

Network Simulation and Testing

Polly Huang
Department of Electrical Engineering
National Taiwan University
http://cc.ee.ntu.edu.tw/~phuang
phuang@cc.ee.ntu.edu.tw

Polly @ NTU

Copyright © 2008

Traffic Papers

- V. Paxson, and S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transactions on Networking, Vol. 3 No. 3, pp. 226-244, June 1995
- M. E. Crovella and A. Bestavros, Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes. IEEE/ACM Transactions on Networking, Vol 5, No. 6, pp. 835-846, December 1997
- Anja Feldmann; Anna C. Gilbert; Polly Huang; Walter Willinger, Dynamics of IP traffic: A study of the role of variability and the impact of control. In the Proceeding of SIGCOMM '99, Cambridge, Massachusetts, September 1999
- Vern Paxson. End-to-end internet packet dynamics. ACM/IEEE Transactions on Networking, 7(3):277-292, June 1999

Polly @ NTU

Copyright © 2008

Because

- Traces are available
- Researchers care about
 - The validness of their assumption
 - The network traffic being independent Poisson
- Operation people care a lot about
 - The amount of buffer/bandwidth to provision for their networks
 - The profit comes from satisfying customers with minimum infrastructure cost

Polly @ NTU

Copyright © 2008

-

Telephone Network

- Assumptions
 - Poisson call arrivals
 - Exponential call duration
- Wonderful Property
 - Poisson mixing with Poisson is still Poisson
 - Average rate well-characterize a call
- The whole queueing theory

Polly @ NTU

Copyright © 2008

Data Network?

- Wide-Area Traffic: The Failure of Poisson Modeling
- V. Paxson, and S. Floyd
- IEEE/ACM Transactions on Networking, Vol. 3 No. 3, pp. 226-244, June 1995

Polly @ NTU

Copyright © 2008

7

A Study of the Wide-Area Traffic

- Two units of examination
 - Connections vs. packets
- A sizeable number of traces
 - ~4M connections, ~26M packets
 - Different location and different time
- Inter-arrival processes
 - TCP connections
 - Telnet packets
 - FTPDATA connections
- Going self-similar

Polly @ NTU

Copyright © 2008

Unit of Observation

- Telephone network
 - Circuit-switched
 - The unit is circuit, i.e., a call
 - People picking up the phone and talk for a while
- Data network
 - Packet-switched
 - The unit is packet
 - Another unit is connection, comparable to call
 - People starting up an FTP connection and send data for a while

Polly @ NTU

Copyright © 2008

0

Packet ⊂ Connection

- Hosts send/receive packets over a channel at the transport layer
 - Reliable: TCP
 - Non-reliable: UDP
- Packets from various channels multiplex at the network layer
 - IP Routers switched on the packets

Polly @ NTU

Copyright © 2008

Application Dependent

- TELNET
 - Users typing 'telnet cc.ee.ntu.edu.tw'
- FTP
 - User typing 'ftp cc.ee.ntu.edu.tw'
- FTPDATA burst
 - User typing 'mget net-simtest-*.ppt'
- FTPDATA
 - Each individual TCP transfer
- NNTP & SMTP
 - Machine initiated and/or timer-driven

Polly @ NTU

Copyright © 2008

13

9

Independent and Poisson?

	Y/N
TELNET	
FTP	
FTPDATA	
FTPDATA burst	
SMTP	
NNTP	

Polly @ NTU

Copyright © 2008

Quick Summary

- TELNET and FTP
 - Independent and Poisson
 - Both the 1-hour and 10-min scales
- FTPDATA bursts and SMTP
 - At the 10-min interval
 - Not 'terribly far' from Poisson
 - SMTP inter-arrival is not independent
- FTPDATA, NNTP
 - Clearly not Poisson

Polly @ NTU

Copyright © 2008

15

Before One Can Explain

- Human-initiated process
 - Independent and Poisson
- Non-human-initiated process
 - Well, who knows

Polly @ NTU

Copyright © 2008

Explanations I

- TELNET and FTP
 - User initiated
 - Users typing 'telnet cc.ee.ntu.edu.tw'
 - User typing 'ftp cc.ee.ntu.edu.tw'
- FTPDATA bursts
 - User typing 'mget net-simtest-*.ppt'
 - Actually, taking the closely-spaced connections... (<= 4 sec)
- FTPDATA
 - TCP connections

Polly @ NTU

Copyright © 2008

17

Explanations II

- NNTP
 - Flooding to propagate network news
 - Arrival of news trigger another
 - Periodical and implementation/configuration dependent
- SMTP
 - Mailing list
 - Timer effects from the DNS queries

Polly @ NTU

Copyright © 2008

TELNET Packets Poisson?

No, heavy-tailed!

Polly @ NTU

Copyright © 2008

19

Show in 4 Ways

- Distribution of packet inter-arrival time
 - Exponential processes ramp up significantly slower
- Packet arrival pattern in seconds and 10 seconds
 - Exponential processes are smoother at the 10sec scale
- Variance-time plot
 - Change of variance to time scale
 - Var of exponential processes decays quickly
- Packet arrival rate process in seconds
 - By the sole visual effect
 - Exponential processes are less spiky

Polly @ NTU

Copyright © 2008

Full TELNET model?

Poisson connection arrival Heavy-tailed packet arrival within a connection

Polly @ NTU

Copyright © 2008

21

FTPDATA

- Connection arrival is not Poisson
 - Clustered in bursts
- Burst sizes in bytes is quite heavy-tailed
 - A 0.5% of bursts contribute to 50% of the traffic volume

Polly @ NTU

Copyright © 2008

OK. We know it's not Poisson. But what?

Polly @ NTU

Copyright © 2008

23

Going Self-Similar

- Well, since other evidences suggest so
- And it's the next good thing
- Go straight into producing self-similar traffic

Polly @ NTU

Copyright © 2008

Producing Self-Similar Traffic

- ON/OFF sources
 - Fix ON period rate
 - ON/OFF period length heavy-tailed
- M/G/∞
 - Customer arrival being Poisson
 - Service time being heavy-tailed with infinite variance
- Authors' own model
 - Pseudo-self-similar
 - Not long-range dependent though

Polly @ NTU

Copyright © 2008

25

Performance Implication

- Low-priority traffic starvation
 - Shall the high-priority traffic being long-range dependent (bursty)
- Admission control based on recent traffic failing
 - 'Congestions haven't happened for a long while' does not mean it won't happen now

Polly @ NTU

Copyright © 2008

Self-Similar What?

- Self-similarity in World Wide Web Traffic: Evidence and Possible Causes
- Mark E. Crovella; Azer Bestavros
- IEEE/ACM Transactions on Networking, Vol 5, No. 6, pp. 835-846, December 1997

Polly @ NTU

Copyright © 2008

Definition

- X: a stationary time series
- X^(m): the m-aggregates
 - Summing the time series over non-overlapping blocks of m
- X is H-self-similar if
 - \bullet X $^{(m)}$ has the same distribution for all positive m

Polly @ NTU

Copyright © 2008

21

Same Distribution?

- Same autocorrelation function
 - $r(k) = E[(X_t \mu)(X_{t+k} \mu)]/\sigma^2$
- r(k) ~ k⁻β
 - $k \rightarrow \infty$
 - $0 < \beta < 1$

Polly @ NTU

Copyright © 2008

Significance of k^{-β}

- Long-range dependence
 - Just another way of characterizing the same thing
- Power-law decay
 - Slower than exponential decay
 - Therefore traffic does not smooth up
- β < 1
 - r(k) does not converge
 - Sum of r(k) infinite, I.e., variance infinite

Polly @ NTU

Copyright © 2008

33

Just FYI

 \bullet The Hurst parameter: 1- $\beta/2$

Polly @ NTU

Copyright © 2008

Tests for Self-Similarity

- Variance-time plot
 - A line with slope $-\beta > -1$
- R/S plot
 - Rescaled range grows as the number points included
 - A line with slope H an the log-log scale
- Periodogram
 - Power spectrum to frequency
 - A line with slope β 1 at the log-log scale
- Whittle estimator
 - Confidence to a form
- FGN or Fractional ARIMA

Pareto Review

- Exponential
 - $f(x) = ce^{-cx}$
- Heavy-tailed
 - $F(x) \sim x^{-c}$, 0 < c < 2
 - Hyperbolic
- Pareto
 - $f(x) = ck^c x^{-c-1}$
 - $F(x) = 1 (k/x)^c$
 - A line at the log-log scale of F(x) plot

Polly @ NTU

Copyright © 2008

In Addition to the Theory

- Show consistency of being self-similar in all sorts of tests
- Implication to traffic engineering

Polly @ NTU

Copyright © 2008

27

Why Self-Similar?

- Theory suggests
 - Fix rate ON/OFF process
 - Heavy-tailed length
- Looking into the length
 - The ON time: transmission time
 - The OFF time: silent time

Polly @ NTU

Copyright © 2008

Polly @ NTU Copyright © 2008

So, enough Math. Just tell me what to do!

It depends!

Polly @ NTU

Copyright © 2008

41

Cutting to the Chase

- The structural model
 - user level: Poisson arrival and heavy-tailed duration
 - network level: TCP closed-loop feedback control and ack clocking
 - Variability: delay and congestion
- Let simulators track the complex behavior

Polly @ NTU

Copyright © 2008

Why not FGN?

- IP Traffic Dynamics: The Role of Variability and Control
- Anja Feldmann; Anna C. Gilbert; Polly Huang; Walter Willinger
- In the Proceeding of SIGCOMM '99, Cambridge, Massachusetts, September 1999

Polly @ NTU

Copyright © 2008

12

Wavelet Analysis

- FFT
 - Frequency decomposition
 - f_i, Fourier coefficient
 - Amount of the signal in frequency j
- WT: wavelet transform
 - Frequency (scale) and time decomposition
 - d_{i,k}, wavelet coefficient
 - Amount of the signal in frequency j, time k

Polly @ NTU

Copyright © 2008

Self-similarity

- Energy function
 - $E_j = \Sigma (d_{j,k})^2 / N_j$
 - Weighted average of the signal strength at scale j
- Self-similar process
 - $E_j = 2^{j(2H-1)}C$ <- the magic!!
 - $\log_2 E_j = (2H-1)j + \log_2 C$
 - linear relationship between log₂ E_j and j

Polly @ NTU

Copyright © 2008

Internet Traffic is Weird!

- Different properties at different time scales
 - Large scales: self-similarity
 - Medium scale: periodicity
 - Small scale: ??? (possibly multifractal)

Polly @ NTU

Copyright © 2008

55

New Queuing Theory?

- For chaotic Internet traffic
- Only pen and paper

Polly @ NTU

Copyright © 2008

- Probably not in the near future
- Confirmed by the experts

Polly @ NTU

Copyright © 2008

57

A Few Reasons

- Not exactly self-similar (FGN big no no)
- 'Shape' of self-similarity changes with the network conditions
- Don't know what self-similar processes add up to (mathematically intractable)
- Don't know what those strange small-scale behavior is exactly

Polly @ NTU

Copyright © 2008

Therefore

- The structural model
 - User level: Poisson arrival and heavy-tailed duration
 - Network level: TCP closed-loop feedback control and ack clocking
 - Variability: delay and congestion
- Let simulators track the complex behavior

Polly @ NTU

Copyright © 2008

59

Identifying Internet Traffic

Failure of Poisson
Self-similar Traffic
Practical Model

Packet Dynamics

Polly @ NTU

Copyright © 2008

Polly @ NTU Copyright © 2008

Web Surfing Failures

- The 'window' waving forever?
- An error message saying network not reachable
- An error message saying the server too busy
- An error message saying the server is down
- Anything else?

Polly @ NTU

Copyright © 2008

Network Specific Failures

- The 'window' waving forever?
- An error message saying network not reachable
- An error message saying the server too busy
- An error message saying the server is down
- Anything else?

Polly @ NTU

Copyright © 2008

63

The Causes

- The 'window' waving forever
 - Congestion in the network
 - Buffer overflow
 - Packet drops
- An error message saying network not reachable
 - Network outage
 - Broken cables, Frozen routers
 - Route re-computation
 - Route instability

Polly @ NTU

Copyright © 2008

Back to the Problem

- But how non-perfect is the Internet?
- Equivalent of
 - Packets can be dropped
 - How frequent
 - How much
 - Routes may be unstable
 - How frequent
 - For how long

Polly @ NTU

Copyright © 2008

65

Significance

- Knowing the characteristics of packet drops and route instability helps
 - Design for fault-tolerance
 - Test for fault-tolerance

Polly @ NTU

Copyright © 2008

Packet Dynamics

- End-to-End Internet Packet Dynamics
- Vern Paxson
- ACM/IEEE Transactions on Networking, 7(3):277-292, June 1999

Polly @ NTU

Copyright © 2008

67

Emphasis in Reverse Order

- Real subject of study
 - Packet loss
 - Packet delay
- Necessary assessment
 - The unexpected
 - Bandwidth estimation

Polly @ NTU

Copyright © 2008

Measurement

- Instrumentation
 - 35 sites, 9 countries
 - Education, research, provider, company
- 2 runs
 - N1: Dec 1994
 - N2: Nov-Dec 1995
 - 21 sites in common

Polly @ NTU

Copyright © 2008

60

Measurement Methodology

- Each site running NPD
 - A daemon program
 - Sender side sends 100KB TCP transfer
- Sender and receiver sides both
 - tcpdump the packets
- Noteworthy
 - Measurement occurred in Poisson arrival
 - Unbiased to time of measurement
 - N2 used big max window size
 - Prevent window size to limit the TCP connection throughput

Polly @ NTU

Copyright © 2008

Packet Loss

- Overall loss rate:
 - N1 2.7%, N2 5.2%
 - N2 higher, because of big max window?
 - I.e. Pumping more data into the network therefore more loss?
- Big max window in N2 is not a factor
 - By separating data and ack loss
 - Assumption: ack traffic in a half lower rate
 - Won't stress the network
 - Ack loss: N1 2.88%, N2 5.14%
 - Data loss: N1 2.65%, N2 5.28%

Polly @ NTU

Copyright © 2008

71

Quiescent vs. Busy

- Definition
 - Quiescent: connections without ack drops
 - Busy: otherwise
- About 50% of the connections are quiescent
- For connections are busy
 - Loss rate: N1 5.7%, N2 9.2%

Polly @ NTU

Copyright © 2008

Towards a Markov Chain Model

- For hours long
 - No-loss connection now indicates further no-loss connection in the future
 - Lossy connection now indicates further lossy connections in the future
- For minutes long
 - The rate remains similar

Polly @ NTU

73

Another Classification

- Data
 - Loaded data: packets experiencing queueing delay due to own connection
 - Unloaded data: packets not experiencing queueing delay due to own connection
 - Bottleneck bandwidth measurement is needed here to determine whether a packet is loaded or not
- Ack
 - Simply acks

Polly @ NTU

Copyright © 2008

- Although loss rate very high (47%, 65%, 68%), all connections complete in 10 minutes
- Loss of data and ack not correlated
- Cumulative distribution of per connection loss rate
 - Exponential for data
 - Not so exponential for ack
 - Adaptive sampling contributing to the exponential observation?

Polly @ NTU

Copyright © 2008

75

More on the Markov Chain Model

- The loss rate Pu
 - The rate of loss
- The conditional loss rate Pc
 - The rate of loss when the previous packet is lost
- Contrary to the earlier work
 - Losses are busty
 - Duration shows pareto upper tail
 - (Polly: maybe more log-normal)

Polly @ NTU

Copyright © 2008

Possible Invariant

- Conditional loss rate
- For the value remains relatively close over the 1 year period
- More up-to-date data to verifying this?
- The loss burst size log normal?
- Both interesting research questions

Polly @ NTU

Copyright © 2008

70

Packet Delay

- Looking at one-way transit times (OTT)
- There's model for OTT distribution
 - Shifted gamma
 - Parameters changes with regards to time and path...
- Internet path are asymmetric
 - OTT one way often not equal OTT the other way

Polly @ NTU

Copyright © 2008

Timing Compression

- Ack compressions are rare and small events
- So not really pose threads on
 - Ack clocking
 - Rate estimation based control
- Data compression even rarer
 - Estimation needs to do outlier filtering

Polly @ NTU

Copyright © 2008

01

Queueing Delay

- Variance of OTT over different time scales
 - For each time scale τ
 - Divide the time into intervals of τ
 - For all 2 neighboring intervals L, R
 - m_L the median of OTT in interval L
 - m_R the median of OTT in interval R
 - Calculate (m_L-m_R)
- Variance of OTT at τ scale is median of all (m_l-m_r)
- Can you suggest another way?

Polly @ NTU

Copyright © 2008

Finding the Dominant Scale

- Looking for τ whose queueing variance is large
 - Where control most needed
- ullet For example, if τ is smaller than RTT
 - Then TCP doesn't need to bother adapting to queueing fluctuations

Polly @ NTU

Copyright © 2008

83

Oh Well

- Queueing delay variations occur
 - Dominantly on 0.1-1 sec scales
 - But non-negligible on larger scales

Polly @ NTU

Copyright © 2008

Polly @ NTU

Copyright © 2008

85

Conclusions on Analysis

- Behavior
 - Very wide range, not one typical
 - Loss: 2 vs. 5%, strong correlation in time
 - Delay: queueing delay variation at 0.1-1sec scale

Polly @ NTU

Copyright © 2008

- Measurement methodology
 - TCP-based measurement shown viable
 - Sender-side only inferior
- TCP implementation
 - Sufficiently conservative

Polly @ NTU

Copyright © 2008

On the Review Forms

- Novelty
 - New idea
- Clarity
 - The problem
- Correctness
 - Evaluation
- Importance, significance, relevance
 - How much impact?
 - Would things change?

Polly @ NTU

Copyright © 2008

90

OK for Beginners

- Clarity
 - Easiest
 - Judging the writing
- Correctness
 - Easy
 - Judging the experiments and technical content

Polly @ NTU

Copyright © 2008

Challenging for the Advanced

- Novelty
 - Hard
 - Need to follow/read enough papers in the area
- Importance
 - Hardest
 - Need to have breadth and know enough development in the area

Polly @ NTU

Copyright © 2008

91

Questions?

Polly @ NTU

Copyright © 2008