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a b s t r a c t 

This study is aimed to develop a high-order finite difference scheme to simulate the mean curvature 

equation for accurately predicting the time-evolving mean curvature driven interface. Within the semi- 

discretization framework, the optimal third-order accurate temporal scheme is applied for the approxima- 

tion of the time derivative term. In a three-point grid stencil, a combined compact difference scheme has 

been developed for offering a fifth-order spatial accuracy for the first-order and second-order derivative 

terms shown in the level set equation for simulating mean curvature flow. In the simulation of the mean 

curvature equation, reinitialization procedure has been performed to improve the prediction of curve 

motion. The aim of this study is to give insights into the issue about “how a mean curvature driven 

curve is varied with time”. Two mechanisms leading to the change of curve slope are attributed partly 

to the damping Laplacian operator and partly to the embedded nonlinear differential operator. These 

mechanisms have been studied in detail with respect to the curvature of curve. The effect of performing 

reinitialization is also studied numerically. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Study of geometric evolution of curves or surfaces has been an

mportant subject in mathematical society. Research into this type

f physical and mathematical problems has led to several systems

f nonlinear partial differential equations. Many physical processes

bout the propagation of material interface, free surface or inter-

ace flow development, and the growth of crystal can be simulated

y solving the corresponding partial differential equations govern-

ng the evolution of geometrical curves or surfaces. An accurate

apturing of these time-evolving curves and surfaces is essential

or gaining a better understanding of the convection and diffusion

henomena in many curve and surface processing applications. In

omputer graphics, the processing of triangulated surfaces, for ex-

mple, is a fundamental topic worth of investigation as well [1] . 

In the mathematical modeling of a geometric evolution of curve

r interface �, one can represent it implicitly as the zero level

et of a continuous function φ. This corresponds to writing � =
∗ Corresponding author at: Department of Engineering Science and Ocean Engi- 

eering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan, 

epublic of China. 

E-mail address: twhsheu@ntu.edu.tw (T.W.H. Sheu). 

l  

T  

s

 

ttps://doi.org/10.1016/j.compfluid.2018.05.013 

045-7930/© 2018 Elsevier Ltd. All rights reserved. 
 x | φ( x , t) = 0 } for a surface. In many problems ranging from a two-

uid flow to a crystal growth process, the evolution is subject to

he normal speed of �. The time evolution of the level set function

for this class of problems can be expressed in a general form as
∂φ
∂t 

+ u N |∇φ| = 0 , where the normal speed of � differs from each

ther depending on their involved physical mechanisms leading to

he change of φ. For the mean curvature flow problem, u N = −κ,

here κ (≡ ∇ · � n ) is the mean curvature of �, ∇ · is the surface

ivergence differential operator, and 

�
 n denotes the outward normal

ector of the curve of interest. The level set equation for modeling

he motion driven by mean curvature becomes 

∂φ

∂t 
− ∇ · ( ∇φ

|∇φ| ) |∇φ| = 0 (1)

Surface diffusion occurring in film growth is the other exam-

le of the physical effect that is relevant to the evolution of geo-

etric curves. For this case, surface � moves with the normal ve-

ocity ∇ s · ( ∇ s κ) under surface diffusion, where ∇ s = ∇ − ˆ n ( ̂  n · ∇) .

he change of the level set function φ for surface diffusion corre-

ponds to 

∂φ

∂t 
+ ∇ s · ∇ s κ|∇φ| = 0 (2)

https://doi.org/10.1016/j.compfluid.2018.05.013
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Due to the similarity presenting in two important classes of equa-

tion, it is worthwhile for us to investigate the equation generalized

as ∂φ
∂t 

+ u N |∇φ| = 0 , where u N = −∇ · ( ∇φ
|∇φ| ) for mean curvature

flow while u N = ∇ s · (∇ s κ) for surface diffusion flow. In our study

employing the level set method, the focus will be on the evolu-

tion of geometric curve driven by its mean curvature. Motions of

curves subject to surface diffusion have been predicted by different

research groups [7–9] using the level set method. 

The content of this paper will be organized as follows. In

Section 2 , the level set equation for the modeling of a time-

evolving curve driven by mean curvature and surface diffusion will

be presented. Some important features of this equation cast in

level set function will be pointed out. The numerical method will

be introduced in Section 3 . In Section 4 , the nonlinear parabolic

equation will be solved using the high-order compact finite differ-

ence scheme formulated in a three-point grid stencil. Discussion of

the simulated results will be given in Section 4 as well. Finally, we

will draw some concluding remarks in Section 5 . 

2. Level set equation 

In real life, diffusion process, which is well-known as ∂c 
∂t 

=
D ∇ 

2 c, equilibrates spatial change of a physical concentration c .

Such a process involving the molecular diffusion coefficient D

happens all the time and is irreversible. For the evolution of a

smoothly distributed surface x , the Eulerian Laplacian differential

operator ∇ 

2 is replaced with the Laplace Beltrami differential ∇ M 

,

leading to the so-called geometric diffusion analogue for the coor-

dinate x on a surface S . 

∂ x 

∂t 
= ∇ 

2 
M 

(t) x (3)

According to the theory of differential geometry [2] , the Laplace

Beltrami operator defined on a surface S is identical to the mean-

curvature vector h ( x ) n ( x ), implying that 

−∇ 

2 
M 

x = h ( x ) n ( x ) (4)

Geometric diffusion is commonly referred to as mean curvature

motion, thereby leading to the following differential equation 

∂ x 

∂t 
= −h ( x ) n ( x ) (5)

In the above, h ( x ) denotes the mean curvature and n ( x ) can be

expressed in terms of the level set function φ as 

n ( x ) = |∇φ| (6)

The mean curvature, which is defined as the sum of the

two principal curvatures, can be written as ∇ · � n = ∇ · ( ∇φ
|∇φ| ) ,

where the distance function is negative inside the curve. In two-

dimensional domain, the curvature of a curve can be explicitly ex-

pressed as 

h ( x ) = ∇ · ( ∇φ

|∇φ| ) = 

φxx φ2 
y − 2 φx φy + φyy φ2 

x 

(φ2 
x + φ2 

y ) 
3 / 2 

(7)

Given the definitions of n ( x ) and h ( x ), the partial differential

equation for geometric diffusion can be derived in terms of a level

set function as 

∂φ

∂t 
− |∇φ| ∇ · ( ∇φ

|∇φ| ) = 0 (8)

In this study, we aim to investigate the Cauchy problem that in-

volves the Hamiltonian–Jacobi Eq. (8) cast in the first order form.

Eq. (8) can be also expressed differently as follows after a mathe-

matical manipulation. 

∂φ

∂t 
= ∇ 

2 φ − N(φ) (9)
here 

(φ) = 

∂|∇φ| 
∂n 

= 

∇φ

|∇φ| · ∇ (|∇ φ| ) (10)

Eq. (9) elucidates that surface diffusion has a role to play in the

ean curvature flow equation. 

The level set method, developed by Osher and Sethian [4] , will

e applied to predict the motion of interface in a domain of two

imensions. Level set methods have been applied with great suc-

ess to predict a wide variety of problems. One can refer to the

eview papers [5–7] . For the level set function φ in a flow field

 , it is mathematically modeled by the well-known pure advection

quation. 

∂φ

∂t 
+ u · ∇φ = 0 (11)

If the evolution of curves or surfaces involves only the normal

omponent of u , we can get 

∂φ

∂t 
+ u n |∇φ| = 0 (12)

By comparing the Eq. (8) with the nonlinear parabolic Eq. (12) ,

e are led to get the normal speed of the surface 

 n = −∇ · ( ∇φ

|∇φ| ) (13)

As we mentioned in the introduction, it is worthy to point out

he similarity and difference between the mean curvature flow

nd the surface diffusion flow. By virtue of the classification of

hese two equations, both of them are parabolic equations but

hey are driven by different normal speeds related to the curva-

ure. Eq. (13) shows that the normal speed of mean curvature flow

s the mean curvature. As for Eq. (2) , the normal speed of surface

iffusion flow is 

 n = ∇ 

2 
s κ = ∇ 

2 κ − ( � n · ∇)( � n · ∇κ) (14)

The physical meaning of the term on the right-hand-side of

q. (14) is that the normal speed of curve in surface diffusion

ow depends only on the physical diffusion of curvature along the

urves. The first term on the right-hand-side denotes the diffu-

ion of curvature over the space, and the second term stands for

he diffusion on its normal direction of the curve. The result en-

ightens the presence of the tangential diffusion of curvature along

he curves. It is worthy to note here that the difficulty of solving

q. (12) with respect to two different types of curve motion sub-

ected to different normal speeds, as shown in Eqs. (13) and (14) ,

or an interface motion is that it is nonlinear and is quite stiff. We

re therefore motivated to propose a numerically very accurate and

omputationally more efficient method. 

. Numerical method 

The primary difficulty of numerically solving the level set equa-

ion for a motion driven by mean curvature is that the parabolic

q. (12) is stiff. Implicit method is therefore the method of choice

or the finite difference approximation of the Hamiltonian–Jacobi

quation for the modeling of curvature flow motion [3] . Moreover,

q. (12) is nonlinear. It is therefore a straightforward practice for

s to implement implicit numerical method in this study to cir-

umvent the computational difficulty. 

In this paper, we rewrite Eq. (12) in the form of 

t = L (φ) (15)

here 

 (φ) = −u n |∇φ| (16)
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The solution to the parabolic Eq. (15) will be sought subject to

he initial condition given by 

( x , t = 0) = φ0 (17)

The semi-discretization scheme will be employed to solve the

q. (15) . The time discretization is performed first using the

unge–Kutta method with the initial condition (17) and, then, the

patial discretization will be performed. 

.1. Optimal third-order TVD Runge–Kutta temporal scheme 

The Runge–Kutta method for Eq. (15) can be expressed in a gen-

ral form as follows for i = 1 , . . . , m [10] . 

(i ) = 

i −1 ∑ 

k =0 

αik φ
(k ) + �t βik L (φ

(k ) ) (18)

0 = φn , φm = φn +1 (19) 

In the above class of Runge–Kutta schemes, the coefficients

ik and β ik shall be properly chosen so that application of the

esulting scheme can not only yield higher order accuracy but

lso can maintain numerical stability in whatever the norms are

11] . We are therefore motivated to adopt a high order TVD (to-

al variation diminishing) time discretization scheme [11] . Appli-

ation of this class of schemes implies that the total variation of

he numerical solution is not allowed to increase in the sense that

 V (φn +1 ) < T V (φn ) , where T V (φ) = 

∑ 

i | φi +1 − φi | . Eq. (18) is TVD

rovided that αik , β ik > 0 under a suitable time step restriction. 

Our objective of employing the TVD Runge–Kutta scheme is to

etain the TVD property while high order temporal accuracy can

e maintained. To achieve the goal of obtaining high-order solu-

ion accuracy and enhancing numerical stability, it is required that

oth coefficients αik and β ik shown in Eq. (18) be non-negative.

herefore, the optimal third-order TVD Runge–Kutta method given

n [11] is adopted. 

φ1 = φn + �t L (φn ) 

φ2 = 

3 

4 

φn + 

1 

4 

φ1 + 

1 

4 

�t L (φ1 ) 

n +1 = 

1 

3 

φn + 

2 

3 

φ2 + 

2 

3 

�t L (φ2 ) 

(20) 

The above scheme is stable subject to the CFL condition, by

hich we have 

 = 

�t 

�x 
< min 

i,k 
( 
αik 

βik 

) 

.2. Combined compact finite difference scheme for spatial derivative 

erms 

Having discretized the temporal derivative term in Eq. (20) ,

e proceed to the discretization of the spatial derivative terms

 ( φn ), L ( φ1 ) and L ( φ2 ) shown in Eq. (20) . The idea of applying the

ombined compact difference (CCD) scheme proposed first by Chu

nd Fan [12] is to improve prediction accuracy when approximat-

ng the first and second order derivative terms without increas-

ng the number of stencil points. The building block of our CCD

cheme is to calculate the derivative of a function at an interior

rid point together with the same derivative terms at the two ad-

acent points. With the ability of improving solution accuracy with

ower computational cost, it is quite promising that CCD scheme

an be implemented for large scale computation. 

In Eq. (7) , one can see clearly that calculation of the curvature

f a curve � involves computing the values of φx , φy , φxx , φyy and

xy . To get a spectral-like resolution for these derivatives in a grid

nvolving only three stencil points, i − 1 , i, i + 1 , the centered CCD
cheme is adopted in a domain with uniform spacing h = �x = �y .

his CCD scheme calculates the derivative terms φx and φxx shown

n (7) implicitly from the following two equations for P ≡φx and

 ≡φxx . 

7 

16 

(P i +1 + P i −1 ) + P i −
h 

16 

(Q i +1 − Q i −1 ) = 

15 

16 h 

(φi +1 − φi −1 ) 

9 

8 h 

(P i +1 − P i −1 ) −
1 

8 

(Q i +1 + Q i −1 ) + Q i = 

3 

h 

2 
(φi +1 − 2 φi + φi −1 ) 

(21) 

All the coefficients shown in (21) have been derived underlying

he modified equation analysis. Taylor series expansion has been

erformed on P i +1 and Q i +1 with respect to P i and Q i , respectively,

o get the corresponding modified equations. The leading error

erms in the modified equations are then eliminated to close the

erivation of the two equations in (21) . Similar idea can be em-

loyed to implicitly calculate the nodal values of φy and φyy by

olving the resulting block tri-diagonal matrix. As for the value of

xy , it can be also computed by taking this mixed derivative term

s the differentiation of φy with respect to x . 

.3. Distance reinitialization 

In the prediction of geometric evolution of a curve �, one

hould prevent the level set function φ becoming too flat or too

teep near � that separates two fluids [4] . Avoidance of this is-

ue that has been known to arise more or less from the intro-

uced discretization error necessitates the application of a distance

einitialization procedure. The level set function φ governed by

q. (8) should be replaced with the other signed distance func-

ion d ( x , t ), which denotes the signed distance of x to the clos-

st point on �. By definition, the signed distance function is dif-

erentiable almost everywhere, and its gradient should satisfy the

ikonal function |∇φ| = 1 in the domain of interest. According to

13] , the value of φ( x , t ) governed by (12) is reinitialized to the

teady solution of the following equation for ψ( x , t ), subject to

( x , τ = 0) = φ( x , t) = ψ 0 , 

∂ψ 

∂τ
+ sgn (ψ 0 ) (|∇ψ | − 1) = 0 (22)

In the above, τ denotes the artificial time and sgn (ψ) =
 H(ψ) − 1 , where H ( ψ) is known as the Heaviside function. So-

ution to Eq. (22) is sought with the time step of �τ = 0 . 25 �x .

n other words, as τ → ∞ , the solution ψ to Eq. (22) satisfies

he eikonal function |∇ψ | = 1 , and the reinitialization procedure

s completed. The Heaviside function is the characteristic function,

hich is defined as 

(ψ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , if ψ < ε

1 
2 

(
1 + 

ψ 

ε + 

1 
π sin 

(
πψ 

ε

))
, if | ψ | ≤ ε

1 , if ψ > ε

It is noted that ε is a small positive number with the value of

= 1 . 5 �x in this study. Such a chosen magnitude can give us

 better convergent result [16] . Eq. (22) governing the evolution

f distance function ψ( x , t ) involves using the Heaviside function

n the physical domain . To avoid oscillatory solutions gener-

ted in the vicinity of �, we apply the WENO (Weighted Essential

on-Oscillatory) spatial discretization scheme [14,15] to get a high-

esolution solution. In our employed closest point formulation of

he distance function, the sign function sgn ( φ) is approximated by

ntroducing a small positive parameter ε to replace Eq. (22) with

he following smoothed redistancing embedding partial differential

quation. 

∂ψ 

∂τ
+ 

(
2 H(ψ 0 ) − 1 

)
(|∇ψ | − 1) = 0 (23)
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In the above, the sign function has been replaced with a

smoother version. Eq. (23) can be also written into the following

Hamiltonian–Jacobi form: 

ψ τ + sgn (ψ 0 ) H(ψ , ∇ψ ) = 0 (24)

where H ( φ, ∇φ) is the corresponding Hamiltonian. By employing

Godunov spatial discretization, Eq. (24) can be further rewritten in

terms of the one-sided derivatives ψ 

+ 
x , ψ 

−
x , ψ 

+ 
y , ψ 

−
y as 

ψ τ + sgn (φ0 ) H 

G (ψ 

+ 
x , ψ 

−
x , ψ 

+ 
y , ψ 

−
y ) = 0 (25)

In the above equation, H 

G is function of one-sided derivatives. 

H 

G (ψ 

+ 
x , ψ 

−
x , ψ 

+ 
y , ψ 

−
y ) 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

if sgn (φ) ≤ 0 , √ 

max 
[
((ψ 

+ 
x ) 

p ) 2 , ((ψ 

−
x ) 

m ) 2 
]

+ max 
[
((ψ 

+ 
y ) 

p ) 2 , ((ψ 

−
y ) 

m ) 2 
]

− 1 

if sgn (φ) > 0 , √ 

max 
[
((ψ 

+ 
x ) 

m ) 2 , ((ψ 

−
x ) 

p ) 2 
]

+ max 
[
((ψ 

+ 
y ) 

m ) 2 , ((ψ 

−
y ) 

p ) 2 
]

− 1 

(26)

Noted that the notations (#) p = max (# , 0) and (#) m =
min (# , 0) . The one-sided derivatives ψ 

+ 
x , ψ 

−
x , ψ 

+ 
y , ψ 

−
y are cal-

culated as follows following the framework of WENO scheme.

Consider a one-dimensional example, the definitions of ψ 

+ 
x , ψ 

−
x 

are respectively as follows 

ψ 

+ 
x 

∣∣∣
i 
= 

ˆ ψ 

+ 
i +1 / 2 

− ˆ ψ 

+ 
i −1 / 2 

x i +1 / 2 − x i −1 / 2 

ψ 

−
x 

∣∣∣
i 
= 

ˆ ψ 

−
i +1 / 2 

− ˆ ψ 

−
i −1 / 2 

x i +1 / 2 − x i −1 / 2 

(27)

The numerical fluxes of ˆ ψ 

+ 
i +1 / 2 

, ˆ ψ 

−
i +1 / 2 

are the Lipschitz continu-

ous functions of several neighboring values ψ i . The numerical flux
ˆ ψ 

+ 
i +1 / 2 

, ˆ ψ 

−
i +1 / 2 

should be respectively computed within the WENO

framework of the right and left biased interpolations. Construction

of the right-biased and left-biased numerical fluxes is given as fol-

lows [15,17] 

ˆ ψ 

−
i + 1 2 

= ω 

L 
1 

ˆ ψ 

(1) 

i + 1 2 ,L 
+ ω 

L 
2 

ˆ ψ 

(2) 

i + 1 2 ,L 
+ ω 

L 
3 

ˆ ψ 

(3) 

i + 1 2 ,L 

ˆ ψ 

+ 
i + 1 2 

= ω 

R 
1 

ˆ ψ 

(1) 

i + 1 2 ,R 
+ ω 

R 
2 

ˆ ψ 

(2) 

i + 1 2 ,R 
+ ω 

R 
3 

ˆ ψ 

(3) 

i + 1 2 ,R 
(28)

In the above, ˆ ψ 

(k ) 

i + 1 
2 

,R 
and 

ˆ ψ 

(k ) 

i + 1 
2 

,L 
(k = 1 , 2 , 3) are respectively ex-

pressed as 

ˆ ψ 

(1) 

i + 1 2 ,L 
= 

1 

3 

ψ i −2 −
7 

6 

ψ i −1 + 

11 

6 

ψ i , 

ˆ ψ 

(1) 

i + 1 2 ,R 
= 

11 

6 

ψ i +1 −
7 

6 

ψ i +2 + 

1 

3 

ψ i +3 

ˆ ψ 

(2) 

i + 1 2 ,L 
= −1 

6 

ψ i −1 + 

5 

6 

ψ i + 

1 

3 

ψ i +1 

ˆ ψ 

(2) 

i + 1 2 ,R 
= 

1 

3 

ψ i + 

5 

6 

ψ i +1 −
1 

6 

ψ i +2 

ˆ ψ 

(3) 

i + 1 2 ,L 
= 

1 

3 

ψ i + 

5 

6 

ψ i +1 −
1 

6 

ψ i +2 

ˆ ψ 

(3) 

i + 1 2 ,R 
= −1 

6 

ψ i −1 + 

5 

6 

ψ i + 

1 

3 

ψ i +1 (29)

The weighting coefficients w 

R,L 
k 

(k = 1 , 2 , 3) shown in (28) are

nonlinear. This WENO scheme can make the linear differential

Eq. (23) to become its nonlinear counterpart. As a result, non-

oscillatory solution can be possibly obtained. The coefficients w 

R,L 
k 
erived in [17] can yield the fifth-order accurate spatial discretiza-

ion provided that 

 

R,L 
k 

= 

αR,L 
k ∑ 

k α
R,L 
k 

, αR,L 
k 

= 

c k 

(βR,L 
k 

+ ˆ ε ) 2 
(30)

In the above, βR,L 
k 

are the smoothness indicators of the k th sten-

il, and ˆ ε is a small positive number ( 10 −12 ) introduced to prevent

ivision by zero. The smoothness indicators βk (k = 1 , 2 , 3) for the

eft-biased are shown as follows 

L 
1 = 

13 

12 

(ψ i −2 − 2 ψ i −1 + ψ i ) 
2 + 

1 

4 

(ψ i −2 − 4 ψ i −1 + 3 ψ i ) 
2 

L 
2 = 

13 

12 

(ψ i −1 − 2 ψ i + ψ i +1 ) 
2 + 

1 

4 

(ψ i −1 − ψ i +1 ) 
2 

L 
3 = 

13 

12 

(ψ i − 2 ψ i +1 + ψ i +2 ) 
2 + 

1 

4 

(3 ψ i − 4 ψ i +1 + ψ i +2 ) 
2 (31)

As for the smoothness indicators for the right-biased βk (k =
 , 2 , 3) , they are expressed as 

R 
1 = 

13 

12 

(ψ i +1 − 2 ψ i +2 + ψ i +3 ) 
2 + 

1 

4 

(3 ψ i +1 − 4 ψ i +2 + ψ i +3 ) 
2 

R 
2 = 

13 

12 

(ψ i − 2 ψ i +1 + ψ i +2 ) 
2 + 

1 

4 

(ψ i − ψ i +2 ) 
2 

R 
3 = 

13 

12 

(ψ i −1 − 2 ψ i + ψ i +1 ) 
2 + 

1 

4 

(ψ i −1 − 4 ψ i + 3 ψ i +1 ) 
2 

(32)

The optimal weights shown in (30) are c 1 = 1 / 10 , c 2 =
 / 10 , c 3 = 3 / 10 , which yield the fifth order accuracy in the ap-

roximation of the spatial derivative terms. 

For clarification, the algorithm of the reinitialization procedure

s summarized below: 

• Beginning of the reinitialization procedure. 

– Iteration starts –

• Calculate the smoothness indicators βR,L 
k 

(k = 1 , 2 , 3) from equations (31) and 

(32) . 

• Compute the corresponding nonlinear weighting coefficients ω 

R,L 
k 

(k = 1 , 2 , 3) 

from Eq. (30) . 

• Calculate ˆ ψ 

+ 
i +1 / 2 

and ˆ ψ 

−
i +1 / 2 

with the nonlinear weighting coefficients from 

equations (28) and (29) . 

• Compute the one-sided derivatives from Eq. (27) . 

• Calculate H G from Eq. (26) . 

• Update ψ by solving Eq. (25) . 

– Iteration stops until the solution reaches steady state condition –

• As reinitialization procedure is completed, let φ = ψ

. Numerical results 

.1. Order of reinitialization 

To show the order of method we used in reinitialization, we in-

estigated the problem introduced in [20] and [19] . The level set

unction is initialized with the following equation in a computa-

ional domain  : [ −5 , 5] × [ −5 , 5] . 

0 = 

(
0 . 1 + (x − 3) 2 + (y − 3) 2 

)(
3 −

√ 

x 2 + y 2 
)

o evaluate the order of our method, the L 1 norm of the difference

 1 between the exact signed distance function and the numerical

olution is determined by 

 1 = || φexact − φnumerical || 1 = 

1 

N 

∑ 



∣∣∣3 −
√ 

x 2 
i, j 

+ y 2 
i, j 

− φnumerical 
i, j 

∣∣∣

he corresponding L 1 norm errors e 1 obtained under different

esh sizes using different methods are listed in following table 
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Fig. 1. Validation 1, present (a)–(d), ref. [18] , (e) Star-shaped curve’s motion by mean curvature. The computation is carried out in 300 × 300 grids, with the mesh size of 

h = dx = dy and the time step of dt = 0 . 0 0 01 × h . 
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Fig. 2. Validation 2, present (a)–(d), ref. [18] , (e) Wound spiral motion by mean curvature. The computation is carried out in 300 × 300 grids, with the mesh size of 

h = dx = dy and the time step of dt = 0 . 0 0 0 01 × h . 
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Fig. 3. Case 1. Computation is carried out in 200 × 200 grids in a 10 by 10 domain, with the mesh size of h = �x = �y = 0 . 05 and the time step of �t = 0 . 01 × h . Red line 

denotes the solution obtained with reinitialization procedure while green dashed line denotes the solution obtained without reinitializtion procedure. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Scheme Mesh size L 1 norm error Order 

Present method 10 / 64 3 . 419 × 10 −4 –

10 / 128 3 . 109 × 10 −5 3.45 

10 / 256 3 . 833 × 10 −6 3.02 

[19] (CR-1) 10 / 64 1 . 273 × 10 −3 –

10 / 128 3 . 060 × 10 −4 2.1 

10 / 256 7 . 646 × 10 −5 2.0 

[20] (RSC) 10 / 64 2 . 0 0 0 × 10 −3 –

10 / 128 4 . 958 × 10 −4 2.0 

10 / 256 1 . 211 × 10 −4 2.0 

.2. Validation 

Our validation studies were carried out by comparing the sim-

lated results with the numerical result obtained by Osher and

ethian in [18] . Good agreement between two sets of the re-

ults can be clearly seen in Figs. 1 and 2 for the star-shaped

nd wounded spiral motions. The curves have the identical evolu-

ion subject to two initial conditions. Application of our proposed

CD scheme to predict mean curvature driven motion of curves is

herefore justified. 

.3. Prediction of motion of curves driven by mean curvature flow 

The linear part of the R.H.S. of Eq. (9) exhibits that the solu-

ion φ shall be smeared from a higher φ value to a lower φ value

ll over the space until the Laplacian of φ approaches zero. The

ource terms in R.H.S. of Eq. (9) including Laplacian and nonlinear
erms are always nonzero since φ is the distance function. As a re-

ult, the motion of curve is always activated until it is shrunk to a

oint. Three cases of different initial curves are investigated in this

ection, namely the dumbbell-like, star-like and dumbbell-star-like

urves. They are denoted as the cases 1, 2 and 3, respectively. We

ill also show how the applied reinitialization procedure affects

he motion of curve. 

Fig. 3 shows the predicted motion driven by mean curvature for

ase 1. It can be observed that each point on the curve begins to

hrink in different speeds along the curve. Curves with a higher

urvature have a higher speed. The shape of the curve at t = 0 . 0 is

radually evolved to an ellipse at t = 2 . 0 , and it can be expected

hat the curve will be finally evolved to a circle since it has the

owest surface energy in its physical meaning. From Eq. (9) , it is

evealed that the motion of the curve is attributed to the effects

f linear and nonlinear terms. It is worthy to know which source

erm is the dominant one in the time evolution and has a stronger

ffect on the curve. 

Figs. 6 a and 6 b show the relation among the curvature κ , linear

ource term ∇ 

2 φ and nonlinear source term N ( φ) for the solution

t t = 1 . 0 with and without reinitialization. The relation is given

long the curve �( s ) by introducing a parameter s. N ( φ) is found

o have a very small magnitude in comparison with that of ∇ 

2 φ,

mplying that the evolution of the mean curvature driven curve

s dominated by the diffusion process. Another way to understand

hy Eq. (9) can be regarded as the linear diffusion equation with

einitialization procedure is that ∇φ = 1 is satisfied when applying

einitialization procedure in every computational step. According
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Fig. 4. Case 2. Computation is carried out in 200 × 200 grids in a 10 by 10 domain, with the mesh size of h = �x = �y = 0 . 05 and the time step of �t = 0 . 01 × h . Red line 

denotes the solution obtained with reinitialization procedure while green dashed line denotes the solution obtained without reinitialization procedure. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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to the definition of N ( φ) in Eq. (10) , it should be zero under a per-

fect reinitialization by which the derivative of a constant is zero.

Since discretization error will be introduced more or less in the

reinitialization step , the value of N ( φ) shall not be exactly equal

to zero. 

Reinitialization plays an important role in the motion of curve

as it is shown in Fig. 6 b, since this procedure redistributes ∇ 

2 φ
and N ( φ) but without affecting the motion of curves as it is shown

in Fig. 3 . To illustrate how reinitialization affects ∇ 

2 φ and N ( φ) in

Eq. (9) , the following two ratios are defined 

ω L = 

|∇ 

2 φ| 
|∇ 

2 φ| + | N(φ) | 
ω N = 

| N(φ) | 
|∇ 

2 φ| + | N(φ) | 
(33)

Fig. 7 a shows that the ratio ω N along the curve with reinitial-

ization procedure being made at t = 1 . 0 . ω N is nearly a constant

and is close to zero until the curvature approaches zero and be-

comes negative on �( s ). Also, the maximum of ω N occurs at κ = 0 .

The ratios of the nonlinear terms N ( φ) along the curve are all

smaller than 0.05. As a result, Eq. (9) can be regarded as the diffu-

sion dominated equation with the implementation of reinitializa-

tion procedure. Fig. 7 b shows the evolution of ω N without reini-

tialization at t = 1 . 0 . A very different relation between κ and ω N 

is shown. Starting from the value of 0.2, ω N increases its value

while curvature decreases. The maximum also occurs at κ = 0 . Af-

terwards, ω N is rapidly decreased to zero while the curvature of

curve keeps decreasing. It is worthy to note here that the relation
etween ω N and curvature κ depends on the sign of κ in the sense

hat 

∂ 2 ω N 

∂ κ2 
< 0 and 

∂ω N 

∂κ
= 0 

∣∣∣
κ=0 

(34)

Fig. 8 a shows that at t = 2 . 0 the linear source term still domi-

ates the nonlinear term with the reinitialization procedure being

pplied. The ratio N ( φ) is nearly a constant and its value is close to

ero along the curve as it is shown in Fig. 9 a. Apparently, the solu-

ion for the case without performing reinitialization procedure ex-

ibits oscillatory solution, which indicates the deficiency of WENO

cheme. Solutions of κ , ∇ 

2 φ and N ( φ) are oscillating along the

urve, as it can be seen in Fig. 8 b, while the solutions in Fig. 8 a be-

ave differently. In Fig. 9 b, ω N for the solution obtained at t = 2 . 0

ithout reinitialization procedure looks similarly to that predicted

t t = 1 . 0 . Since the curvature along the curve at t = 2 . 0 is positive,

 N and κ satisfy 
∂ω N 
∂κ

< 0 . 

Prediction of a more complex shape of curve helps us to ex-

lain the reason of using the combined compact scheme to solve

q. (9) . Fig. 4 shows the motion of the time evolving curve for case

, which contains a more complicated curvature evolution along

he curve. As we mentioned that the motion of the curve is driven

y curvature, in physical sense the motion of curve can be consid-

red to be driven by surface tension force. This type of motion has

 tendency to reach its minimal surface energy (or minimal surface

rea), or minimal perimeter in the current two dimensional stud-

es. As it can be seen in Fig. 4 , the curve gradually becomes a circle

t t = 0 . 3 . 
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Fig. 5. Case 3. Computation is carried out in 200 × 200 grids in a 10 by 10 domain, with the mesh size of h = �x = �y = 0 . 05 and the time step of �t = 0 . 01 × h . Red line 

denotes the solution obtained with reinitialization procedure while green dashed line denotes the solution obtained without reinitialization procedure. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Plots for indicating the relation among κ , N ( φ) and ∇ 

2 φ along the curve �( s ) at t = 1 . 0 for case 1. (a) with reinitialization procedure; (b) without reinitialization 

procedure. 
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Fig. 7. Plots for ω N along the curve �( s ) at t = 1 . 0 for case 1. (a) with reinitialization procedure; (b) without reinitialization procedure. 

Fig. 8. Plots for indicating the relation among the κ , N ( φ) and ∇ 

2 φ along the curve �( s ) at t = 2 . 0 for case 1. (a) with reinitialization procedure; (b) without reinitialization 

procedure. 
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The curve with a complicated evolution and a discontinuity in

curvature is then considered for showing the capability of applying

the CCD scheme to solve Eq. (9) . Fig. 5 shows the evolution of the

curve for case 3. In this case, a dramatic change of the curvature is

seen along the curve. Note that case 3 is nothing but adding a star-

like curve to the two sides of the dumbbell-like curve. Minimal

perimeter is reached at both sides of the curve in the beginning of

motion and, then, to the whole curve. Fig. 10 a shows the ratio of

nonlinear term N ( φ) for the predicted solution without perform-

ing reinitialization in case 3 at t = 0 . 05 . The evolution of curve is

also dominated by diffusion, due to the application of reinitializa-
ion procedure. The maximum of ω N occurs at κ = 0 , just like that

redicted in case 1. Fig. 10 b exhibits the evolution of ω N from the

olution without reinitialization and ω N and κ also satisfy Eq. (34) .

ig. 10 a and 10 b show the solutions with and without reinitializa-

ion. Both solutions are oscillatory due to the discontinuous cur-

ature along the curvature. However, while reinitialization proce-

ure is performed, eikonal function |∇φ| = 1 is satisfied, and this

esults in a smoother solution. It’s worthwhile to note that the

urve continuously evolves even the curve has reached its mini-

al perimeter. By virtue of Eq. (13) , the motion is known to be

riven by its local curvature. Since curvature is a positive constant
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Fig. 9. Plots for ω N along the curve �( s ) at t = 2 . 0 for case 1. (a) with reinitialization procedure; (b) without reinitialization procedure. 

Fig. 10. Plots for ω N along the curve �( s ) at t = 0 . 05 for case 3. (a) with reinitialization procedure; (b) without reinitialization procedure. 
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n the perfect circle, the curve keeps shrinking until it becomes a

oint. 

In summary, three mean curvature flows have been investigated

y using CCD and TVD-RK3 schemes. All the cases under investi-

ation have shown the tendency to reach their minimal perime-

er locally or globally. Reinitialization does not affect the motion of

urves, but it can redistribute the ratio of the linear and nonlinear

erms on the R.H.S. of Eq. (9) . Solutions obtained with reinitial-

zation procedure are strongly affected by the linear source term

n Eq. (9) . As a result, mean curvature flow can be regarded as

eing under the control of pure diffusion of distance function φ
hen reinitialization procedure is applied. Solution obtained with-
t  
ut reinitialization procedure is oscillatory in comparison with the

mooth solution with reinitialization procedure being performed.

he ratio of the nonlinear term increases while the curvature de-

reases in the region with κ > 0. This ratio reaches its maximum at

= 0 , and then decreases with the curvature while κ < 0. 

.4. Comparison of solutions obtained by CCD and second-order 

entered schemes 

In this section, the reason of applying CCD scheme to predict

he motion of curves will be explained through several studies in
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Fig. 11. Task 1. Comparison of the solutions sought at different times by applying the CCD scheme and the second-order centered difference scheme. The computations are 

carried out with h = dy = dx = 0 . 05 and dt = 0 . 01 × h . (a) t = 1 . 0 ; (b) t = 2 . 0 . 

Fig. 12. Task 2. Comparison of the solutions sought at different times by applying the CCD scheme and the second-order centered difference scheme. The computations are 

carried out with h = dy = dx = 0 . 05 and dt = 0 . 01 × h . (a) t = 0 . 0625 ; (b) t = 0 . 250 . 
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this subsection. Initially, the shape of the curve is given as 

√ 

(x − x 0 ) 2 + (y − y 0 ) 2 = 2 . 0 + 1 . 0 cos (ω 1 θ ) + 0 . 5 sin (ω 2 θ ) 

(35)

where θ = tan 

−1 [(y − y 0 ) / (x − x 0 )] . The degree of complexity of

the curve is determined by the coefficients, ω 1 and ω 2 . The larger

values of ω 1 and ω 2 , the larger change of curvatures along the

curve. In a box [10,10], the center of the curve is located at

(x , y ) = (5 , 5) . 
0 0 
.4.1. Task 1, (ω 1 , ω 2 ) = (0 , 0) 

Investigation of this case is to show that either CCD or second-

rder centered difference scheme is applicable to disctetize the

patial derivatives. Two solutions remain smooth and are identi-

al with each other. In this task, the choice of ω 1 = ω 2 = 0 results

n a circle. As it is shown in Fig. 11 , two solutions are identical dur-

ng the evolution of two curves. Constant curvature is seen along

he curve. Both CCD and second-order centered schemes yield ac-

urately simulated evolutions. 
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Fig. 13. Task 3. Comparison of the solutions sought at different times by applying the CCD scheme and the second-order centered difference scheme. The computations are 

carried out with h = dy = dx = 0 . 05 and dt = 0 . 01 × h . (a) t = 0 . 0625 ; (b) t = 0 . 250 . 
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.4.2. Task 2, (ω 1 , ω 2 ) = (5 , 6) 

Another task involves variable curvatures by setting ω 1 = 5 and

 2 = 6 in (35) . According to the snap shot of the predicted curve,

he solution sought from the second-order centered scheme is

ore dissipated in the vicinity of the convex and concave parts

f the curve. In other words, application of the second-order cen-

ered difference scheme yields a smoother solution due to a largely

ntroduced discretization error in the approximation of spatial

erivatives. By applying the CCD scheme, one can calculate the

urvature term more accurately than that using the second-order

entered scheme. As a result, the solution obtained from the CCD

cheme is less polluted by the dissipation error introduced to re-

ions with a large curvature, or along the convex and concave parts

f the curve. 

.4.3. Task 3, (ω 1 , ω 2 ) = (5 , 12) 

Fig. 13 shows the predicted motion of the curve with a more

omplicated curvature than the curve investigated in task 2. As we

entioned earlier, the solutions obtained from the second-order

entered difference scheme are smeared more quickly than CCD

cheme does in the sense of introducing more artificial viscosity

n the coarse of the simulation of Eq. (9) . 

In summary, it is advantageous to apply the CCD scheme to

apture more accurately the motion of curves with less dissi-

ation error being added to the convex and concave parts of

urve. Second-order centered difference scheme also provides a

ood prediction of the motion of curve in case that the curva-

ure does not change rapidly along the curve. If the shape of curve

s too complicated, second-order centered difference scheme is

ot recommended especially in the very beginning phase of the

alculation. 

. Concluding remarks 

Within the framework of semi-discretization schemes, an op-

imal third-order accurate TVD Runge–Kutta temporal scheme for

ime derivative term and a fifth-order accurate combined compact
ifference scheme for spatial derivative terms in the level set equa-

ion have been developed in a three-point grid stencil. This com-

utationally efficient finite difference scheme has been applied to

imulate mean curvature driven motion of curves, subject to dif-

erent initial curves, with great success. Our main objective of this

tudy is to enlighten how two different mechanisms control the

volution of curve and how they are related to the curvature of

he curve under investigation. In the evolution, the surface tension

riven curve is subject all the time to the damping effect applied

n each point of the curve. 

eferences 

[1] Hildebrandt S , Karcher H . Geometric analytic and nonlinear partial differ-
ential equations. New York: Springer-Verlag Berlin Heidelberg; 2003 . ISBN

3-540-44051-8. 
[2] Dierkes U , Hildebrandt S , Sauvigny F . Minimal surface, grundlehren der math-

ematischen wissenschaften. Berlin Springer-Verlag; 1992 . 

[3] Smereka P . Semi-implicit level set methods for curvature and surface diffusion
motion. J Sci Comput 2003;19:439–56 . 

[4] Osher S , Fedkiw RP . Level set methods: an overview and some recent results.
J Comput Phys 2001;169:463–502 . 

[5] Sethian JA . Level set methods: evolving interfaces in geometry, fluid mechan-
ics, computer vision, and materials science. Cambridge University Press; 1996 . 

[6] Sethian JA , Smereka P . Level set methods for fluid interface. Ann Rev Fluid

Mech 2003;35:341–72 . 
[7] Chopp DL . Motion by intrinsic laplacian of curvature. Interfaces Free Boundary

1999;1:107–23 . 
[8] Khenner M , Averbuch A , Israeli M , Nathan M . Numerical simulation of

grain-boundary grooving by level set method. J Comput Phys 2001;170:764–84 .
[9] Tasdizen T , Whitaker R , Burchard P , Osher S . Geometric surface processing via

normal maps. UCLA CAM report; 2002 . 02–03 

[10] Shu CW , Osher S . Efficient implementation of essentially non-oscillatory shock-
-capturing schemes. J Comput Phys 1968;77:439–61 . 

[11] Gottlieb S , Shu CW . Total variation diminishing runge-kutta schemes. Math
Comput 1998;67:73–85 . 

[12] Chu PC , Fan C . A three point combined compact difference scheme. J Comput
Phys 1998;140:370–99 . 

[13] Sussman M , Smereka P , Osher S . A level set approach for computing solutions
to incompressible two-phase flow. J Comput Phys 1994;114:146–59 . 

[14] Liu XD , Osher S , Chan T . Weighted essential non-oscillatory schemes. J Comput

Phys 1994;115:200–12 . 
[15] Jiang GS , Shu CW . Efficient implementation of weighted ENO schemes. J Com-

put Phys 1996;126:202–28 . 
[16] Cheng LT , Tsai R . Redistancing by flow of time dependent eikonal equation. J

Comput Phys 20 08;227:40 02–17 . 

http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0016


312 H.L. Wen et al. / Computers and Fluids 170 (2018) 299–312 

 

 

 

 

 

 

[  
[17] Shu CW . High order ENO and WENO schemes for computational fluid dy-
namics. In: Barth TJ, Deconinck H, editors. High-order methods for computa-

tional physics. Lecture notes in computational science and engineering, vol. 9.
Springer; 1999. p. 439–582 . 

[18] Osher S , Sethian JA . Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobian formulations. J Comput Phys

1988;79:12–49 . 
[19] Hartmann D , Meinke M , Schroder W . Differential equation based constrained
reinitialization for level set methods. J Comput Phys 2008;227:6821–45 . 

20] Russo G , Smereka P . A remark on computing distance functions. J Comput Phys
20 0 0;163:51–67 . 

http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30257-3/sbref0020

	A combined compact finite difference scheme for predicting the evolution of a mean curvature driven interface
	1 Introduction
	2 Level set equation
	3 Numerical method
	3.1 Optimal third-order TVD Runge-Kutta temporal scheme
	3.2 Combined compact finite difference scheme for spatial derivative terms
	3.3 Distance reinitialization

	4 Numerical results
	4.1 Order of reinitialization
	4.2 Validation
	4.3 Prediction of motion of curves driven by mean curvature flow
	4.4 Comparison of solutions obtained by CCD and second-order centered schemes
	4.4.1 Task 1, 
	4.4.2 Task 2, 
	4.4.3 Task 3, 


	5 Concluding remarks
	 References


