
Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

1

Name______________ Student ID___________________ Department/Year__________

Midterm Examination

Introduction to Computer Networks (Online)
Class#: EE 4020, Class-ID: 901E31110

Spring 2020

10:20-12:10 Thursday
April 23, 2020

Cautions

1. There are in total 100 points to earn. You have 100 minutes to answer the questions.

Skim through all questions and start from the questions you are more confident with.
2. Use only English to answer the questions. Misspelling and grammar errors will be

tolerated, but you want to make sure with these errors your answers will still make sense.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

2

1. (Golang) Consider the following Go program: server-midterm-1.go. Execute the server-

midterm-1.go first and then client-101.go.

 server-midterm-1.go

package main

import "fmt"

import "bufio"

import "net"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 fmt.Println("Launching server...")

 ln, _ := net.Listen("tcp", ":<your port#>")

 conn, _ := ln.Accept()

 defer ln.Close()

 conn.Close()

 scanner := bufio.NewScanner(conn)

 message := “”

 if scanner.Scan() {

 message = scanner.Text()

 fmt.Println(message)

 }

 writer := bufio.NewWriter(conn)

 newline := fmt.Sprintf("%d bytes received\n", len(message))

 _, errw := writer.WriteString(newline)

 check(errw)

 writer.Flush()

}

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

3

 client-101.go

package main

import "fmt"

import "bufio"

import "net"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 conn, errc := net.Dial("tcp", "127.0.0.1:<your port#>")

 check(errc)

 defer conn.Close()

 writer := bufio.NewWriter(conn)

 len, errw := writer.WriteString("Hello World!\n")

 check(errw)

 fmt.Printf("Send a string of %d bytes\n", len)

 writer.Flush()

 scanner := bufio.NewScanner(conn)

 if scanner.Scan() {

 fmt.Printf("Server replies: %s\n", scanner.Text())

 }

}

(1) Tell the output on screen of server-midterm-1.go (1%).
(2) Tell the output on screen of client-101.go (1%).
(3) Explain why we see the output on screen server-midterm-1.go (3%).
(4) Explain why we see the output on screen client-101.go (3%).

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

4

Sample Solution:
(1) “Launching server...”
(2) “Send a string of 13 bytes”
(3) conn.Close() closes the conn socket before the reader/writer wrap. No messages can

be read or written back onto the socket.
(4) conn is closed from the server side. Therefore, the client is not able to receive a

message back, and not able to print the message on the screen.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

5

2. (Golang) Consider the following Go program: server-midterm-2.go. Execute the server-

midterm-2.go first and then client-101.go.

 server-midterm-2.go

package main

import "fmt"

import "bufio"

import "net"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 fmt.Println("Launching server...")

 ln, _ := net.Listen("tcp", ":<your port#>")

 conn, _ := ln.Accept()

 ln.Close()

 defer conn.Close()

 scanner := bufio.NewScanner(conn)

 message := “”

 if scanner.Scan() {

 message = scanner.Text()

 fmt.Println(message)

 }

 writer := bufio.NewWriter(conn)

 newline := fmt.Sprintf("%d bytes received\n", len(message))

 _, errw := writer.WriteString(newline)

 check(errw)

 writer.Flush()

}

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

6

(1) Tell the output on screen of server-midterm-2.go (1%).
(2) Tell the output on screen of client-101.go (1%).
(3) Explain why we see the output on screen server-midterm-2.go (3%)..
(4) Explain why we see the output on screen client-101.go (3%).

Sample Solution:
(1) “Launching server...”

“Hello World!”
(2) “Send a string of 13 bytes”

“Server replies: 12 bytes received”
(3) ln.Close() closes the listening socket early, but the conn socket has already been

established. The reader/writer wrapping and message reading/writing will go on.
(4) conn is open for sending and receiving of messages, no problem.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

7

3. (Golang) Consider the following Go program: server-midterm-3.go. Execute the server-

midterm-3.go first. Then start two extra terminals. Execute client-102.go on the two
terminals back to back.

server-midterm-3.go
package main

import "fmt"

import "bufio"

import "net"

import "time"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func handleConnection (c net.Conn) {

 reader := bufio.NewReader(c)

 message, errr := reader.ReadString('\n')

 check(errr)

 fmt.Printf("%s", message)

 time.Sleep(10 * time.Second)

 writer := bufio.NewWriter(c)

 newline := fmt.Sprintf("%d bytes received\n", len(message))

 _, errw := writer.WriteString(newline)

 check(errw)

 writer.Flush()

}

func main() {

 fmt.Println("Launching server...")

 ln, _ := net.Listen("tcp", ":<your port#>")

 defer ln.Close()

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

8

 i := 1

 for {

 conn, _ := ln.Accept()

 defer conn.Close()

 fmt.Printf("%d ", i)

 go handleConnection(conn)

 i++

 }

}

client-102.go

package main

import "fmt"

import "bufio"

import "net"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 conn, errc := net.Dial("tcp", "127.0.0.1:<your port#>")

 check(errc)

 defer conn.Close()

 writer := bufio.NewWriter(conn)

 len, errw := writer.WriteString("Hello World!\n")

 check(errw)

 fmt.Printf("Send a string of %d bytes\n", len)

 writer.Flush()

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

9

 reader := bufio.NewReader(conn)

 message, errr := reader.ReadString('\n')

 check(errr)

 fmt.Printf("Server replies: %s", message)

}

(1) Tell the output on screen of server-midterm-3.go (1%).
(2) Tell the time gap between the output lines on screen of server-midterm-3.go (2%).
(3) Explain why we see the time gap on screen server-midterm-3.go (3%).

Sample Solution:

(1) “Launching server...”
“1 Hello World!”
“2 Hello World!”

(2) The time gap between “1 Hello World!” and “2 Hello World!” is very small.
(3) handleConnection() being a goroutine, allows concurrent running of the function.

The 2nd execution of client-102.go forks another handleConnection() process which
prints the message before entering the time.Sleep(), and back to back of the 1st
client-102.go’s message printout.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

10

4. (Golang) Consider the following Go program: server-midterm-4.go. Execute the server-
midterm-4.go first. Then start two extra terminals. Execute client-102.go on the two
terminals back to back.

server-midterm-4.go
package main

import "fmt"

import "bufio"

import "net"

import "time"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func handleConnection (c net.Conn) {

 reader := bufio.NewReader(c)

 message, errr := reader.ReadString('\n')

 check(errr)

 fmt.Printf("%s", message)

 time.Sleep(10 * time.Second)

 writer := bufio.NewWriter(c)

 newline := fmt.Sprintf("%d bytes received\n", len(message))

 _, errw := writer.WriteString(newline)

 check(errw)

 writer.Flush()

}

func main() {

 fmt.Println("Launching server...")

 ln, _ := net.Listen("tcp", ":<your port#>")

 defer ln.Close()

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

11

 i := 1

 for {

 conn, _ := ln.Accept()

 defer conn.Close()

 fmt.Printf("%d ", i)

 handleConnection(conn)

 i++

 }

}

(1) Tell the output on screen of server-midterm-4.go (1%).
(2) Tell the time gap between the output lines on screen of server-midterm-4.go (2%).
(3) Explain why we see the time gap on screen server-midterm-4.go (3%).

Sample Solution:

(1) “Launching server...”
“1 Hello World!”
“2 Hello World!”

(2) The time gap between “1 Hello World!” and “2 Hello World!” is substantially long –
about the sleep time 10 seconds.

(3) handleConnection() now not a goroutine, will need to sleep through the 10 seconds
time.Sleep(), triggered by the 1st execution of client-102.go. The 2nd execution of
client-102.go will enter the handleConnection() function and print the message at
least 10 seconds apart from the 1st printout.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

12

5. (Golang) Compare and contrast server-midterm-3.go and server-midterm-4.go.

(1) As a user, would you prefer the service by server-midterm-3.go or server-midterm-
4.go (1%)? And why (3%)?

(2) As a service provider, would you prefer your server running server-midterm-3.go or
server-midterm-4.go (1%)? And why (3%)?

Sample Solution
Take your pick and justify your answer

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

13

6. (Overview) Consider a micro-Internet consisting of 5 subnets, namely V, W, X, Y and Z as

labeled below.

(1) Which of the subnets should be classified as the Internet edge? (1%)
(2) Which of the subnets should be classified as the Internet core? (1%)

Sample Solution:

(1) X, Y, Z
(2) V, W

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

14

7. (Overview) Based on your understanding of packet switching and circuit switching

principle, select the keywords that fit better the characteristics of a circuit switching
network. (6%)

(a) Contention
(b) Congestion
(c) Idle resource
(d) Reservation
(e) Call setup
(f) Delay guarantee

Sample Solution:
(c)(d)(e)(f)

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

15

8. (Overview) Internet engineers like to group the protocols into layers. This is known as the

layered reference model. Below are a few that may (or may not) be a part of the
reference model.

(a) Overview
(b) Application
(c) Session
(d) Transport
(e) Transmission
(f) Network
(g) Routing
(h) Link
(i) Wireless
(j) Multimedia
(k) Physical

(1) List the Internet protocol layers top down. (1%)
(2) Discuss the benefits and drawbacks of the layered reference model. (4%)

Sample Solution:

(1) (b) (d) (f) (h) (k)
OK to have (c) in between (b) (d) (The original OSI model includes (c))

(2) Benefits:
1. ease of discussion – such modularization makes it easy to see the

relationships between the modules in a complex system.
2. ease of maintenance/progression – such modularization makes it easy to

update a module with minimum influence to other modules in a complex
system.

Drawback:
1. initial learning curve – not easy for a newbie to understand the

engineer’s language and therefore hard to identify the module to blame
2. performance suboptimal – hard to find exploits spanning multiple

modules to optimize performance

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

16

9. (Application) Complexity at the edge, is another design principle the Internet engineers

exercise.

(1) Tell what it means to leave the complexity at the edge. (1%)
(2) Tell the benefits of leaving the complexity at the edge. (2%)
(3) Recall the protocol designed with the principle in mind. (1%)

Sample Solution:

(1) Pushing functionality that’s yet to evolve in the future to the edge of the Internet.
(2) It is easy to evolve/upgrade the functionality without the need to reboot the core

that some parts of the Internet may depend critically on. Or to keep the core simple
and therefore fast and reliable.

(3) DNS

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

17

10. (Application) HTTP with non-persistent connection requires 2RTT (round trip time) + Tx

(file transmission time) to download a Web object. For simplicity, let’s assume all objects
are the same size and the connection closing time is negligible. For a page that contains 1
base html object and 10 additional embedded objects, the total page response time will
be 22RTT + 11Tx.

What’s nice about modern HTTP (1.1 and beyond) is this – it implements the persistent
connection with pipelining mode, which offers a lower page response time in general.
How much lower? This depends on how widespread the objects are. Now assume the
Web page is requested from a Web client that allows one open connection at a time.
Estimate the page response time for the following scenarios and derive its general form.

(1) Tell the total page response time when the main html and the 10 embedded objects
are on the same physical server. (1%)

(2) Tell the total page response time when the main html, 5 of the embedded objects,
and the rest of the embedded objects are on 3 different physical servers. (1%)

(3) Tell the total page response time when the main html, 1 of the embedded objects,
and the rest of the embedded objects are on 3 different physical servers. (1%)

(4) Tell the total page response time when the main html and the embedded objects,
are on 5 different physical servers. (1%)

(5) Tell the total page response time when the main html, and all 10 additional
embedded objects are on 11 different physical servers. (1%)

(6) Derive the total page response time in general form when the main html and the k
additional embedded objects spread on n different physical servers (n > 1). (2%)

(7) For a frequently requested page containing multiple embedded objects where the
object contents are static, would you rather (a) copy the embedded objects over and
store all objects together or (b) have the client redirected to each of the remote
servers? (1%) And why? (1%)

Sample Solution:
(1) 3RTT+11Tx
(2) 2RTT+Tx+2RTT+5Tx+2RTT+5Tx = 6RTT+11Tx
(3) 2RTT+Tx+2RTT+aTx+2RTT+(10-a) Tx = 6RTT+11Tx (2RTT to each physical server)
(4) 5*(2RTT)+11Tx = 10RTT+11Tx (2RTT to each physical server)
(5) 2RTT+Tx+10*(2RTT+Tx) = 22RTT+11Tx
(6) 2nRTT+(k+1)Tx.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

18

(7) Copy them over locally. To minimize the page response time. Or just take your pick
and justify for yourself.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

19

11. (Application) We know smtp.gmail.com is the mail server of gmail.com and ns[1-

4].google.com are the authoritative DNS servers for google.com. The questions are about
the following DNS RRs where the entry types are masked.

(a) (gmail.com, smtp.gmail.com, ---, 2 days)
(b) (smtp.gmail.com, 108.177.125.10, ---, 2 days)
(c) (google.com, ns1.google.com, ---, 2 days)
(d) (google.com, ns2.google.com, ---, 2 days)
(e) (ns1.google.com, 216.239.32.10, ---, 2 days)
(f) (ns2.google.com, 216.239.34.1, ---, 2 days)

(1) Which of the above are type A entries? (1%)
(2) Which of the above are type MX entries? (1%)
(3) Which of the above are type NS entries? (1%)
(4) Which of the above are type CNAME entries? (1%)
(5) Which entries are stored at the .com TLD servers? (1%)
(6) Which entries are stored at the authoritative DNS servers? (1%)

Sample Solution:

(1) (b)(e)(f)
(2) (a)
(3) (c)(d)
(4) none
(5) (c)(d)(e)(f)
(6) (a)(b)

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

20

12. (Application) Let’s design the PetTube a video streaming platform that allows users to

upload and share videos of their beloved pets. Similar to YouTube, we build our own
CDN, which consists of 9 edge servers. Stored on the edge servers are the videos
uploaded by the users. When a user click on a pet video after browsing, a list of edge
servers containing the requested pet video is returned to the PetTube client.

Implemented also in the client is the measurement of (RTT, std of RTT, BW, std of BW) to
each edge server. RTT: round trip time. BW: available bandwidth. std: standard deviation.
The 4-tuple for the 9 edge servers are as follows.

(a) (10ms, 1ms, 5Mbps, 4.2Mbps)
(b) (10ms, 1ms, 3Mbps, 0.34Mbps)
(c) (10ms, 1ms, 1Mbps, 0.021Mbps)
(d) (100ms, 0.01ms, 5Mbps, 4.2Mbps)
(e) (100ms, 0.01ms, 3Mbps, 0.34Mbps)
(f) (100ms, 0.01ms, 1Mbps, 0.021Mbps)
(g) (50ms, 0.1ms, 5Mbps, 4.2Mbps)
(h) (50ms, 0.1ms, 3Mbps, 0.34Mbps)
(i) (50ms, 0.1ms, 1Mbps, 0.021Mbps)

Provided the list of edge server (S) containing the requested video, tell which server
you’d like the PetTube client to stream the video from.

(1) S: {a, b, c} (1%)
(2) S: {c, f, i} (1%)
(3) S: {c, d, h} (1%)
(4) Write your intuition out as an algorithm. (2%)
(5) Apply your algorithm on S: {a, g, f}. (1%)
(6) Are you comfortable with the result and why? (1%)

Sample Solution:
This question is very open ended. Feel free to speak of your mind.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

21

13. (Transport) UDP/TCP checksum allows detection of bit errors in a packet. Provided the

following two 16-bit data sequences in a packet, find the corresponding UDP/TCP
checksum.

(1) (1111 1111 1111 1111) and (0000 0000 0000 0000) (1%)
(2) (0000 0000 1111 1111) and (1111 1111 0000 0000) (1%)
(3) (0111 1111 1111 1111) and (1000 0000 0000 0000) (1%)

Sample Solution:
(1) (0000 0000 0000 0000)
(2) (0000 0000 0000 0000)
(3) (0000 0000 0000 0000)

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

22

14. (Transport) Find 5 pairs of 16-bit data sequences such that their UDP/TCP checksums are

identical to the checksum of this pair – (1110 0110 0110 0110) and (1101 0101 0101
0101). (1%)(1%)(2%)(2%)(2%)

Sample Solution:
(1) (1101 0101 0101 0101) and (1110 0110 0110 0110) flipping 16 bits
(2) (1100 0110 0110 0110) and (1111 0101 0101 0101) flipping 2 bits
(3) (1111 0110 0110 0110) and (1100 0101 0101 0101) flipping 2 bits
(4) (1110 0100 0110 0110) and (1101 0111 0101 0101) flipping 2 bits
(5) (1110 0111 0110 0110) and (1101 0100 0101 0101) flipping 2 bits

In case (2)-(5), we see numerous 2-bit flips to slip through the UDP/TCP checksum test.
2-bit flips aren’t exactly rare. Having the flips at specific positions is however harder.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

23

15. (Transport) Provided below are the FSMs of rdt 2.2 sender and receiver. Indicate the

order of the transitions (in terms of t1, t2, …, t12) taking places until the sender and
receiver stabilize for the following scenarios. All scenarios in this problem set inherits the
no packet loss assumption of rdt 2.2.

rdt 2.2 sender:

rdt 2.2 receiver:

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

24

(1) Scenario 1: Both sender and receiver start from the initial state. The sender gets a
call from above to send 1 data packet and there is no bit error at all. (1%)

(2) Scenario 2: Continue from Scenario 1. The sender gets another call from above to
send 1 data packet and there is a bit error. There are no bit errors afterwards. (1%)

(3) Scenario 3: Both sender and receiver start from the initial state. The sender gets a
call from above to send 1 data packet and there is a bit error in the data packet
going to the receiver. There are no more bit errors afterwards. (1%)

(4) Scenario 4: Continue from Scenario 3. The sender gets another call from above to
send 1 data packet and there is a bit error in the ACK 1 packet coming back to the
sender. There are no more bit errors afterwards. (1%)

(5) Scenario 5: Continue from Scenario 3. The sender gets another call from above to
send 1 data packet and there is a bit error in the ACK 0 packet coming back to the
sender. There are no more bit errors afterwards. (1%)

(6) Describe the two scenarios that t10 will be triggered. (2%)

Sample Solution:
(1) t1, t7, t3
(2) t4, t8, t5, t9, t6
(3) t1, t10, t2, t7, t3
(4) t4, t9, t5, t10, t6
(5) t4, t8, t5, t9, t6
(6) S1: When the receiver is expecting data packet 0, but the incoming data packet (0 or

1) is corrupted.
S2: Data packet 0 has been received at the receiver earlier, and ACK 0 is sent back to
the sender. In case the ACK 0 is corrupted at the sender. The sender retransmits the
data packet 0. Next the receiver receives the data packet 0 when it’s expecting data
packet 1. This triggers t10 and ACK 0 is transmitted again.

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

25

16. (Transport) Provided below are the FSMs of rdt 3.0 sender and receiver. Indicate the

order of the transitions (in terms of t1, t2, …, t14) taking places until the sender and
receiver stabilize for the following scenarios.

rdt 3.0 sender:

rdt 3.0 receiver:

Copyright © 2020 Polly Huang Department of Electrical Engineering, National Taiwan University

26

(1) Scenario 1: Both sender and receiver start from the initial state. The sender gets a
call from above to send just 1 data packet. The data packet does not arrive at the
receiver but all subsequent packet transmissions are fine, i.e., no bit error, no packet
loss afterwards. (1%)

(2) Scenario 2: Continue from Scenario 1. The sender gets another call from above to
send just 1 data packet. The ACK 1 packet does not arrive back at the sender while
all other packet transmissions are fine. (1%)

(3) Scenario 3: Continue from Scenario 1. The sender gets another call from above to
send just 1 data packet. The ACK 0 packet does not arrive back at the sender while
all other packet transmissions are fine. (1%)

(4) Scenario 4: Continue from Scenario 1. The sender gets another call from above to
send just 1 data packet. There is a bit error in the data packet but all subsequent
packet transmissions are fine. (1%)

(5) Scenario 5: Continue from Scenario 1. The sender gets another call from above to
send just 1 data packet. There is a bit error in the ACK 1 packet going back to the
sender but all subsequent packet transmissions are fine. (1%)

(6) One can extend the t2 in rdt 3.0 sender such that when the ACK packet is corrupted
or a duplicate (i.e., a NAK), the sender retransmits the data packet (instead of doing
nothing). Discuss the benefits and drawbacks of the extension. (2%)

Sample Solution:
(1) t1, t3, t11, t4
(2) t6, t13, t8, t14, t9
(3) t6, t12, t8, t13, t9
(4) t6, t12, t7, t8, t13, t9
(5) t6, t13, t7, t8, t14, t9
(6) benefit – lower retransmission delay and therefore higher data throughput

drawback – multiple retransmission and therefore high network bandwidth
consumption

