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PEDRO NUNEZ

ABSTRACT. Following [Hoc72] we provide an example of rings (com-
mutative and with 1 throughout the talk) R, R” such that R[t] = R’[t]
but R 2 R’, where t is an indeterminate. As a preparation for this
counterexample we also discuss the notion of projective module and
the hairy ball theorem.
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1. INTRODUCTION

Let R be a ring. We can form the polynomial ring R[¢] in one variable ¢
with coeflicients in R. This construction is functorial, and hence

R =R = R[t] = R'[t].

The goal of this talk is to show with an explicit counterexample due to
Hochster [Hoc72] that the converse is not true.

In the process of constructing this counterexample we will come across
a projective module which, as a consequence of the hairy ball theorem, is
not a free module. Therefore we will discuss projective modules and the
hairy ball theorem before jumping into the counterexample.
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1



2 PEDRO NUNEZ

2. PROJECTIVE MODULES

Definition 2.1. Let C be a category. An object P € C is called projective
if the following lifting problem can always be solved:

3,/>( iepi
PN

Lemma 2.2. Let A be an abelian category and let P € A be an object. The
following are equivalent:

(1) P is projective.

(2) Hom(P, —) is exact.

(3) Every short exact sequence of the form

0>N—->M-—->P—0
splits.

Proof. We start with (1) = (2). Assume P is projective and consider a
short exact sequence

0—>A—>B—>C—0.

Since Hom(P, —) is always left exact, we only need to show that the in-
duced map Hom(P, B) — Hom(P, C) is surjective. But B — C is an epi-
morphism, so this is precisely what P being projective means by definition.

Next we show (2) = (3). Assume Hom(P, —) is exact and consider a
short exact sequence

0>N->M-—>P-—>0.

Applying Hom(P, —) we get a surjection Hom(P, M) — Hom(P, P), and
the identity on P comes then from the desired section o: P — M.

The implication (3) = (1) is left as an exercise during the talk. The hint
is that epimorphisms are stable under pullback in abelian categories, and
the solution follows in gray. We are given the following situation:

M

iepi

P—— N

All finite limits exist in A, so we may consider the cartesian square

Pxy M ——% M

o

P———>N
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Epimorphisms are stable under pullback in abelian categories, so f is also
an epimorphism. By assumption, we can find a section 6: P — P Xy M
splitting the corresponding short exact sequence. The composition g o
o: P — M is then the desired lift. m]

Let us look now at the abelian category of modules over a ring R. What
does it mean for an R-module to be projective?

Proposition 2.3 ([Fral8, Lemma 1.1.2]). Let R be a ring. An R-module P
is projective if and only if it is a direct summand of some free module F.
Moreover, if P is finitely generated, then we can also choose F to be finitely
generated.

Proof. If P is (finitely generated) projective, consider a surjection F — P
from a (finitely generated) free module F. The resulting short exact se-
quence

0-DK—>F—>P—>0

splits by Lemma 2.2, hence P is a direct summand of F.

Suppose conversely that F = P@K and consider a surjection ¢: M — N
and a morphism f: P — N. Then ¢ @ idg: M ® K - N @ K is again a
surjection. Since F is free, the morphism f ®@idgx: F — N @K can be lifted
to a morphism f®idg: F — M®K, so that f: P — M is the desired lifting
of the original surjection ¢: M — N. ]

Corollary 2.4 ([Fral8, Cor. 1.1.28]). Let R be a ring. A finitely presented
R-module P is projective if and only if Exty(P,T) = 0 for every finitely gen-
erated R-module T.

Proof. Pick a presentation
0—->K—>F—>P—0

with K finitely generated and F finitely generated and free. Then take the
long exact sequence of Exty (P, —) and use the assumption to find a splitting
of the short exact sequence, exhibiting therefore P as a direct summand of
a free module. O

To close this section, let us briefly discuss the relation between being
projective and other well-known module properties. Let R be a ring. Recall
that an R-module M is called flat if the functor M ®g (—) is exact, and it
is called torsion-free if 0 € M is the only element m € M such that there
exist a non-zero divisor r € R with rm = 0. Then we have the following
inclusions:

{Free} C {Projective} C {Flat} C {Torsion-free}
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The axiom of choice is equivalent to the statement that every set is a
projective object in the category of sets. This implies in turn that every free
module is projective. Indeed, this follows then from the universal property
of free modules. More generally, if a functor R preserves epimorphisms and
L 4 R, then L preserves projective objects [Fra18, Dual of Fact 1.1.1]. In our
case R would be the forgetful functor and L would be the functor sending
a set to the free module over this set.

The fact that projective modules are flat follows again from the axiom
of choice, but in this case it is a strictly weaker statement. What we need
now is the existence of enough projective objects in the category of R-
modules, so that we can compute the left-derived functors of M ®g (—)
with projective resolutions and argue as in [Fral8, Fact 1.2.1]. In order
to ensure this, it would suffice to have enough projective objects in the
category of sets.

Finally, that every flat module M is torsion-free follows from the com-
putation in [Fral8, Example 1.2.1]. Namely, if r € R is not a zero-divisor,
then

0 = Tor®(M, R/rR) = ker(M AN M).

A natural question at this point could be: to what extent are the previous
inclusions of sets of R-modules strict? In the following diagram we give
some examples in which these inclusions are strict, shown in red above
the corresponding inclusion. We also point out under what assumptions
we do get an equality, shown in green below the corresponding inclusion.

(2,1 +V=5) Q (x,y)
over Z[V=5] over Z over C[x, y]
# # #

{Free} C {Projective} < {Flat} < {Torsion-free}

over PID or local ~ f.g. over noeth.  over DD

In the above diagram, DD stands for Dedekind domain [Neu99, Defin-
ition 1.3.2], PID stands for principal ideal domain, f.g. stands for finitely
generated and noeth. stands for noetherian.

Proof. The first example is discussed in [Gat14, Example 13.8]. Instead of
reproducing Gathmann’s discussion here, let us argue why the ring Z[v-5]
was a natural place to look for such an examples, which also hints on how
to produce similar examples. Dedekind domains are hereditary rings, so
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all ideals are projective. One would then try to find a non principal ideal on
a Dedekind domain, which then has necessarily a minimal number of two
generators [Neu99, Exercise 1.3.6]. A Dedekind domain is a principal ideal
domain if and only if it is a unique factorisation domain [Gat14, Propos-
ition 13.27], so good candidates to look for non principal ideals are rings
of integers of number fields in which we know that there is no unique
factorisation into prime elements, such as Z[V-5].

That every projective module over a principal ideal domain is free fol-
lows from Proposition 2.3 and the fact that submodules of free modules
over principal ideal domains are again free [Rot02, Theorem 9.8]. That
every projective module over a local ring is free is a result due to Kaplansky
[AF92, Corollary 26.7], but easier proofs are available in the case of finitely
generated modules over a noetherian local ring [Fra18, Proposition 1.3.1].

If R is a Dedekind domain, then every localization R, at a prime ideal
p € Spec(R) is a principal ideal domain. If M is a torsion-free module and
p € Spec(R), then M, is a torsion-free Ry-module, because localisation is
an exact functor. Since flatness can be checked locally [Fra18, Fact 1.2.6],
it suffices to argue that torsion-free modules over a principal ideal domain
are flat. This follows from the analogue of Baer’s criterion for flatness
[Fral8, Proposition 1.2.3] and the isomorphisms

TorX (M, R/rR) = ker(M o M)

forall r € R\ {0} mentioned earlier.

That flat implies projective for finitely generated modules over a noeth-
erian ring is a consequence of the local nature of both properties under
these assumptions and the corresponding statement for finitely generated
modules over a noetherian local ring, see [Fral8, Proposition 1.3.2].

The rationals Q are torsion-free over the Dedekind domain Z, so they
are also flat. Every two rational numbers are linearly dependent over Z,
so Q cannot be a free Z-module. Therefore they cannot be a projective
module either, because Z is a principal ideal domain.

Since C[x, y] is torsion-free over itself and (x, y) is a submodule, (x,y)
is also torsion-free over C[x, y]. Since C[x, y] is noetherian and (x, y) is
finitely generated over C[x, y], if (x, y) was flat over C[x, y], then it would
also be projective over C[x, y]. By the Quillen-Suslin theorem mentioned
below, this would in turn imply that (x, y) is a free C[x, y], so (x, y) cannot
be a flat C[x, y]-module. 0

Remark 2.5. The example of Q as a Z-module also shows that being pro-
jective depends on the base ring, since Q is projective over itself.
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Remark 2.6. A ring R is called hereditary if all submodules of projective
R-modules are again projective. Dedekind domains can be characterised
as hereditary integral domains.

Remark 2.7. The example of (x,y) as a C[x, y]-module also shows that
Clx, y] is not an hereditary ring, since C[x, y] is projective over itself but
its submodule (x, y) is not flat, thus not projective.

Remark 2.8. The left-most equality in the diagram above is also true for fi-
nitely generated modules over polynomial rings with coefficients in a field.
This is an important result first asked by Serre and later proven independ-
ently by Quillen and Suslin, see the Wikipedia article on the Quillen—Suslin
theorem. It corresponds geometrically to the statement that vector bundles
on affine space are all trivial.

Remark 2.9 ([Fra18]). Baer’s criterion [Fra18, Prop. 1.1.1] allows us to char-
acterise the dual notion of injective modules only in terms of Ext, and
quotients of the ring R by its ideals. Indeed, an R-module N is injective if
and only if Ext}lz(R/I, N) = 0 for every ideal I C R [Fral8, Prop. 1.1.4]. In
general, no similar criterion for projectivity is available. In fact, the White-
head problem —which states that if an abelian group A has Ext}, (A, Z) = 0,
then it is free— is undecidable in ZFC due to a result of Shelah.

On the other hand, the notion of flatness, which agrees with projectivity
for finitely generated modules over noetherian rings, does have a general
criterion similar to the previous one for injectivity. Namely, an R-module
M is flat if and only if Torf(M,R/I) = 0 for every ideal I C R [Fralg,
Prop. 1.2.3].

3. HAIRY BALL THEOREM
In this section we will prove the hairy ball theorem following [EG79].

Theorem 3.1 (Hairy ball theorem). Every continuous vector field on the
2-sphere S? has at least one zero.

Proof. We will use the following definitions and identifications:

e S2={(x,y,2) e R} | x2+y? + 22 = 1}.

« R2={(x,y,2) €R3| z=0}.

e D?={(x,y,0) e R2C R | x* +¢* < 1}.

e S'={(x,4,0) e RZ CR® | x* +y* = 1}.

¢ 82 ={(x,y,2) € S C R | z > 0}.

¢ §2 ={(x,y,2) € S CR*| z < 0}.

« For p = (x,y) € S! C R? we denote by R,: R* — R? the linear
reflection with axis the direcction defined by the vector (-y, x),
tangent to S at p.


https://en.wikipedia.org/wiki/Quillen-Suslin_theorem
https://en.wikipedia.org/wiki/Quillen-Suslin_theorem
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We prove the theorem by contradiction, so suppose that we are given a
non-vanishing continuous vector field X: S* — TS? on S

Let h: D? — S? be the inverse of the homeomorphism S? = D? induced
by the stereographic projection from the north pole (0,0,1) € S?. Let
p € D? be a point. Let L, be the line joining (0,0,1) and p, which then
intersects S? precisely at h(p). We consider the line L;, which is parallel to
L, and passes through the point h(p) + X (h(p)) € R*. With this notation,
we define a new function

W: D? — R?
pr— (RZDL;)—p.

RN,
W
TR
#Xi0(p))
L'p

Since X is a non-vanishing continuous vector field, W: D* — R? is
a non-vanishing continuous function. Therefore it induces a continuous
function

F:D? — §!
F(p)
IF(p)II

We repeat the same process with the south pole and S2. This gives us
a non-vanishing continuous function W*: D> — R? that we can again
normalise into a continuous function F*: D* — S!.

We denote by f and f* the restrictions to S' € D? of F and F* respect-
ively. By definition f and f* factor through the contractible space D?:
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Sl Lf > Sl
DZ
Therefore, they are both nullhomotopic.
To obtain the desired contradiction, we will next find a certain relation
between the functions f and f*, which is in turn induced by a relation

between W|gi and W*|si. Namely, given a point p = h(p) = (x0,Y0,0) €
S! ¢ D?, we claim that

W (p) = Rp(W(p)). (1)

Recall that this means that the vector W*(p) is the linear reflection of W (p)
across the axis given by the direction defined by (—yj, xo, 0) € R%. In order
to prove this, we fix an arbitrary p = (xo,10,0) € S! and we change the
coordinate system, making p the origin, (xo, yo, 0) the first basis vector in
R? and (—yo, xo, 0) the second basis vector in R?. We express W(p) and
W*(p) with respect to these coordinates:

W(p) = (w1, wp, 0) and W*(p) = (wy, w3, 0).

The claim is then that w; = —w] and wy = wy.

We check first that w, = wj. Let L, resp. L, denote the line joining p to
the north resp. south pole. These two lines intersect at p and define a plane
I which intersects R? precisely along the x-axis of our current coordinate
system. Let Lj, resp. (Ly,)" be the lines with directions equal to those of L,
resp. L, containing the point p + X(p). The plane II" defined by these two

lines is then parallel to IT, and therefore the intersection I’ " R? is parallel
to the x-axis of our current coordinate system. This implies that w, = wy.

To check that w; = w] we argue projecting the whole picture into the
plane spanned by the vectors (xo, yo,0) and (0,0,1). From this point of
view we see the following picture:

From Thales’ theorem we know that L, and L; intersect at a right angle.
From Proposition 29 in Book I of Euclid’s Elements we deduce that all other
angles that seem to be right angles in the picture are in fact right angles.
From the fact that the inner angles of any triangle add up to two right
angles we deduce in turn that all angles that look like half a right angle in
the picture are in fact half a right angle. Indeed, we can start by ensuring
that the inner angle between L, and W*(p) is half a right angle, which
follows from the fact that the triangle with vertices p, the usual origin of
R? and the north pole is isosceles with a right angle at the usual origin of
R3. Then, knowing already that the inner angle between W*(p) and X (p)
is a right angle, we deduce from this that the inner angle between L, and
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N \\ *k 1
: (L*,)

X (p) is also half a right angle, and so on. This implies that all four small
triangles in the picture are congruent, and in particular w; = wy.

We are finally ready to exhibit the desired contradiction. Let H: S' x
[0,1] — S! be a homotopy from f to the constant map c: S! — S! with
constant value the poitn (=1,0,0) € S' € R?. The formula

H*: $'x[0,1] — S!
(p,t) — Ry(H(p, 1))

defines a homotopy between the nullhomotopic map f*: S — S! and the
map

¢t St — st
p — R,((=1,0,0))

But this is a contradiction, because ¢*: S! — S! is the morphism going
twice around S' at constant speed, which has degree 2.

c*(v,)
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If we take the Whitney embedding theorem [Bre93, Theorem I1.10.7],
the tubular neighbourhood theorem [Bre93, Theorem II.11.4] and the
Lefschetz-Hopf fixed point theorem [Bre93, Theorem IV.23.4] for granted,
we can prove a more general statement:

Theorem 3.2 ([Bre93, Corollary 1V.23.6]). If M is a compact smooth mani-
fold with Euler characteristic y(M) # 0, then any continuous vector field on
M has a zero.

Proof. We show that if M admits a non-vanishing continuous vector field,
then it has Euler characteristic y(M) = 0. So let X: M — TM be a non-
vanishing continuous vector field on M.

The Whitney embedding theorem [Bre93, Theorem I1.10.7] allows us
to assume that M C RY is a compact smooth submanifold. The tubular
neighbourhood theorem [Bre93, Theorem II.11.4] ensures the existence of
a small enough real number ¢ > 0 such that the sum in RN yields a diffeo-
morphism

0: {(x,0) e MxRN |0 L T, M, |jo]| < ¢} = {y e RN | dist(M,y) < ¢}

from the open subset N.M of the normal bundle consisting of normal vec-
tors with norm less than ¢ to an e-neighbourhood B.M of M in RY, which
we refer to as a tubular neighbourhood of M in RN. The projection from the
normal bundle 7: NM — M induces a smooth strong deformation retrac-
tionr: B.M — M C B.M given by y — n(67'(y)). The smooth homotopy
that shows that r is a smooth strong deformation retraction [Bre93, Defin-
ition 1.14.8] is

F: B.M x [0,1] — B.M
(6(x,0),t) — O(x, tv)

Since M is compact, we may assume—up to multiplying X by a small
enough scalar—that || X (x)|| < e for all x € M. We define then

f*M—M
x +— r(x+X(x)).

Geometrically, we are projecting the point x + X(x) € RN onto M along
the normal direction, in a way that is made precise by the tubular neigh-
borhood theorem.

If f(x) = x, then the tangent direction of X (x) is zero. But X(x) was
by assumption a tangent vector at x € M, so X(x) = 0, contradicting the
assumption that X is non-vanishing. Thus f has no fixed points.

We have also shown as a consequence of the Whitney embedding the-
orem that M is an euclidean neighbourhood retract. Namely, M is a retract
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of the open subset B.M C RN. Therefore we may apply the Lefschetz-
Hopf fixed point theorem [Bre93, Corollary IV.23.5] to deduce that L(f) =
0. Recall that the Lefschetz number L( f) is defined as the alternating sum
of traces of the morphisms induced by f in homology with coefficients in
Q, so it is an homotopy invariant. By scaling down the vectors in our vec-
tor field and repeating the process above we obtain a homotopy f =~ idy,
so 0 = L(f) = L(idy). The trace of the identity on a vector space is its
dimension, so L(idy;) = y(M) = 0. O

Remark 3.3. The converse is also true if we further assume orientability
and connectedness, see [Bre93, Corollary VII.14.5].

4. HOCHSTER’S EXAMPLE

In this section we discuss the example in [Hoc72], which shows that
R = R’ does not necessarily follow from R[t] = R[¢].

4.1. Constructing the relevant rings. Define A := R[x,y,z]/(x* + y? +
z? — 1), which is an integral domain because x? + y* + z? — 1 is irreducible
in R[x,y,z] and thus p := (x®> + y> + 22 — 1) C R[x, v, z] is a prime ideal.
Let ¢: A®> — A be the A-linear homomorphism given by

(f+p.g+p,h+p)— xf+yg+zh+p
for all f, g, h € R[x,y, z]. This homomorphism is surjective, because
Plx+py+pz+p) =x’+y° +25+p=1+p.

Consider the short exact sequence of A-modules

0—>E—>A®3iA—>o,

with E = ker(¢). Since A is projective over itself, the sequence splits and
A® = E @ A. Therefore E is a projective module.

Suppose that E was a free module. Non-zero commutative rings have
the invariant basis number property, so E would necessarily be a rank 2
free A-module. Let e; and e, be a basis of E over A, say

ei = (fir 49, fiz+ P fis+p)
fori € {1,2}. A section of ¢: A®3 — A is given by
o f+pr— (xf+p,yf +p,zf +p).

Therefore we can consider a new basis of A®3 given by ey, e; and (x+p,y+
p, z+p). The matrix transforming the canonical basis of A®? into this new
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basis is given by

fiirtp for+p x+p
M+p:=|fiz+pP fox+Dd y+p|eGL3(A).
fis+p faz+p z+p

We regard each polynomial in R[x, y, z] as a continuous function R®> — R?.
Since the value of f € R[x,y, z] at a point (xo, yo, z0) € S? c R3 does not
depend on the choice of representative modulo p and (x, y, z) € R[x, y, z]®*
yields an outward pointing vector at each point of S?, the basis elements
e1, e € ker(¢) give us continuous tangent vector fields on the sphere S2.
Now det(M + p) € A* is a unit, so there is some other g + p € A such that
(g +p)det(M +p) = 1+ p. So any representative det(M) € R[x,y, z] of
det(M + p) takes non-zero values on any point (xg, 4, 20) € S?, because
det(M)(xo, Yo, 20)g(x0, Yo, 20) = 1. In particular, the vector fields e; and
e; are non-vanishing, which contradicts Theorem 3.1. This contradiction
shows that E cannot be a free A-module.

If E was generated by only two elements a, 8 € E over A, then A®® would
be generated by a, f and (x + p,y + p, z + p). This would imply that they
form a basis of A%, because the “change of basis” morphism A®® — A®3
would be surjective and therefore an isomorphism by [AM69, Exercise 1 in
§6]. In particular a and f would be linearly independent over A, making
them a basis of E. This would imply that E is a free A-module, but we have
seen in the previous paragraph that this is not the case. Therefore E cannot
be generated by less than three elements over A.

The next step in the construction of Hochster’s counterexample is to
consider the symmetric algebras of our A-modules. Recall that there is a
canonical A-algebra isomorphism S(A) = A[t]. Indeed, both A-algebras
have the same universal property, because the functor

S: Mod(A) — Alg(A)

from A-modules to (commutative) A-algebras is left adjoint to the forgetful
functor. In particular S(—) preserves colimits, so that

S(N® N’) = S(N) ®4 S(N')

is an isomorphism of A-algebras. Therefore, defining B := A[a, ] and
C := S(E) we have

B[t] = Ala, B, t] = S(A®?) = S(E® A) = S(E) @4 A[t] = S(E)[t] = C[¢]

as A-algebras. In particular, B[t] = C[¢] as rings.

In order to achieve our goal it remains to show that B 2 C as rings,
which we will show by contradiction. So suppose that h: B — C is a ring
isomorphism.
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4.2. his an R-algebra isomorphism. Both B and C are R-algebras, be-
cause they are A-algebras. In this subsection we make sure that h has to
be an R-algebra isomorphism.

Lemma 4.1 ([Swa87, Lemma 9.1]). The only invertible elements of A are
(the equivalence classes of) the non-zero real numbers.

Proof. We first consider the complexification Ac = A ®g C, which re-
mains an integral domain because x? + y* + z® — 1 remains irreducible over
Clx,y, z]. We compute its group of units. Over the complex number, we
may rewrite the equation x? + y2 +z2-1=0asuv+2z?—1=0, where
u = x +iy and v = x — iy, so that Ac can be rewritten as
Clz,u,0]/(uv + 2% — 1).
We invert u and all its powers for a moment, and since
1-22

0= ,
u

we obtain
(Ac), = Clz,u,u™].
That is, (Ac), are Laurent polynomials over the integral domain C[z]. So
the units of (Ac), are precisely of the form Au™ with A € C[z]* = C*
and m € Z. Since Ac was an integral domain and u # 0, the localization
Ac — (Ac)y is injective, so AS C (Ac);. And u € A%, because Ac/(u) =
Clo,2]/(2* = 1) # 0. Therefore AX C C*. But C s a field, so C — Ac is
injective and C* C Aé as well, hence
AT =C"

Now we consider our R-algebra A again. It is a subalgebra of Ac, so
A* C Aé = C*. Again because R is a field we also have that R* C A%, so it
remains to check that conversely every unit in A* is the equivalence class
of a non-zero real number. Let a € A* and look at its image in Ac, which is
then the equivalence class of some non-zero complex number A € C*. This
element comes from A, so it has to be invariant under the Galois action of

Gal(C/R) on Agc, thus has to be the equivalence class of a non-zero real
number and A* = R*. m|

We have C C C[t] = B[t] over A, so we can see both B and C as A-
subalgebras inside the same A-algebra B[t] = Ala, S, t]. Since A is an
integral domain, the units in B[t] are the invertible elements in A [AM69,
Exercise 2 of §1], hence the non-zero real numbers by Lemma 4.1. There-
fore the units in B and in C are also the non-zero real numbers, and h and
its inverse send real numbers to real numbers. The real numbers have no
field automorphisms, so h must be an R-algebra isomorphism.
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4.3. We may assume that h is an A-algebra isomorphism. Again,
both B and C are A-algebras, but it is not clear a priori whether or not
h is an A-algebra homomorphism. In fact, in this case it turns out that it
need not be one, but we can reduce to the case in which it is.

Definition 4.2 ([Fre17, §10.1.5]). Anintegral domain D is called a formally
real domain if forallm > 1and all a4, ..., a, € D we have

af+...+afn:O:>a1=...:am:0.

Let D be a formally real domain. Then any subring of its fraction field
is again a formally real domain, because if a sum of squares of fractions is
zero then the sum of the squares of the numerators is also zero. It follows
by looking at the leading coefficients in a sum of squares that D[¢] is also
a formally real domain, hence so are all polynomial rings D[ty ..., tn].
These two observations already imply that A is a formally real domain. In-
deed, since R is a formally real domain, so are the polynomial ring R[x, y]
and its fraction field R(x, y). The real 2-sphere is birational to the real plane
under the stereographic projection, so the fraction field of A is isomorphic
to R(x,y) by [GW10, Lemma 9.33], hence also a formally real domain.

Again by looking at the leading coeflicients in a sum of squares we see
that any three polynomials f, g, h € D[t] satisfying f2 + g* + h> = 1 must
be in D, i.e. must be constant polynomials. This observation applied sev-
eral consecutive times implies that any three elements satisfying such an
equation in A[a, B, t] = B[t] must be in the subring A. Therefore any three
elements in B or in C satisfying such an equation are also in the subring A.
As a consequence, h(A) C A. Indeed, since h is an R-algebra homomorph-
ism, it suffices to show that the generators of A over R land in A, i.e. that
h(x+p), h(y+p), h(z+p) € A. This follows from the previous remark and
the observation that

h(x+p)2+h(y+p)2+h(z+p)* =1.

Similarly, h"!(A) € A. We may precompose h with the automorphism of
B = Ala, ] given by applying h™! to the coefficients of polynomials. This
gives then an A-algebra isomorphism A[a, f] = B = C.

4.4. Exhibiting the desired contradiction. Since C = A[aq, ] as A-
algebras, C can be generated as an A-algebra by two elements ¢,¢’ € C,
ie. C = Alc,c’]. Since C = S(E) is a graded A-algebra, we may write
c=co+ci+...+crandc’ = cj+ci+.. .+c;<, in terms of their homogeneous
components. Then Afc,¢’] = A[c — ¢y, ¢’ — ¢y = C.
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Let now e € C be a homogeneous element in degree 1. We may then
write it as

e = 4o + al’o(Cl + ...+ Ck) + a()’l(C’l + ...+ C;C,) + [ . .]1
= apo t+aoC1 + a(),lC/l + [ . .]2

with [...]; consisting of higher degree homogeneous terms. In the pre-
vious equalities, ag is an element of A = S°(E), so it must be zero by
our assumption on the degree of e. And again for degree reasons we must
have [...]; = 0 as well. This shows that the degree 1 part of C = S(E) is
generated by ¢; and ¢ over A. But the degree 1 part of C is S'(E) = E,
so this contradicts our previous conclusion that E requires at least three
generators.

Therefore B and C cannot be isomorphic as rings, even though B[t] and
C[t] are isomorphic as A-algebras.

5. HISTORICAL CONTEXT

In this subsection we just mention a few key points, refering to the sur-
vey [Gup15] for a much more detailed discussion. If A and B are R-algebras,
we use A =g B to denote an R-algebra isomorphism from now on.

Zariski originally raised his cancellation problem in 1949 in the follow-
ing setting;:

Question 5.1. Let L and L’ be two finitely generated fields over a field k
and let L(x) and L’(x) be simple transcendental extensions of L and L’
respectively. Does L(x) = L'(x) imply L = L'?

The answer is affirmative only under extra assumptions, but not in gen-
eral. In the early 70’s mathematicians started to think about the analogous
problems over rings. To simplify the remaining discussion, let us introduce
the following definition:

Definition 5.2. Let k be a field and let A be a k-algebra. A is said to be
cancellative if for every k-algebra B we have

Alx] = B[x] = A = B,
where x is an indeterminate.

Abhyankar et al. showed in 1972 that one dimensional integral domains
of transcendence degree one over a field k are cancellative. But in that
context Hochster published also his example [Hoc72], showing that not
all algebras are cancellative. So the k-algebra version of the question also
had a negative answer in general.

Therefore we weaken a bit more the question and ask ourselves:
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Question 5.3. Are polynomial rings k[x, ..., x,]| over a field k cancellative?

This is what then became known as the Zariski cancellation problem.
The answer is affirmative for n € {1,2} independently of the base field
k. In positive characteristic the answer is negative for any n > 3. Over
characteristic zero, the problem is still open for all n > 3.
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