

Network Simulation and Testing

Polly Huang
Department of Electrical Engineering
National Taiwan University
http://cc.ee.ntu.edu.tw/~phuang
phuang@cc.ee.ntu.edu.tw

Polly @ NTU

Copyright © 2008

P2P Papers

- Salman A. Baset and Henning Schulzrinne. An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol. In Proceedings of IEEE Infocom 2006.
- Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei.
 Quantifying Skype User Satisfaction. In Proceedings of ACM SIGCOMM 2006.
- X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. CoolStreaming/DONet: A Data-driven Overlay Network for Efficient Live Media Streaming. In Proceedings of IEEE INFOCOM 2005
- Meng-Ting Lu, Jui-Chieh Wu, Kuan-Jen Peng, Polly Huang, Jason J. Yao, Homer H. Chen. Design and Evaluation of a P2P IPTV System for Heterogeneous Networks. IEEE Transactions on Multimedia, Vol. 9, No. 8, pp. 1568-1579, Dec. 2007

Polly @ NTU

Copyright © 2008

Phase I: Login

- Send 'I'm alive' to other peers
 - Showing in your friends' Friend lists
- Determines the type of NAT and firewall it is behind
 - More details if time allow
- Discover online SNs

Polly @ NTU

Copyright © 2008

13

Where are the SNs?

- 1st-time use of Skype
 - Connect first to a bootstrap server to acquire a candidate SN list
 - Select one from the list
 - Report to the SN meta data about user/files to be shared
 - Acquire from the SN the updated list of candidate SN
 - Cache the candidate SN list
- 2nd-time+ use of Skype
 - Select one from the cached candidate SN list
 - The rest is the same

Polly @ NTU

Copyright © 2008

Phase II: Address Lookup

- Initiator calling target
 - Calling pollyhuang...
 - Where is pollyhuang at?
- Username → (IP, port) address mapping
 - The meta data about users stored in SNs

Polly @ NTU

Copyright © 2008

Who should be the relay peer?

such that the alternative path is **better** than the default one...

Polly @ NTU Copyright © 2008

Skype's Solution

Round-Trip Delay & Loss Rate (Probably)

[ICDCS 06] S. Ren, L. Guo, and X. Zhang, ``ASAP: an AS-Aware Peer-relay protocol for high quality VoIP with low overhead", *Proceedings of the 26th International Conference on Distributed Computing Systems* (ICDCS'06), Lisbon, Portugal, July 4-7, 2006

Polly @ NTU

Copyright © 2008

A Fundamental Question

Which is the right path selection criteria?

Source Rate?
Congestion Level?
Delay?
Combination of the above?

Polly @ NTU Copyright © 2008

User Satisfaction

USI = 2.15 * log(bit rate) - 1.55 * log(jitter) - 0.36 * RTT

bit rate: data rate of voice packets jitter: level of network **congestion**

RTT: round-trip times between two parties

[SIGCOMM 06] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, Chin-Laung Lei, "Quantifying Skype User Satisfaction," ACM SIGCOMM 2006

Polly @ NTU

Copyright © 2008

24

Secret of Success

- Codec (provided by Global IP Sound)
 - 67 bytes packet payload
 - 24 to 120 kbps
- NAT and firewall traversal
- Alternative paths!

Polly @ NTU

Copyright © 2008

25

Special Ports

- Skype client listening on a randomly selected port
- If blocked by firewall, use
 - 8o -- HTTP
 - 443 -- HTTPS

Polly @ NTU

Copyright © 2008

- Skype client listening using UDP
- If blocked by firewall, use
 - TCP

Polly @ NTU

Copyright © 2008

27

- STUN
 - Simple Traversal of UDP through NATs
 - More details if time allows
- TURN
 - Traversal Using Relay NAT
 - I.e., the relay node approach

Polly @ NTU

Copyright © 2008

Secret of Success

- Codec (provided by Global IP Sound)
 - 67 bytes packet payload
 - 10 to 120 kbps
- NAT and firewall traversal
- Alternative paths!

Polly @ NTU

Copyright © 2008

29

Codecs

- iLBC
 - 13.3 kbps (30 ms frames) 15.2 kbps (20 m frames)
 - Better than G.729A and G.723.1
- iSAC
 - 10-120 kbps (adaptive and variable)
 - Wideband communication
- No silence suppression

Polly @ NTU

Copyright © 2008

CoolStreaming → PPLive • A peer-to-peer (P₂P) overlay network for IPTV • Hongkong-China based • To an average user, it's free live sports event broadcast service • 10,000s of subscribers

Secret of the CoolStreaming's Success

- Free content
- Smooth and quality video
- The more users, the better the quality

Polly @ NTU Copyright © 2008

Why?

Media Source

1 2 3 4 5 6 7 8 9 11

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Page 14 5 6 7 8 9 11

Peer

Peer

Peer

Peer

Page 14 5 6 7 8 9 11

Peer

Peer

Peer

Peer

Peer

Peer

Peer

Page 14 5 6 7 8 9 11

Peer

Copyright © 2008

Polly @ NTU

(Data-driven Overlay Network)

- Concept
 - Form a gossip P2P network
 - Essentially, a peer connect to other peers **randomly**
 - P2P network dynamically updated
 - Essentially, which peer connect to which peers is changed **periodically**
- Characteristics
 - Easy to implement
 - Robust and resilient
 - Efficient

Polly @ NTU

Copyright © 2008

Membership Management

- SCAMP (Scalable Gossip Membership protocol)
- Join
 - A newly joined node contacts first a bootstrap node
 - Redirected to a deputy node
 - Randomly selected from the bootstrap node's mCache*.
 - Deputy node gives the new node its mCache
- Maintain
 - Periodical membership messages to update mCache
 - Nodes will be removed from the list after a fixed amount of time

*The membership cache contains a partial list of active nodes in DONet.

Polly @ NTU Copyright © 2008

Implementation Every peer: Membership Relationship 1. Periodically send 2. An advertisement **Consuming Peer Providing Peer** message (ADV) 1 can become a member of other nodes Upon receiving the ADV: 1. Roll a dice 2, 3, and 6 remain members of node 1 2. If win, select the ADV 7, 8, and 9 are new sender to provide members of node 1 video segments Copyright © 2008 Polly @ NTU 42

Partnership Management

- Periodically establish new partnerships with nodes randomly selected from mCache
- Reject the lowest rating partner

Polly @ NTU

Copyright © 2008

43

Leave and Break Down

- Graceful leaving node should issue a departure message.
- Nodes discovering a partner failure* also send departure messages.
- *Node failure can be detected after idle of the connection or BM exchange.

Polly @ NTU

Copyright © 2008

Buffer Map Management

- Buffer Map
 - Semi-synchronized playback progresses.
 - A **sliding window of 120 segments** can effectively represent the buffer map. Segments outside the window is ignored.
 - Use **120 bits** to record BM, with bit 1 indicating that a segment is available.
 - The **sequence number of the first segment** in the sliding window is record by another **2 bytes**.
- Each node continuously exchanges its BM with the partners.

Polly @ NTU

Copyright © 2008

45

Scheduling Algorithm

- Two constrains
 - Playback deadline for each segment
 - Heterogeneous streaming bandwidth
- Minimize segments missing deadlines.
- Heuristic algorithm
 - Calculate the number of the potential suppliers for each segments.
 - Less suppliers means higher risks of missing the deadlines.
 - Determine the supplier of each segment starting from the one with lowest potential suppliers.
 - Among the supplier candidates, pick the one with higher BW and enough available time.

Polly @ NTU

Copyright © 2008

Outline

- Design of DONet
- Performance Evaluation
- CoolStreaming
- Conclusion

Polly @ NTU

Copyright © 2008

	CoolStreaming	Hot Streaming
Partnership Formation	Pure random	Preferential random (rotate)
Frame Request Scheduling	Heuristic: (fewest copies first Earliest Deadline first)	Optimal: (min loss under bw constraint)
Codec	Mpeg-4, windows WMA	Mpeg-4, interleaving MDC (bw heterogeneity)

Polly @ NTU Copyright © 2008 57

9

System Advantages

	Hot Streaming	Advantages
Partnership Formation	Preferential random (rotate)	Stability
Frame Request Scheduling	Optimal: (min loss under bw constraint)	Minimum loss
Codec	Mpeg-4, interleaving MDC (bw heterogeneity)	Sustainable quality for heterogeneous users

Polly @ NTU Copyright © 2008

Qualitative Comparison

- SCAMP
 - Forwarding of ADV
 - To all partners
 - Selection of partner
 - Depending on current #partners
- TYPHOON
 - Forwarding of ADV
 - To partners who have few partners
 - To avoid peers being isolated → better stability
 - Selection of partner
 - Depending on current #partners
 - Bounded by the max #partners → better load balance

Polly @ NTU

Copyright © 2008

61

Quantitative Comparison

	SCAMP	TYPHOON
C	0	
Connected Time (sec)	59180	74320
Disconnected Time (sec)	15820	680
Disconnected Node (N)	305	18
Instability Index	51700	2580

Stability Improvement ~ 20 fold

Polly @ NTU

	Hot Streaming	Advantages
Partnership Formation	Preferential random (rotate)	Stability
Frame Request Scheduling	Optimal: (min loss under bw constraint)	Minimum loss
Codec	Mpeg-4, interleaving MDC (bw heterogeneity)	Sustainable quality for heterogeneous users

Polly @ NTU Copyright © 2008

PlanetLab Results

- Small-scale testing on Campus Network
 - 15-node scale testing
 - 1 server, 14 peer users
 - 1 Mbps video source for an hour
- Network centric measurement
 - Scalability
 - Packet loss rate (arrival rate within deadline)
 - Control message overhead

Polly @ NTU

Copyright © 2008

