied for various applications such as
direct numerical simulation, acoustics and hypersonic boundary-layer transition [47–50]. In this
section, progress towards refining the UCD scheme has made this scheme a better dispersion-
relation-preserving (DRP) property [51–55] to simulate the two-phase fluid flows over a consider-
able wavenumber range.
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The first-order derivative term @/
@x will be approximated using the positive convective coeffi-

cient by the following implicit UCD scheme:

�A
@/
@x

����
i�1

þ @/
@x

����
i

þ �C
@/
@x

����
iþ1

¼ �a/i�2 þ �b/i�1 þ �c/i þ �d/iþ1

Dx
: (19)

The modified equation analysis is applied in Eq. (19) to derive the following set of algebraic
equations

�a þ �b þ �c þ �d ¼ 0; (20)

�2�a��b þ �d��A��C ¼ 1; (21)

2�a þ 1
2
�b þ 1

2
�d þ �A��C ¼ 0; (22)

� 4
3
�a� 1

6
�b þ 1

6
�d� 1

2
�A� 1

2
�C ¼ 0; (23)

2
3
�a þ 1

24
�b þ 1

24
�d þ 1

6
�A� 1

6
�C ¼ 0; (24)

� 4
15

�a� 1
120

�b þ 1
120

�d� 1
24

�A� 1
24

�C ¼ 0: (25)

The unknown coefficients shown in Eq. (19) are then determined as follows: �A ¼ 1
2,

�C ¼ 1
6,

�a ¼ � 1
18,

�b ¼ �1, �c ¼ 1
2, and

�d ¼ 5
9. These derived coefficients can be applied to get the fifth-

order spatial accuracy of the first-order derivative term

@/
@x

¼ @/
@x

����
exact

þ 1
60

Dx5
@6/
@x6

þ O Dx6ð Þ : (26)

It is remarkable to point out here that the use of DRP finite difference approximation for the
first derivative term @/

@x in wavenumber space can preserve the dispersive nature or reduce the dis-
persion errors as much as possible [51]. We perform a modified number approach on each term
shown in Eq. (19)

ia0Dx �Ae�iaDx þ 1þ �CeiaDxð Þ ¼ �ae�2iaDx þ �be�iaDx þ �c þ �deia:Dx: (27)

As a result, the numerical wavenumber a0Dx can be determined by solving the Eq. (27)

a0Dx ¼ i �3e�2iaDx þ 4e�2iaDx�d�24e�iaDx þ 18e�iaDx�d þ 27�36�d þ 14�deiaDxð Þ
�14� 17e�iaDx þ 18e�iaDx�d þ eiaDx � 6�deiaDx

: (28)

Then, we define the error function E which minimizes the L2 norm of the difference between
the numerical wavenumber a0Dx and the exact wavenumber aDx over the particular wave number
range 0 and e

E að Þ ¼
ðe
0
W � aDx�R a0Dx½ �ð Þ½ �2d aDxð Þ; (29)

where W is the denominator of ðaDx�R½a0Dx�Þ. In Eq. (29), the value e is recommended to be
chosen as e ¼ 17p

20 according to the dispersion analysis for comparison [51]. To determine the
optimized coefficients in Eq. (19), the constraint equation for @E

@�d
¼ 0 is solved together with five

algebraic equations shown in Eqs. (20)–(24). We obtain the optimized coefficients:
�A ¼ 0:5418416108, �C ¼ 0:1527194630, �a ¼ �0:0648536914, �b ¼ �1:041841611, �c ¼ 0:583683223,
and �d ¼ 0:5230120803. Use of the above optimized coefficients enables us to get a solution that
can theoretically reduce dispersion errors. Define the values at cell faces i6 1

2 as follows:

~A/̂i�1
2
þ /̂iþ1

2
þ ~C/̂iþ3

2
¼ ~a/i�1 þ ~b/i þ ~c/iþ1; (30)

and

6 Z. H. GU ET AL.



~A/̂i�3
2
þ /̂i�1

2
þ ~C/̂iþ1

2
¼ ~a/i�2 þ ~b/i�1 þ ~c/i: (31)

The coefficients ~A ¼ 0:541841611; ~C ¼ 0:152719463; ~a ¼ 0:064853691; ~b ¼ 1:106695303, and ~c ¼
0:523012080 are then derived by comparing the optimized coefficients derived in Eq. (19)
with @/

@x.

3.1.2.2. OCRWENO4 scheme. To efficiently eliminate the spurious oscillations in the vicinity of
discontinuities of solutions, WENO schemes [56] can be applied. Investigation of WENO schemes
produces commonly dispersion and dissipation errors for simulation of turbulent flow [20]. The
proposed OCRWENO scheme is useful in preventing nonphysical oscillations across discontinu-
ities and improving dispersion and dissipation properties in smooth regions.

A fifth-order compact reconstruction scheme weighted ENO (CRWENO) scheme for hyper-
bolic conservation law was proposed by Ghosh and Baeder in 2012 [57]. The CRWENO scheme
developed in their study will be further extended in this paper with dispersion-relation-preserving
property. Here, first of all we construct three third-order compact interpolations as alternatives

2
3
/̂i�1

2
þ 1
3
/̂iþ1

2
¼ 1

6
/i�1 þ 5/ið Þ; (32)

1
3
/̂i�1

2
þ 2
3
/̂iþ1

2
¼ 1

6
5/i þ /iþ1ð Þ; (33)

2
3
/̂iþ1

2
þ 1
3
/̂iþ3

2
¼ 1

6
/i þ 5/iþ1ð Þ: (34)

The flux values of /̂ at the half points given below will be adopted to solve level set evolution
equation from the above combination of three third-order compact interpolations that are
sequentially multiplied by coefficients ci for i¼ 1–3:

2c1 þ c2
3

� �
/̂i�1

2
þ c1 þ 2 c2 þ c3ð Þ

3

� �
/̂iþ1

2
þ c3

3
/̂iþ3

2

¼ c1
6
/i�1 þ

5 c1 þ c2ð Þ þ c3
6

� �
/i þ

c2 þ 5c3
6

� �
/iþ1:

(35)

Values of c1 ¼ 0:20891; c2 ¼ 0:5, and c3 ¼ 0:29109 are then obtained by comparing the coeffi-
cients derived in Eq. (30). Thanks to the idea of a WENO scheme [44], we are led to know that
the general form of the interface /̂ reconstructed using a left-biased interpolation is

2x1 þ x2

3

� �
/̂

L
i�1

2
þ x1 þ 2 x2 þ x3ð Þ

3

� �
/̂

L
iþ1

2
þ x3

3
/̂

L
iþ3

2

¼ x1

6
/i�1 þ

5 x1 þ x2ð Þ þ x3

6

� �
/i þ

x2 þ 5x3

6

� �
/iþ1:

(36)

xk in Eq. (36) is the weight of k-th stencil in the convex combination, which are defined as

xk ¼ akP
k ak

; k ¼ 1; 2; 3; (37)

where ak in the above equation is determined by smoothness indicators ~bk of the respective sten-
cils

~ak ¼ ~ck
~bk þ �
� �2 ; k ¼ 1; 2; 3; (38)

and � ¼ 10�6 is adopted to avoid the denominator becoming zero. To detect large discontinuities,
the smoothness indicators ~bk are given by [44]

NUMERICAL HEAT TRANSFER, PART B 7



b1 ¼
13
12

/i�2�2/i�1 þ /ið Þ2 þ 1
4

/i�2�4/i�1 þ 3/ið Þ2;
b2 ¼

13
12

/i�1�2/i þ /iþ1ð Þ2 þ 1
4

/i�1�/iþ1ð Þ2;
b3 ¼

13
12

/i�2/iþ1 þ /iþ2ð Þ2 þ 1
4

3/i�4/iþ1 þ /iþ2ð Þ2:

(39)

Given the need of designing a weight ak that can reduce excessive dissipation, the following ak
for the Eq. (38) is redefined [58] in this study, leading to

ak ¼ ck 1þ jb3�b1j
�þ bk

� �
; k ¼ 1; 2; 3: (40)

For cases with right-biased interpolation, the OCRWENO scheme is also followed by introduc-
ing the optimized weights ~xk for the approximation

2~x1 þ ~x2

3

� �
/̂

R

iþ3
2
þ ~x1 þ 2 ~x2 þ ~x3ð Þ

3

� �
/̂

R

iþ1
2
þ ~x3

3
/̂

R

i�1
2

¼ ~x1

6
/iþ2 þ

5 ~x1 þ ~x2ð Þ þ ~x3

6

� �
/iþ1 þ

~x2 þ 5~x3

6

� �
/i;

(41)

where

~xk ¼ ~akP
k ~ak

; ~ak ¼ ck 1þ j~b3�~b1j
�þ ~bk

 !
; k ¼ 1; 2; 3; (42)

and

~b1 ¼
13
12

/iþ1�2/iþ2 þ /iþ3ð Þ2 þ 1
4

3/iþ1�4/iþ2 þ /iþ3ð Þ2;
~b2 ¼

13
12

/i�2/iþ1 þ /iþ2ð Þ2 þ 1
4

/i�/iþ2ð Þ2;
~b3 ¼

13
12

/i�1�2/i þ /iþ1ð Þ2 þ 1
4

/i�1�4/i þ 3/iþ1ð Þ2:

(43)

The approximation of the convection term @ðu/Þ
@x in the level set evolution equation is to conserve

the flux term u/ across a cell of length Dx by means of

@ u/ð Þ
@x

¼ uiþ1
2
/̂iþ1

2
�ui�1

2
/̂i�1

2

Dx
(44)

where

/̂iþ1=2 ¼
/̂

L
iþ1=2 ifui�1

2
� 0;

/̂
R
iþ1=2 ifuiþ1

2
<0:

8><
>: (45)

For the proposed OCRWENO scheme based on the right-biased interpolation, the numerical
flux terms at the left and right half boundary point 1

2 and N þ 1
2 are approximated by the follow-

ing formula, respectively

/̂
L
iþ1

2
¼ x1

3
/i�2�

1
6

7x1 þ x2ð Þ/i�1 þ
1
6

11x1 þ 5x2 þ 2x3ð Þ/i

þ 1
6

2x2 þ 5x3ð Þ/iþ1�
x3

6
/iþ2;

/̂
R

iþ1
2
¼ � ~x3

6
/i�1 þ

1
6

2~x2 þ 5~x3ð Þ/i þ
1
6

11~x1 þ 5~x2 þ 2~x3ð Þ/iþ1

� 1
6

7~x1 þ ~x2ð Þ/iþ2 þ
~x1

3
/iþ3;

(46)

where x and ~x are defined in Eqs. (37) and (38), respectively. In this study the chosen numerical
fluxes at the boundary interfaces expressed in Eq. (46) are reconstructed using the fifth-order
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accurate WENO scheme of Jiang and Shu [44]. The proposed OCRWENO scheme, which uses
Eq. (46) for i¼ 0 and Nþ 1, Eq. (36) for i ¼ 1; 3; 4::;N forms a tridiagonal matrix system and
can be represented as

1 0 0 ::: ::: ::: 0
a b c 0 ::: ::: 0
� � �
� � �
� � �
0 ::: ::: 0 a b c
0 ::: ::: ::: 0 0 1

2
666666664

3
777777775

/̂1=2
�
�

/̂iþ1=2
�
�

/̂Nþ1=2

2
6666666664

3
7777777775
¼

�rWENO5
1=2
�
�

�rOCRWENO4
iþ1=2

�
�

�rWENO5
Nþ1=2

2
6666666664

3
7777777775
; (47)

where a, b, c are the coefficients, as shown in Eqs. (36) and (41). It is noted that �rOCRWENO4
iþ1=2 and

�rWENO5
1=2 are the right-hand side of the reconstruction flux shown in Eq. (36), (41), or (46),
respectively.

3.1.3. Approximation of re-initialization equation
In two-dimensional cases, Eq. (5) can be expressed in a semi-discrete form:

d/
dt

þHG /þ
x ;/

�
x ;/

þ
y ;/

�
y


 �
¼ 0; (48)

where HG is the Godunov Hamiltonian. The time marching scheme for the re-initialization Eq.
(48) is based on the TVD-RK3 scheme that is described in Section 3.1.1. The time step Ds in this
paper is chosen as 0:25Dx.

Denote �
þ/k ¼ /kþ1�/k;�

�/k ¼ /k�/k�1ðk ¼ i�3�iþ 2Þ, and we can obtain the fifth-
order WENO5 scheme as [59]

/�
x;i ¼

1
12

��þ/i�2

�x
þ 7

�þ/i�1

�x
þ 7

�þ/i

�x
��þ/iþ1

�x

� �

�/WENO �
�
�

þ/i�2

�x
;
�

�
�

þ/i�1

�x
;
�

�
�

þ/i

�x
;
�

�
�

þ/iþ1

�x

� �
;

(49)

and

/þ
x;i ¼

1
12

��
þ/i�2

�x
þ 7

�
þ/i�1

�x
þ 7

�
þ/i

�x
��

þ/iþ1

�x

� �

�/WENO �
�
�

þ/iþ2

�x
;
�

�
�

þ/iþ1

�x
;
�

�
�

þ/i

�x
;
�

�
�

þ/i�1

�x

� �
:

(50)

It can be evidently seen that the above spatial discretization of /�
x;i and /þ

x;i is left-biased stencil
from i – 3 to iþ 2 and right-biased stencil from i – 2 to iþ 3, respectively. The second term
/WENO on the right hand side is nonlinear and can be expressed as follows in terms of a; b; c; d:

/WENO a; b; c; dð Þ ¼ 1
3
�x0 a�2bþ cð Þ þ 1

6
�x2 � 1

2

� �
b�2cþ dð Þ: (51)

The weighting factors �x0 and �x2 can be obtained as

�x0 ¼ a0
a0 þ a1 þ a2

; �x2 ¼ a2
a0 þ a1 þ a2

; (52)

with

a0 ¼ 1

eþ IS0ð Þ2 ; a1 ¼
6

eþ IS1ð Þ2 ; a2 ¼
3

eþ IS2ð Þ2 ; (53)

NUMERICAL HEAT TRANSFER, PART B 9



where e is chosen to prevent the occurrence of division by zero based on the suggestion of Jiang
and Shu [44]. The smoothness indicators are defined as follows:

IS0 ¼ 13 a�bð Þ2 þ 3 a�3bð Þ2;
IS1 ¼ 13 b�cð Þ2 þ 3 bþ cð Þ2;
IS2 ¼ 13 c�dð Þ2 þ 3 3c�dð Þ2:

(54)

Define ð�aÞþ ¼ maxða; 0Þ; ð�aÞ� ¼ �minða; 0Þ and the same subscripts for b, c and d, and jr/j
in Eq. (6) can be computed using Godunov’s method [59]

jr/j ¼
�S /0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max �a�; �bþ


 �h i2
þ max �c�; �dþ


 �h i2r !
; if /0 � 0;

�S /0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max �aþ; �b�

� �� 	2 þ max �cþ; �d�� �� 	2q� �
; otherwise:

8>>>><
>>>>:

(55)

Sussman and Fatemi [5] used a nine-point stencil to perform numerical integration over the
domain Xi;j in the Eq. (6)

ð
Xij

g� h2

24
16gij þ

X1
m;n¼�1; m;nð Þ6¼ 0;0ð Þ

giþm;jþn

0
@

1
A: (56)

In three-dimensional cases, the 27-point stencil was used as well to compute numerical inte-
gration over the domain Xi;j;kð

Xijk

g�51gijk þ
X1

m;n;l¼�1; m;n;lð Þ6¼ 0;0;0ð Þ
giþm;jþn;kþl: (57)

3.2. Navier–Stokes equation solver

3.2.1. Approximation of the advection and diffusion terms
When solving the convection-diffusion flow equations, the upwind principle is considered to
reduce numerical oscillations. Take the convection terms u @u

@x in the x-direction momentum equa-
tion as an example. The resulting discretized formula is written as follows for a second-order
upwinding scheme:

u
@u
@x

¼ 1
2

uþ 3ui;j;k�4ui�1;j;k þ ui�2;j;kð Þ þ u� �uiþ2;j;k þ 4uiþ1;j;k�3ui;j;kð Þ
� �

; (58)

where uþ ¼ 1
2 ðui;j;k þ jui;j;kjÞ and u� ¼ 1

2 ðui;j;k � jui;j;kjÞ. The four-point third-order upwinding
finite difference scheme is also taken into account to approximate advection terms in the simula-
tion of Navier–Stokes equation. That is,

u
@u
@x

¼ 1
6Dx

uþ 11ui;j;k�18ui�1;j;k þ 9ui�2;j;k�2ui�3;j;kð Þ þ u� 2uiþ3;j;k�9uiþ2;j;k þ 18uiþ1;j;k�11ui;j;kð Þ
� �

:

(59)

In our computation test, the second-order upwinding scheme is applied in this study when
there is enough grid resolution for the advection terms. The diffusion terms are approximated by
the second-order center difference scheme.
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3.2.2. Projection methodology and numerical stability conditions
The projection method described by [60,61] is developed for solving the varying-density incom-
pressible flow along with the incompressibility constraint condition. In this study, approximation
of Eq. (10) is based on the projection method. Eq. (10) is rewritten, which uses Adams–Bashforth
scheme for time advancement as

unþ1�un

Dt
þ fn þ 1

q /ð Þ
dx
Dx

Pnþ
1
2 ¼ 0; (60)

where dx is the first-order central-difference operator and

fn ¼ 3
2
An� 1

2
An�1; (61)

with

Figure 1. Predicted result of single vortex with T¼ 16. (a) t ¼ T
2 ¼ 8; (b) t ¼ T ¼ 16.
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A ¼ u � ru� 1
q /ð Þr � l /ð Þ ruþ ruð ÞT


 �h i
�g�f sf : (62)

Taking the divergence operator on both sides of Eq. (60) and using the fact that r � unþ1 ¼ 0
derives the Poisson equation

dx
Dx

1
q /ð Þ

dx
Dx

þ dy
Dy

1
q /ð Þ

dy
Dy

þ dz
Dz

1
q /ð Þ

dz
Dz

� �
pnþ1=2 ¼ RHS; (63)

where RHS ¼ dx
Dx ðu

n

Dt � f nÞ þ dy
Dy ðv

n

Dt � gnÞ þ dz
Dz ðw

n

Dt � hnÞ. After solving Eq. (60) for p, the updated
value unþ1 can be obtained according to Eq. (60).

For the explicit Adams–Bashforth scheme, the time step constraint should be found according
to the Courant–Friedichs–Lewy (CFL) condition. The computational time step Dt at time tn is
limited by the advection, diffusion, gravity and surface tension terms

Dtnþ1 � min Dtu;Dtl;Dtg ;Dtr
� �

; (64)

where Dtu ¼ minXðj u
Dx j; j v

Dy j; j w
Dz jÞ, Dtl ¼ minXd

Re
2 1

Dx2
þ 1

Dy2
þ 1

Dz2

� 	, Dtg ¼ minX
ffiffiffiffi
Dz
g

q
, and

Dtr ¼ minXd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqGþqLÞDh3

4pr

q
, with Dh ¼ minðDx;Dy;DzÞ.

3.2.3. Poisson solver
At each interior point (i, j, k), application of a central-difference approximation for the left-hand
side of Eq. (63) leads to

aPi�1;j;k þ bPiþ1;j;k þ cPi;j;k þ dPi;j�1;k þ ePi;jþ1;k þ fPi;j;k�1 þ gPi;j;kþ1 ¼ RHSð Þi;j;k; (65)

where a ¼ b ¼ 1
qDx2 ; d ¼ e ¼ 1

qDy2 ; f ¼ g ¼ 1
qDz2, and c ¼ �ðaþ bþ d þ eþ f þ gÞ ¼ �ð 1

qDx2þ 1
qDy2 þ 1

qDz2Þ. The pressure Poisson equation (i.e. Eq. (65)) is solved using the point successive
over-relaxation (PSOR) solver

Pmþ1
i;j;k ¼ xPmþ1

i;j;k þ 1�xð ÞPm
i;j;k; (66)

Figure 2. Evolution of area loss of single vortex problem by three distinct schemes.
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where m is the iteration counter, and the coefficient of relaxation x in this study is chosen to be
1.5. The solver can usually converge to a specified tolerance 10�4

jPmþ1
i;j;k �Pmi;j;kj � 10�4: (67)

3.3. Summary of the two-phase flow algorithm

We first initialize the level set function by solving Eq. (1). Computational procedures for numer-
ical modeling of two-phase flows for a one-time loop are summarized as follows:

1. Compute the interface curvature jð/Þ in Eq. (12).
2. Calculate the density qð/Þ and viscosity lð/Þ in Eq. (13).

Figure 3. Predicted result of 16 vortices with T¼ 2. (a) t ¼ T
2 ¼ 1; (b) t ¼ T ¼ 2.
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3. Approximate the convection and diffusion terms in Eq. (10).
4. Solve the pressure Poisson equation (i.e. Eq. (63)) to get pressure solutions.
5. Obtain the new velocity field unþ1 using Eq. (60).
6. Update the level set function using Eq. (14).
7. Re-distance the level set function using Eq. (5).

4. Validation study

To measure the mass conservation property, we define the mass error as

Merror ¼
ð
X

�H /ð Þ dX�1: (68)

4.1. Vortex flow

This problem can be used to evaluate the accuracy of the predicted interface advection and
deformation. The flow was reversed at t ¼ T

2 so that the exact solution obtained at t¼T should
coincide with its initial solution given by

/ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�0:5ð Þ2 þ y�0:75ð Þ2

q
þ 0:05: (69)

The velocity fields are given as

u x; y; tð Þ ¼ sin2 pxð Þsin 2pyð Þcos pt=Tð Þ; (70)

v x; y; tð Þ ¼ �sin2 pyð Þsin 2pxð Þcos pt=Tð Þ: (71)

The numerical results obtained using the proposed OCRWENO scheme on a uniform grid of
128	 128 are compared with those obtained by WENO-Z [58] and WENO-JS [59] schemes at
T¼ 16. In order to demonstrate the advantages of the proposed OCRWENO scheme in preserv-
ing the areas of the filaments, the evolution processes of the filaments by using OCRWENO,

Figure 4. Evolution of area loss of deformation field problem by three distinct schemes.
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WENO-Z and WENO-JS schemes are shown in Figure 1(a), from which it can be evidently seen
that the proposed OCRWENO can significantly resolve the solution within a thin and elongated
filament. Figure 1(b) clearly shows that the proposed OCRWENO scheme in this paper can better
preserve the areas than the schemes in [58] and [59] do. Mass loss of the vortex flow problem
using the different advection schemes on a grid of 128	 128 cells is shown in Figure 2.

4.2. Deformation field

An even more sophisticated benchmark test is the one proposed by Smolarkiewicz [36], the
entrainment of a circular body in a deformation field determined by 16 vortexes. The periodic
velocity field is given by the stream function:

w ¼ 1
4p

sin 4p xþ 0:5ð Þð Þ cos 4p yþ 0:5ð Þð Þ: (72)

Figure 5. Predicted result of two dimensional single bubble rising problem with Re¼ 100, We¼ 200, Fr¼ 1,
lg
ll
¼ 0:01 and qG

qL
¼

0:2 in a 4:0	 6:48 box with grid 150	 243 and time step Dt ¼ 0:01Dx.
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As suggested in Figure 3, a time-reversed flow field with period T¼ 2 is imposed and the
interface crosses the top boundary of the domain to reappear on the bottom at t¼ 1. Figure 3
presents the OCRWENO solutions (in red line), the WENO-Z solutions (in blue line) and the
WENO-JS solutions (in green line). As can be seen in Figure 3, the proposed OCRWENO scheme
is highly capable in modeling the interface undergoing massive stretching on a grid of 128	 128
cells. Figure 4 shows mass loss of the deformation field, in which the fifth-order WENO-Z
scheme refers to the one presented in [58] and the fifth-order WENO-JS scheme refers to the
one presented in [59]. One can see that the Figure 4 shows better mass property for the proposed
OCRWENO scheme.

5. Numerical results of two-phase flow model

5.1. Two dimensional single bubble rising problem

The influence of density on single bubble rising which has been considered by Zhao et al. [62] is also
studied in this section. The 4D-in-length and 6.48D-in-height tank is considered here where D is the
diameter of the initial bubble. A 1D-in-radius bubble is located 1.48D above the bottom of the tank.
In this study, the Reynolds number (Re), Weber number (We) and density ratio are assumed to be
100; 200; 0:2 for investigation respectively. The predicted bubble interface in 150	 243 grids in
shown in Figure 5, which agrees quite well with those by Zhao et al. [62]. In Figure 6, the predicted
mass is well conserved using the proposed level set method. Following this, the Reynolds number

Figure 6. Corresponding area loss of two dimensional single bubble rising problem with qG
qL
¼ 0:2.
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(Re), Weber number (We) and density ratio are assumed to be 100; 200; 0:01 for next investigation.
The predicted bubble interfaces at dimensionless time t ¼ 1; t ¼ 2; t ¼ 3; t ¼ 4; t ¼ 5:5 and t¼ 6
also agree well with those in Zhao et al., as is shown in Figure 7 [62]. Comparison between the two
investigations in Figures 5 and 7 shows that the decrease in density ratio results in faster rise of the
bubble. Figure 8 shows that mass is much better conserved using the proposed level set method
compared with that using previous level set method [41].

5.2. Two dimensional bubble bursting at a free surface

Bubble rising in incompressible flows considering buoyancy force has been intensively studied in
existing literatures. In this study, a still bubble located at the center of a 3:0D-wide, 3:5D-high
container is considered where D is the initial diameter of the bubble. The initial water depth in
the container is set to 2:5D. Slip conditions are specified along the horizontal and vertical walls.
The density and viscosity ratios of water to air are assumed to be qL

qG
¼ 0:5 and lL

lG
¼ 0:5. The bub-

ble rising problem is first studied at Re ¼ qUD
� ¼ 100 without considering the buoyancy force,

Figure 7. Predicted result of two dimensional single bubble rising problem with Re¼ 100, We¼ 200, Fr¼ 1, lGlL ¼ 0:01 and qG
qL
¼

0:01 in a 4:0	 6:48 box with grid 150	 243 and time step Dt ¼ 0:01Dx.
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Figure 8. Corresponding area loss of two dimensional single bubble rising problem with qG
qL
¼ 0:01.

Figure 9. Predicted result of two dimensional single bubble burst at free surface (no surface tension) with Re¼ 100, Fr¼ 1, lGlL ¼
0:5 and qG

qL
¼ 0:5 in a 3	 3:5 box with grid 180	 210 and time step Dt ¼ 0:01Dx.
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where U ¼ ffiffiffiffiffiffi
gD

p
is the characteristic velocity. t, x, y are dimensionless variables normalized by U,

D, D respectively. Uniform grid sizes of 180	 210 and 240	 280 are adopted to investigate the
effect of grid dependence on the conservative property. The predicted bubble interface and con-
servative property agree quite well on both the two grids. The simulations, therefore, will only be
carried out and shown in 180	 210 grids.

Figure 10. Corresponding area loss of two dimensional bubble burst at free surface (no surface tension).

Figure 11. Predicted result of two dimensional single bubble burst at free surface (with surface tension) with Re¼ 100, We¼ 10,
Fr¼ 1, lGlL ¼ 0:5 and qG

qL
¼ 0:5 in a 3	 3:5 box with grid 180	 210 and time step Dt ¼ 0:01Dx.
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The predicted bubble interface results are shown in Figure 9. The bubble is deformed to a kid-
ney shape without taking surface tension into account. Figure 10 demonstrates that the mass is
conserved quite well using the proposed method. Due to surface tension’s ineligible role in bubble
rising, this time-evolving bubble problem is simulated by considering the surface tension force in
the case of Weber number at We ¼ qU2D

r ¼ 10 and Re¼ 100. The predicted results of bubble ris-
ing considering the effect of surface tension force are plotted in Figure 11, which demonstrates
good agreement with those of Zhao et al. [62]. It can be seen from Figures 9 and 11 that the
effect of surface tension force becomes visual beyond t¼ 2.0. The detailed phenomena of bubble
breakup are plotted in Figure 11 in 3:5 � t � 4:5. The conservative property built in the present
level set method is still well retained based on the results computed in 180	 210 grids in
Figure 12.

5.3. Three dimensional single bubble rising problem

The numerical results in [63] of a three-dimensional single bubble rising problem can be used for
comparison. In the current calculation, the bubble has a radius R¼ 1.0 and is located in a 6	
6	 8 box. Re¼ 11.065, We¼ 9.9148, Fr¼ 1 are assumed in the simulation, with the domain of
90	 90	 120 grids. Figure 13 presents the simulation results of the bubble rising problem at
dimensionless times t ¼ 0:8; t ¼ 1:8; t ¼ 2:4 and t¼ 3.6. In this case, several benchmark parame-
ters including centroid, circularity, and rise velocity are investigated to quantitatively evaluate the
capability of the proposed level set method in resolving the rising interface in viscous fluid
[64–66]. Translation of the bubble can be measured by the centroid defined as follows:

Xc ¼ xc; ycð Þ ¼
Ð
Xb
xdxÐ

Xb
dx

; (73)

where Xb refers to the bubble region. It should be noted that xc is the coordinate of the centroid
in x-direction and yc in y-direction, respectively. Circularity is defined as follows:

Figure 12. Corresponding area loss of two dimensional bubble burst at free surface (with surface tension).
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CI ¼ Pa
Pb

; (74)

where Pa refers to the initial perimeter of the bubble and Pb refers to the perimeter of the bubble
at time t. Rise velocity is defined as:

Vr ¼
Ð
Xb
vdyÐ

Xb
dy

; (75)

where v denotes the velocity magnitude in y-direction. Figure 14 shows benchmark quantities
against dimensionless time. Good agreement with the numerical result of rise velocity in Figure
14(a) is clearly demonstrated.

5.4. Three dimensional two-bubble merger problem

The merger of two bubbles both in a coaxial case and an oblique case are simulated in a compu-
tational domain of ½0; 4R� 	 ½0; 4R� 	 ½0; 8R� in this section. The bubble has a radius of R¼ 1, and

Figure 13. Predicted results of three dimensional single bubble rising benchmark problem. The computation is carried out in a
6	 6	 8 cube with grid 90	 90	 120, time step Dt ¼ 0:005Dx, Re¼ 11.065, We¼ 9.9148, Fr¼ 1, lGlL ¼

0:01
1:18 and

qG
qL
¼ 0:001

0:8755.
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Re¼ 67.27, Weber number of We¼ 16, and the Froude number of Fr¼ 1 are assumed [67]. In
the coaxial case, center of the upper bubble is located at ð2R; 2R; 2:5RÞ and center of the lower
bubble is located at ð2R; 2R; 1RÞ with 80	 80	 160 grids. The density and viscosity ratios of
water to air are assumed to be qL

qG
¼ 0:001 and lL

lG
¼ 0:01, respectively. Good agreement can be

found in Figures 15 and 16 between this study’s simulation results and those of Brereton and
Korotney [67], respectively. When the lower bubble enters into the wake region of upper bubble,
deformation and acceleration of the lower bubble in z-direction can be seen. In the oblique case,
center of the upper bubble is located at ð2R; 2R; 2:5RÞ and center of the lower bubble is located
at ð2:85R; 2R; 1RÞ. Figures 17 and 18 presents the numerical results in the 80	 80	 160 grids,
from which solutions obtained from the proposed level set method agree fairly well with those
obtained in [67]. In Figure 19, the conservative property built in the present level set method is
still well retained for both of the coaxial and oblique bubble rising cases.

Figure 14. Corresponding benchmark quantities of three dimensional single bubble rising problem. (a) rise velocity, the result is
compared with Gueyffier et al. [63]; (b) center of mass; (c) circularity; (d) evolution of volume loss.
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5.5. Three dimensional bubble bursting at a free surface

Boulton-Stone and Blake [68] has investigated numerical simulation of bubble bursting at a free
surface. However, they study concerns only the air bubble bursting phenomena just before the
pinch-off liquid jet. In this study, a spherical bubble with unit radius is initially located at

Figure 15. Predicted result of three dimensional two bubble coaxially merger problem. The computation is carried out in a 4	
4	 8 cube with grid 80	 80	 160, time step Dt ¼ 0:005Dx, Re¼ 67.27, We¼ 16, Fr¼ 1, lGlL ¼ 0:01 and qG

qL
¼ 0:001.

Figure 16. Experiments snapshot [68] of two bubble coaxially merger problem (time difference between the subsequent photo-
graphs is 0.03 s).
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ðx; y; zÞ ¼ ð0; 0;�3:2Þ in the computational domain of ½�2; 2� 	 ½�2; 2� 	 ½�6; 6� with 110	
110	 220 grids. Non-slip boundary conditions are imposed on the box walls. Re ¼ 474;We ¼ 1
and Fr ¼ Uffiffiffiffi

gR
p ¼ 0:64 values are assumed, where R is the characteristic length, radius of spherical

bubble. The density and the viscosity ratios of water to air are chosen as 0.001 and 0.01, respect-
ively. Figure 20 presents the numerical solutions obtained at different time. One can see that
liquid jet starts breaking up into a droplet at t¼ 1.133 and then the second droplet is formed at
t¼ 1.8. As can be evidently seen from the numerical solutions, the pinch-off process of the liquid
jet and the generation of liquid droplets after breakup of liquid jet due to capillary instability

Figure 17. Predicted result of three dimensional two bubble obliquely merger problem. The computation is carried out in a 4	
4	 8 cube with grid 80	 80	 160, time step dt ¼ 0:005Dx, Re¼ 67.27, We¼ 16, Fr¼ 1, lGlL ¼ 0:01 and qG

qL
¼ 0:001.

Figure 18. Experiments snapshot [68] of two bubble obliquely merger problem (time difference between the subsequent photo-
graphs is 0.03 s).
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have been well captured using the present level set method. We note that the maximum mass
error is less than 0.6% of the initial mass.

6. Concluding remarks

We have developed a mass-preserving level set redistancing algorithm to model the incompress-
ible two-phase flow. The level set evolution equation used to advect the evolving interface should
preserve its better dispersive property and avoid oscillatory solutions for discontinuities, and the

Figure 19. Evolution of volume loss of three dimensional merger problem. (a) coaxially merger; (b) obliquely merger.
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re-initialization equation employed to construct the signed distance function should meanwhile
accommodate the conservative interface property. Under these requirements, an optimized com-
pact reconstruction weighted essentially non-oscillatory (OCRWENO) scheme for the computa-
tion of level set evolution equation with respect to its accuracy and efficiency in comparison to
WENO-JS and WENO-Z schemes is proposed. The reinitialization procedure in the level set
method considerably contributes to reducing the mass loss thanks to adding the mass correction
term in the simulation. The proposed level set method are tested for simulations of various bub-
ble rising problems with large density differences at different Reynolds and Weber numbers. The
predicted results have been shown to agree quite well with experimental results.
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Figure 20. Predicted result of three dimensional bubble burst at the free surface. The computation is carried out in a 6	 6	
12 cube with grid 110	 110	 220, time step Dt ¼ 0:005Dx, Re¼ 474, We¼ 1, Fr¼ 0.64, lGlL ¼ 0:01 and qG

qL
¼ 0:001.
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