
Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

1

Name______________ Student ID___________________ Department/Year__________

3rd Examination

Introduction to Computer Networks (Hybrid)
Class#: EE 4020, Class-ID: 901E31110

Spring 2021

13:10-14:00 Thursday
May 13, 2021

Cautions

1. There are in total 100 points to earn. You have 50 minutes to answer the questions. Skim

through all questions and start from the questions you are more confident with.
2. Use only English to answer the questions. Misspelling and grammar errors will be

tolerated, but you want to make sure with these errors your answers will still make sense.

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

2

1. (ch31, 10pt) Recall the functionalities supported by the transport layer. For each of the

following statements, tell whether it is true or false?
(1) Delay guarantee is one of the supported functionalities. (1pt)
(2) Multiplexing and demultiplexing is one of the supported functionalities. (1pt)
(3) Error detection is one of the supported functionalities. (1pt)
(4) Reliable data transfer is one of the supported functionalities. (1pt)
(5) Congestion control is one of the supported functionalities. (1pt)
(6) Delay guarantee is a functionality provided only by UDP. (1pt)
(7) Multiplexing and demultiplexing is a functionality provided only by UDP. (1pt)
(8) Error detection is a functionality provided only by UDP. (1pt)
(9) Reliable data transfer is a functionality provided only by TCP. (1pt)
(10) Congestion control is a functionality provided only by TCP. (1pt)

Sample Solution:

(1) False
(2)-(5) True
(6)-(8) False
(9)-(10) True

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

3

2. (ch33, 6pt) Internet checksum is based on computing the 1’s complement sum. Let’s

denote the function of 1’s complement sum as F. Assume the simpler case of the Internet
checksum applying F to two 4-bit numbers, S1 and S2.
(1) The data sender will write the checksum value in the packet header before

transmitting the packet. Tell the checksum F(S1, S2) for S1 = (1 1 1 1) and S2 = (0 0 0
0). (1pt)

(2) Suppose there is 1 bit error during the transmission, such that the receiver sees S1 =
(1 1 1 1) and S2 = (0 0 0 1). Will the receiver detect the error? (1pt)

(3) Suppose there is 1 bit error. One in S1 and one in S2, such that the receiver sees S1 =
(1 1 1 1) and S2 = (0 0 1 0). Will the receiver detect the error? (1pt)

(4) Try a few more cases of having just 1 bit error. Will the receiver be able to detect all 1
bit error cases, yes or no? (1pt) And why or why not? (2pt)

Sample Solution:
(1) (0 0 0 0)
(2) Yes
(3) Yes
(4) Yes. There are 8 possibilities. In each case, the sum (S1+S2) will change. If the sum is

different, the complement is of course also different. The Internet checksum will
always detect cases with only 1 bit error.

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

4

3. (ch33, 12pt) Continue from Problem Set 2 and consider the cases of having 2 bit errors in
either one or both of S1 and S2.
(1) Suppose both bit errors are in S1, such that the receiver sees S1 = (1 1 0 0) and S2 = (0

0 0 0). Will the receiver detect the error? (1pt)
(2) Suppose both bit errors are in S1, such that the receiver sees S1 = (1 1 1 1) and S2 = (0

0 1 1). Will the receiver detect the error? (1pt)
(3) Suppose 1 bit error is in S1 and the other in S2, such that the receiver sees S1 = (0 1 1

1) and S2 = (0 0 0 1). Will the receiver detect the error? (1pt)
(4) Suppose 1 bit error is in S1 and the other in S2, such that the receiver sees S1 = (1 1 1

0) and S2 = (0 0 0 1). Will the receiver detect the error? (1pt)
(5) Among all 2 bit error patterns, i.e., !!"", how many will not be detected by the

Internet checksum? (2pt) And why? (2pt)
(6) Among all bit error patterns, how many will not be detected by the Internet

checksum? (2pt) And why? (2pt)

Sample Solution:

(1) Yes
(2) Yes
(3) Yes
(4) No
(5) 4. When the bit error positions are the same, the receiver will not be able to detect

the error. That is 4/28 chance the 2 bit error cases will slip.

For the particular data set S1=(1 1 1 1) and S2=(0 0 0 0), flipping the bits at the same
position in S1 and S2 is equivalent of subtracting an amount to S1 and adding the
same amount to S2. The sum will remain the same.

(6) 15. The # of patterns of S1 and S2 are 28. Thinking along the line that S1 and S2 are
binary numbers of 4 bits. The # of patterns of S1 and S2 are 162, too. Bit flips are
essentially S1 or S2 being added (modulo 16) by an amount. The amount of the
patterns being different from the original is 162-1. Among these combinations, 15 of
them will slip. They are the cases where S1 is added (modulo 16) by an amount, and
S2 happens to be subtracted (modulo 16) by the same amount. The sum will be the
same as the original S1+S2.

Note though the “probability of bit error not being caught by the Internet
checksum” is not quite 15/(162-1) as the probability of being added/subtracted by 1
vs. 2, 3…. are all different. Think about having 1 bit error vs. 2 bit errors. The chance

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

5

of latter is lower. But you see the light deriving the “probability of bit error not being
caught by the Internet checksum”.

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

6

4. (ch34, 6pt) Provided below are the FSMs of rdt 3.0 sender and receiver. Indicate the

order of the transitions (in terms of t1, t2, …, t14) taking place until the sender and
receiver stabilize for the following scenarios.

rdt 3.0 sender:

rdt 3.0 receiver:

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

7

(1) Scenario 1: Both the sender and receiver start from the initial state. The sender gets
a call from above to send just 1 data packet. There is a bit error in the ACK 0 packet,
but all subsequent packet transmissions are fine, i.e., no bit error, no packet loss
afterwards. (1%)

(2) Scenario 2: Continue from Scenario 1. The sender gets another call from above to
send just 1 data packet. There is a bit error in the data packet going to the receiver
but all subsequent packet transmissions are fine. (1%)

(3) Scenario 3: Both sender and receiver start from the initial state. The sender gets
another call from above to send just 1 data packet. The ACK 0 packet does not arrive
back at the sender while all other packet transmissions are fine. (1%)

(4) Scenario 4: Continue from Scenario 3. The sender gets a call from above to send just
1 data packet. The data packet does not arrive at the receiver but all subsequent
packet transmissions are fine. (1%)

(5) One can extend the t2 in rdt 3.0 sender such that when the ACK packet is corrupted
or is a duplicate (i.e., a NAK), the sender retransmits the data packet (instead of
doing nothing). Discuss the benefits and drawbacks of the extension. (2%)

Sample Solution:

(1) t1, t11, t2, t3, t12, t4
(2) t6, t12, t7, t8, t13, t9
(3) t1, t11, t3, t12, t4
(4) t6, t8, t13, t9
(5) benefit – lower retransmission delay and therefore higher data throughput

drawback – multiple copies of the packet transmitted throughout the rest of the
connection. Therefore, high network bandwidth consumption.

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

8

5. (ch34, 6pt) Recall the color scheme of the packets at the sender side of Go-Back-N (GBN)

and Selective Repeat (SR) protocols.

Tell whether each of the 6 sender-side packet lineups below is from (a) only a GBN
sender, (b) only an SR sender, (c) possibly both, or (d) neither of the two. (1pt each)

Sample Solution:

(1) (c)
(2) (c)
(3) (b)
(4) (d)
(5) (c)
(6) (d)

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

9

6. (ch34, 6pt) Recall the color scheme of the packets at the receiver side of Go-Back-N

(GBN) and Selective Repeat (SR) protocols.

Tell whether each of the 6 receiver-side packet lineups below is from (a) only a GBN
sender, (b) only a SR sender, (c) possibly both, or (d) neither of the two. (1pt each)

Sample Solution:

(1) (c)
(2) (b)
(3) (b)
(4) (d)
(5) (d)
(6) (d)

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

10

7. (ch35, 5pt) Shown below is the TCP packet format. Tell which of the fields ((a), (b), …, (h))

and the special bits (C, E, …, F) are used for each of the 5 functionalities below.

(1) Flow control. (1pt)
(2) 3-way handshake. (1pt)
(3) Demultiplexing. (1pt)
(4) Bit error detection. (1pt)
(5) Explicit congestion notification. (1pt)

Sample Solution:

(1) (f) receive window
(2) S and A bit (S bit only also OK)
(3) (a) Source and (b) destination port number. (and source and destination IP

addresses but these are not in the transport layer header).
(4) (g) checksum
(5) C and E bit

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

11

8. (ch35, 5pt) Here is a short TCP connection from the beginning to the end. First, we see

the 3-way handshake. In the last ACK of the 3-way handshake, the client (Host A) sends
10 bytes of data. In the ACK packet back to the client, the server (Host B) sends 100 bytes
of data. The client, after receiving the ACK for the 10-byte data and the 100-byte data,
closes the connection in the meantime sending the ACK for the 100-byte data. After a
little while, the server closes the connection as well. Tell the value of a, b, c, e, f. (1pt
each)

Sample Solution:
a=43, b=80, c=53, e=54, f=181

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

12

9. (ch35, 5pt) In TCP, to find the proper timeout interval for retransmission, we estimate the

average round-trip time (RTT) and the average RTT deviation using the following formula.
The formula basically computes a new average (An+1) by taking the weighted (α) sum of
the current average (An) and the current sample (Sn), where 0 < α < 1.

An+1 = (1-α) An + (α) Sn

One can expand An in terms of An-1 and Sn-1.

An = (1-α) An-1 + (α) Sn-1

Substitute An in the original formula of An+1.

An+1 = (1-α) {(1-α) An-1 + (α) Sn-1}+ (α) Sn

= (1-α)2 An-1 + (1-α) (α) Sn-1+ (α) Sn

One can repeat the process by expanding An-1. Assume A1= 0. The full expansion is as
follows:

An+1 = (1-α)n-1(α)S1 + (1-α)n-2(α)S2 +…+ (1-α)2(α)Sn-2 + (1-α)(α)Sn-1 + (α)Sn

One can see that an older RTT sample Si is weighted off exponentially fast (1-α)(n-i). The
method is therefore called exponentially weighted moving average. Let’s be cautious
though. In order to call An+1 a weighted average of Si, i=1…n, the weights need to add up
to 1. Show the weights of Si, i=1…n will add to 1, when n approaches ¥.

Sample Solution:

(1-α)n-1(α) + (1-α)n-2(α) +…+ (1-α)2(α) + (1-α)(α) + (α)
= α { 1+(1-α)+ (1-α)2+…+(1-α)n-1 } <- the term in {} is a geometric series
= α {[1-(1-α)n] / [1-(1-α)]} <- sum of a geometric series
= α (1/α) = 1 <- when n -> ¥

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

13

10. (ch37, 17pt) Below is the pseudo-code describing the reliable data transfer part of the

TCP sender. The mechanism to adjust the congestion window size (cwnd) is missing.
Please identify the code block where the missing functionalities shall be added and
modify the code block accordingly.

 1 NextSeqNum = InitialSeqNum; SendBase = InitialSeqNum
 2 cwnd = InitialCwnd; ssthresh = InitialSsthresh
 3 loop (forever) {
 4 switch(event)
 5 event: data received from application above
 6 If (NextSeqNum + length(data) <= SendBase + cwnd) {
 7 create TCP segment with sequence number NextSeqNum
 8 pass segment to IP
 9 NextSeqNum = NextSeqNum + length(data)
10 if (timer currently not running)
11 start timer
12 } else

 13 refuse data
14 event: timer timeout
15 retransmit from the smallest, not-yet-acknowledged segment
16 start timer
17 event: ACK received, with ACK field value of y
18 if (y > SendBase) {
19 SendBase = y
20 if (there are currently not-yet-acknowledged segments)
21 (re)start timer
22 else
23 cancel timer
24 } else {
25 increment count of dup ACKs received for y
26 if (count of dup ACKs received for y == 3) {
27 resend segment with sequence number y
28 count of dup ACKs received for y = 0
29 }
30 } /* end of if (y > SendBase)*/

 31 } /* end of loop forever */

B

C

D

E

A

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

14

(1) Where to add the code to reduce the congestion window size to 1? (1pt) And how
should the code block(s) be modified? (1pt)

(2) Where to add the code to reduce the window size to half? (1pt) And how should the
code block(s) be modified? (1pt)

(3) Where to add the code to set the ssthresh? (1pt) And how should the code block(s)
be modified? (2pt)

(4) Where to add the code to increase the cwnd? (1pt) And how should the code
block(s) be modified? (2pt)

(5) Where to add the code to implement fast recovery? (2pt) And how should the code
block be modified? (5pt)

Sample Solution:

(1) C
 cwnd=1
15 retransmit from the smallest, not-yet-acknowledged segment
16 start timer

(2) E

25 increment count of dup ACKs received for y
26 if (count of dup ACKs received for y == 3) {
 cwnd=cwnd/2
27 resend segment with sequence number y
28 count of dup ACKs received for y = 0
29 }

(3) C and E
C block
 ssthresh=cwnd/2
 cwnd=1
15 retransmit from the smallest, not-yet-acknowledged segment
16 start timer

E block
25 increment count of dup ACKs received for y
26 if (count of dup ACKs received for y == 3) {
 ssthresh=cwnd/2
 cwnd=ssthresh

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

15

27 resend segment with sequence number y
28 count of dup ACKs received for y = 0
29 }

(4) D

19 SendBase = y
 If (cwnd <= ssthresh) {
 cwnd = cwnd+MSS
 } else {
 cwnd = cwnd+MSS(MSS/cwnd)
 }
20 if (there are currently not-yet-acknowledged segments)
21 (re)start timer
22 else
23 cancel timer

(5) C, D and E

C block
15 retransmit from the smallest, not-yet-acknowledged segment
16 start timer
--> count of dup Acks received for the oldest unack pkt =0

D and E block
if (y > SendBase) {

SendBase = y
If (count of dup ACKs received for y >= 3) {

cwnd=ssthresh
count of dup ACKs received for y = 0

} else {
If (cwnd <= ssthresh) {

cwnd = cwnd+MSS
} else {

cwnd = cwnd+MSS(MSS/cwnd)
}

}
if (there are currently not-yet-acknowledged segments)

(re)start timer
else

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

16

cancel timer
} else {

increment count of dup ACKs received for y
if (count of dup ACKs received for y == 3) {

ssthresh=cwnd/2
cwnd=ssthresh + 3MSS
resend segment with sequence number y

}
If (count of dup ACKs received for y > 3) {

cwnd=cwnd + MSS
transmit segments as allowed

}
} /* end of if (y > SendBase)*/

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

17

11. (ch37, 5pt) This is TCP with fast recovery. The scenario is as follows. Assume every packet

is strickly 1 MSS large. Tell the value of a, b, c, e, and h. (1pt each)

Sample Solution:
a=3 MSS, ssthresh=cwnd/2
b=6 MSS, cwnd=ssthresh+3MSS
c=3, retransmit packet seq 3MSS
e=7 MSS, cwnd=cwnd+MSS (in fast recovery state and receiving another duplicate
ack)
h=9, transmit packet seq 9MSS now the cwnd is increased by 1 MSS

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

18

12. (PA, 7pt) Consider the following Go program: server-exam3.go. Execute the server-

exam3.go first. Then start two extra terminals. Execute client-102.go on the two
terminals back-to-back.

server-exam3.go
package main

import "fmt"

import "bufio"

import "net"

import "time"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func handleConnection (c net.Conn, i int) {

 reader := bufio.NewReader(c)

 message, errr := reader.ReadString('\n')

 check(errr)

 fmt.Printf("%s", message)

 j := 0

 for (j < 10) {

 time.Sleep(1 * time.Second)

 fmt.Printf("client #%d processing: %d%% \n", i, 10*j)

 j++

 }

 time.Sleep(10 * time.Second)

 writer := bufio.NewWriter(c)

 newline := fmt.Sprintf("%d bytes received\n", len(message))

 _, errw := writer.WriteString(newline)

 check(errw)

 writer.Flush()

 c.Close()

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

19

}

func main() {

 fmt.Println("Launching server...")

 ln, _ := net.Listen("tcp", ":<your port#>")

 defer ln.Close()

 i := 1

 for {

 conn, _ := ln.Accept()

 fmt.Printf("%d ", i)

 handleConnection(conn, i)

 i++

 }

}

client-102.go

package main

import "fmt"

import "bufio"

import "net"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 conn, errc := net.Dial("tcp", "127.0.0.1:<your port#>")

 check(errc)

 defer conn.Close()

 writer := bufio.NewWriter(conn)

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

20

 len, errw := writer.WriteString("Hello World!\n")

 check(errw)

 fmt.Printf("Send a string of %d bytes\n", len)

 writer.Flush()

 reader := bufio.NewReader(conn)

 message, errr := reader.ReadString('\n')

 check(errr)

 fmt.Printf("Server replies: %s", message)

}

(1) Tell the output on screen of server-exam3.go. (2%)
(2) Modify server-exam3.go so that handleConnection(conn, i) in main() is a

goroutine. I.e., the line becomes go handleConnection(conn, i). Tell the output
on screen running the modified server-exam3.go. (2%).

(3) Are the two outputs the same? (1%)
(4) Continue from (3). Explain why the outputs are the same or different. (2%).

Sample Solution:

(1) Launching server...
1 Hello World!
client #1 processing: 0%
client #1 processing: 10%
client #1 processing: 20%
client #1 processing: 30%
client #1 processing: 40%
client #1 processing: 50%
client #1 processing: 60%
client #1 processing: 70%
client #1 processing: 80%
client #1 processing: 90%
2 Hello World!
client #2 processing: 0%
client #2 processing: 10%
client #2 processing: 20%
client #2 processing: 30%
client #2 processing: 40%
client #2 processing: 50%

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

21

client #2 processing: 60%
client #2 processing: 70%
client #2 processing: 80%
client #2 processing: 90%

(2) Something like the following with client #1 and #2’s requests processed overlapping
each other.

Launching server...
1 Hello World!
client #1 processing: 0%
client #1 processing: 10%
client #1 processing: 20%
client #1 processing: 30%
client #1 processing: 40%
2 Hello World!
client #1 processing: 50%
client #2 processing: 0%
client #1 processing: 60%
client #2 processing: 10%
client #1 processing: 70%
client #2 processing: 20%
client #1 processing: 80%
client #2 processing: 30%
client #1 processing: 90%
client #2 processing: 40%
client #2 processing: 50%
client #2 processing: 60%
client #2 processing: 70%
client #2 processing: 80%
client #2 processing: 90%

(3) Yes

(4) The former (non-goroutine) will complete client #1’s request before starting client

#2’s. The latter (goroutine) allows the two requests to progress concurrently.

Copyright © 2021 Polly Huang Department of Electrical Engineering, National Taiwan University

22

13. (PA, 10pt) Polly is running many servers on port 20001 to 21000 of the PA server. Among

all these servers, one is special, called the bingo server. The end goal is to scan the ports
between 20001 and 21000 and find the port number of the bingo server as quick as
possible.

Each of these servers takes a connection request and returns a simple string “low\n”,
“bingo\n”, or “high\n”. The bingo server returns “bingo\n”. Those running on port
numbers lower than the bingo server returns “low\n”. Those running on port numbers
higher than the bingo server returns “high\n”.

Now go on to the PA server and log in with the team’s username and password. Create a
subdirectory exam3-<student ID>. Go to the subdirectory and work on the following.

(1) Create client-e3-1.go such that it is able to probe the server running on port 20001
and print the message from the server. (3pt)

(2) Create client-e3-2.go such that it is able to probe through the servers on port 20001
to 21000 sequentially, stop at the bingo server, and tell the port number of the
bingo server. (3pt)

(3) Create client-e3-3.go such that it is able to binary search, find the bingo server
within log21000 probes (i.e., 10 probes max), and tell the number of probes
attempted. (4pt)

Sample Solution:
 Whatever works

