

Network Simulation and Testing

Polly Huang
Department of Electrical Engineering
National Taiwan University
http://cc.ee.ntu.edu.tw/~phuang
phuang@cc.ee.ntu.edu.tw

5/2/2008 Copyright © 2008

ns-2 Tutorial

In 4 sessions

Tutorial Overview

- Welcome
- Gratitude
- Audience background
 - object-oriented programming?
 - tcl?
 - use ns-2 before?
 - tcl, c, or both?
 - research interest?

Tutorial Intensity

- Intended audience
 - try to cover a wide range
 - researchers, developers, educators
- Cover
 - both API & internal
 - some could be too easy or too difficult
 - see them as review or preview

Schedule: 1st Week

9.10-10.00 overview/intro/essential/getting started
10.20-11.10 tcl/otcl/ns-2 fundamentals
11.20-12.10 examples - TCP, RED, multicast, web, wireless

Schedule: 2nd Week

9.10-10.00 lab 1 setup/running examples 10.20-11.10 lab 2 tcl/otcl exercises 11.20-12.10 lab 3 simple ns-2 exercise

Schedule: 3rd Week

9.10-10.00 wired internal

10.20-11.10 wireless internal

11.20-12.10 extending ns-2/making changes/case studies

Schedule: 4th Week

9.10-10.00 lab 4 intermediate ns-2 exercise

10.20-11.10 lab 5 getting data you want

11.20-12.10 lab 6 advanced topic

Outline: Today

- Introduction
 - the project, the software, the philosophy
 - software architecture
 - installation and getting started
- tcl/otcl/ns-2 fundamentals
 - programming tcl/otcl
 - programming ns-2 simulation scripts
- Example scripts
 - TCP, web traffic, RED, multicast, wireless

The VINT Project

- Virtual InterNet Testbed
 - a common platform for network research
 - focus on multi-protocol interactions and scale
 - http://www.isi.edu/nsnam/vint/index.html
- Follow-up projects
 - SAMAN: scenario and performance
 - CONSER: educational use

Multi-state collaboration

- USC/ISI
- ACIRI
- UC Berkeley
- CMU
- NTU nsLab
- etc...

- Project leads and co-PIs
 - Lee Breslau (AT&T Labs-Research)
 - Deborah Estrin (UCLA)
 - Kevin Fall (INTEL Research)
 - Sally Floyd (AT&T/ACIRI)
 - Mark Handley (AT&T/ACIRI)
 - John Heidemann (USC/ISI)
 - Scott Shenker (AT&T/ACIRI)
- Graduate students and staff members

Project Goal

- To support collaborative simulation effort
 - promote sharing
 - incorporate recent simulation models
 - increase confidence in results
 - establish regression test suite
 - establish common reference
 - current and periodic availability of source code
- Base software is **ns-2**

ns-2

- Discrete event simulator
- Packet level
- Link layer and up
- Wired and wireless

Development Status

- Columbia NEST
- UCB REAL
- ns-1
- ns-2 (as of 2001...)
 - 100K lines of C++ code
 - 70K lines of otcl support code
 - 30K lines of test suites
 - 20K lines of documentation

Usage and Releases

- Users from approximately
 - 600+ institutes
 - 50+ countries
- Releases
 - periodic official releases
 - nightly snapshots (probably compiles and works, but buyers beware)
 - available from USC/ISI or UK mirror

Platforms

- Most UNIX and UNIX-like systems
 - √ FreeBSD or *BSD
 - √ Linux
 - √ Sun Solaris
 - ? HP, SGI
- Window 95/98/NT...
- Emulation only for FreeBSD for now

First Words of Caution

• While we have considerable confidence in ns, ns is **not a polished** and finished product, but the result of an ongoing effort of research and development. In particular, bugs in the software are still being discovered and corrected.

Second Words of Caution

• Users of ns are responsible for verifying for themselves that their simulations are not invalidated by **bugs**. We are working to help the users with this by significantly expanding and automating the validation tests and demos.

Third Words of Caution

• Similarly, users are responsible for verifying for themselves that their simulations are not invalidated because the **model** implemented in the simulator is not the model that they were expecting. The ongoing ns Notes and Documentation should help in this process.

Tutorial Goals

- Caution to be taken
- Existing capability
- Design and implementation
- Extendibility
- Promote sharing

Outline: Today

- Introduction
 - the project, the software, the philosophy
 - software architecture
 - installation and getting started
- tcl/otcl/ns-2 fundamentals
 - programming tcl/otcl
 - programming ns-2 simulation scripts
- Example scripts
 - TCP, web traffic, RED, multicast, wireless

- + Reusability
- + Maintainability
- Careful planning ahead
- Performance

C++ and otcl Separation

- C++ for data
 - per packet action
- otcl for control
 - periodic or triggered action
- + Compromize between composibility and speed
- Learning & debugging

Event Scheduler	ns-2
tclcl otcl tcl	Network Component

- otcl: object-oriented support
- tclcl: C++ and otcl linkage
- Discrete event scheduler
- Data network components

Installation

- Getting the pieces
 - (tcl/tk8.4.5), otcl, tclcl, ns-2, (and nam-1)
- http://www.isi.edu/nsnam/ns/
- ns-users@isi.edu
 - ns-users-request@isi.edu
 - 'subscribe ns-users' in body
- ns-announce@isi.edu

Hello World – Interactive Mode

swallow 71% **ns**

% set ns [new Simulator]

03

% \$ns at 1 "puts \"Hello World!\""

1

% \$ns at 1.5 "exit"

2

% \$ns run

Hello World!

swallow 72%

Hello World - Passive Mode

simple.tcl

set ns [new Simulator]

\$ns at 1 "puts \"Hello World!\""

\$ns at 1.5 "exit"

\$ns run

swallow 74% ns simple.tcl

Hello World!

swallow 75%

Outline: Today

- Introduction
 - the project, the software, the philosophy
 - software architecture
 - installation and getting started
- tcl/otcl/ns-2 fundamentals
 - programming tcl/otcl
 - programming ns-2 simulation scripts
- Example scripts
 - TCP, web traffic, RED, multicast, wireless

Fundamentals

- tcl
- otcl
 - ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html
- ns-2
 - http://www.isi.edu/nsnam/ns/ns_doc.ps.gz
 - http://www.isi.edu/nsnam/ns/ns_doc.pdf
 - http://www.isi.edu/nsnam/ns/doc/index.html

Basic tcl

```
proc test {} {
    set a 43
    set b 27
    set c [expr $a + $b]
    set d [expr [expr $a - $b] * $c]
    for {set k 0} {$k < 10} {incr k} {
        if {$k < 5} {
            puts "k < 5, pow= [expr pow($d, $k)]"
        } else {
            puts "k >= 5, mod= [expr $d % $k]"
        }
    }
}
test
```


Basic otcl

Class mom

```
mom instproc init {age} {
    $self instvar age_
    set age_ $age
}

mom instproc greet {} {
    $self instvar age_
    puts "$age_ years old mom:
    How are you doing?"
}
```


Basic ns-2

- Creating the event scheduler
- [Tracing]
- Creating network
- Computing routes
- Creating connection
- Creating traffic
- Inserting errors

Creating Event Scheduler

- Create scheduler
 - set ns [new Simulator]
- Schedule event
 - \$ns at <time> <event>
 - <event>: any legitimate ns/tcl commands
- Start scheduler
 - \$ns run

- Trace packets on all links
 - \$ns trace-all [open test.out w]

- Trace packets on all links in nam-1 format
 - \$ns namtrace-all [open test.nam w]
- Right after 'set ns [new Simulator]'

Creating Network

- Nodes
 - set n0 [\$ns node]
 - set n1 [\$ns node]
- Links & Queuing
 - \$ns duplex-link \$n0 \$n1 <bandwidth> <delay> <queue_type>
 - <queue_type>: DropTail, RED, CBQ, FQ, SFQ, DRR

Tracing Specific links

- \$ns trace-queue \$n0 \$n1
- \$ns namtrace-queue \$n0 \$n1

Creating Network: LAN

- LAN
 - \$ns make-lan <node_list> <bandwidth> <delay> <ll_type> <ifq_type> <mac_type> <channel_type>
 - <ll_type>: LL
 - <ifq_type>: Queue/DropTail,
 - <mac_type>: MAC/802_3
 - <channel_type>: Channel

Computing routes

- Unicast
 - \$ns rtproto <type>
 - <type>: Static, Session, DV, cost, multi-path

Creating Connection: UDP

- UDP
 - set udp [new Agent/UDP]
 - set null [new Agent/NULL]
 - \$ns attach-agent \$n0 \$udp
 - \$ns attach-agent \$n1 \$null
 - \$ns connect \$udp \$null

9

Creating Connection: TCP

- TCP
 - set tcp [new Agent/TCP]
 - set tcpsink [new Agent/TCPSink]
 - \$ns attach-agent \$n0 \$tcp
 - \$ns attach-agent \$n1 \$tcpsink
 - \$ns connect \$tcp \$tcpsink

TCP Traffic: On Top of

- FTP
 - set ftp [new Application/FTP]
 - \$ftp attach-agent \$tcp
 - \$ns at <time> "\$ftp start"
- Telnet
 - set telnet [new Application/Telnet]
 - \$telnet attach-agent \$tcp

reating Traffic: On Top of UDP

- CBR
 - set src [new Application/Traffic/CBR]
- Exponential or Pareto on-off
 - set src [new Application/Traffic/Exponential]
 - set src [new Application/Traffic/Pareto]

- Trace driven
 - set tfile [new Tracefile]
 - \$tfile filename <file>
 - set src [new Application/Traffic/Trace]
 - \$src attach-tracefile \$tfile
- <file>:
 - Binary format
 - inter-packet time (msec) and packet size (byte)

Inserting Errors

- Creating Error Module
 - set loss_module [new ErrorModel]
 - \$loss_module set rate_ 0.01
 - \$loss_module unit pkt
 - \$loss_module ranvar [new RandomVariable/Uniform]
 - \$loss_module drop-target [new Agent/Null]
- Inserting Error Module
 - \$ns lossmodel \$loss_module \$n0 \$n1

Network Dynamics

- Link failures
 - route changes reflected automatically
 - can emulate node failure

Four Models

- ns rtmodel-at < time > (up|down > n0 n1
- \$ns rtmodel Trace <config_file> \$n0 \$n1
- \$ns rtmodel <model> <params> \$n0 \$n1
- <model>: Deterministic, Exponential
- <params>: [<start>] <up_interval> <down_interval> [<finish>]

- Essentials
- Getting Started
- Fundamental tcl, otcl and ns-2
- Case Studies TCP, web traffic, RED

Case Studies

- TCP (tcp.tcl)
- Web (web.tcl & dumbbell.tcl)
- Queuing RED (red.tcl)

- nam-1 (Network AniMator Version 1)
- xgraph

Basic ns-2: Special Topics

- multicast support
- application-level support
- wireless support

Multicast - 5 components

- enable multicast capability
- configure multicast routing
- create a multicast group/sender
- create a multicast receiver
- attach traffic source

9

Enabling multicast capability

- set ns [new Simulator -multicast on]
- or \$ns multicast (right after [new Simulator])

- \$ns mrtproto <type>
- <type>: CtrMcast, DM, ST, BST

Creating a multicast group

- set udp [new Agent/UDP]
- \$ns attach-agent \$n0 \$udp
- set group [Node allocaddr]
- \$udp set dst_addr_ \$group

Creating a multicast receiver

- set rcvr [new Agent/NULL]
- \$ns attach-agent \$n1 \$rcvr
- \$ns at <time> "\$n1 join-group \$rcvr \$group"

Attaching a traffic source

- set cbr [new Application/Traffic/CBR]
- \$cbr attach-agent \$udp
- \$ns at <time> "\$cbr start"

- two-way TCP
- Application/TcpApp

- FullTcp connection
 - set tcp1 [new Agent/TCP/FullTcp]
 - set tcp2 [new Agent/TCP/FullTcp]
 - \$ns attach-agent \$n1 \$tcp1
 - \$ns attach-agent \$n2 \$tcp2
 - \$ns connect \$tcp1 \$tcp2
 - \$tcp2 listen

Application: TcpApp

- User data transfer
 - set app1 [new Application/TcpApp \$tcp1]
 - set app2 [new Application/TcpApp \$tcp2]
 - \$app1 connect \$app2
 - \$ns at 1.0 "\$app1 send <data_byte>\"<ns-2 command>\""
 - <ns-2 command>: will be executed when received at the receiver TcpApp

Wireless - 5 components

- setup
- node configuration
 - layer 3-2, layer 1, tracing, energy
- node coordinates
- node movements
- nam tracing

- set ns [new Simulator]
- set topo [new Topography]
- \$topo load_flatgrid <length> <width>

%

Node Configuration: Layer 3-2

- \$ns node-config
 - adhocRouting <adhoc routing type>
 - llType LL
 - ifqType Queue/DropTail/PriQueue
 - ifqLen <queue length>
 - macType Mac/802_11
- <adhoc routing type>: DSDV, DSR, TORA, AODV

Node Configuring: Layer 1

- \$ns node-config
 - phyType Phy/WirelessPhy
 - antType Antenna/OmniAntenna
 - propType propagation model>
 - channelType Channel/WirelessChannel
 - topoInstance \$topo
- propagation model>: Propagation/TwoRayGround,
 Propagation/FrissSpaceAttenuation

Node Configuration: Tracing

- \$ns node-config
 - agentTrace <ON or OFF>
 - routerTrace <ON or OFF>
 - macTrace <ON or OFF>

- \$ns node-config
 - energyModel EnergyModel
 - initialEnergy <total energy>
 - txPower <energy to transmit>
 - rxPower <energy to receive>

Node Coordinates

- \$mnode set X_ <x>
- \$mnode set Y_<y>
- \$mnode set Z_ 0

9

Node Movement

- Disable random motion
 - \$mnode random-motion 0
- Specified
 - \$ns at 1.0 "\$mnode setdest <x> <y> <speed>"
- Random
 - \$ns at 1.0 "\$mnode start"

- at the beginning
 - \$ns namtrace-all-wireless [open test.nam w] <length> <width>
- initialize nodes
 - \$ns initial_node_position \$mnode 20

96

Case Studies

- multicast (mcast.tcl)
- wireless (wireless-udp.tcl, wireless-tcp.tcl)

Basic ns-2: Not Covered

- mobile IP
- satellite
- DiffServ
- emulation

Lab 1

- We will do it in the EE Lab
 - EEII R132
 - 電腦訓練班教室

