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1. Recollections from previous talks

Let us start by recalling the basic de�nitions and the key results that
we have seen in previous talks. We are only going to give a sketchy
overview here; we refer to [Ati67] for the missing details and for most
of the relevant conventions and notation.

1.1. K-rings. Let X be a compact Hausdor� space. We have de-
�ned its K-group K(X) as the Grothendieck group completion of the
commutative monoid of isomorphism classes of complex vector bun-
dles on X with direct sum as addition. There are various ways to
construct K(X); let us �x one explicit construction for concreteness.
Elements in K(X) are equivalence classes of pairs (E,F ) with E and
F (isomorphism classes of) vector bundles on X. Two such pairs
(E,F ) and (E ′, F ′) de�ne the same equivalence class if and only if
there exists vector bundles G and G′ such that (E ⊕ G,F ⊕ G) =
(E ′⊕G′, F ′⊕G′). We denote by [E] the equivalence class [(E,X×{0})],
so that [(E,F )] = [E]− [F ]. The tensor product of vector bundles in-
duces a product in K(X) which turns it into a commutative ring with
1 = [(X × C, X × {0})]. The pullback of vector bundles along contin-
uous functions induces morphisms of unital rings, so that K(−) is a
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contravariant functor from the category of compact Hausdor� spaces
to the category of commutative unital rings.

Example 1. Let X = {∗} be a point. Then K({∗}) ∼= Z as rings,
because the semiring of isomorphism classes of vector bundles on {∗}
is isomorphic to the natural numbers, each vector bundle corresponding
to its rank.

1.2. Reduced K-groups. Let now X be a compact Hausdor� space
with a basepoint x0 ∈ X. Then we have de�ned its reduced K-

group K̃(X) as the kernel of the ring morphism i∗ : K(X)→ K({x0}).
Thus [(E,F )] ∈ K̃(X) if and only if dim(Ex0) = dim(Fx0), because
the di�erence dim(Ex0) − dim(Fx0) only depends on the equivalence
class [(E,F )]. Since (f ∗E)y = Ef(y), the pullback of vector bundles
along continuous functions induces morphisms between the reduced
K-groups, so that K̃(−) is a contravariant functor from the category
of comapct Hasudor� spaces to the category of abelian groups1.

Lemma 2. Let X be a compact Hausdor� space; let i : {x0} → X
be the inclusion of a basepoint and let c : X → {x0} be the morphism

contracting X to the basepoint. Then c∗ induces a natural splitting of

the short exact sequence

0→ K̃(X)→ K(X)→ K({x0})→ 0.

In particular, we have a group2 isomorphism

K(X) ∼= K̃(X)⊕K({x0})
ξ 7→ (ξ − c∗i∗ξ, i∗ξ)

Proof. See [Ati67, p. 66]. �

1.3. Relative K-groups. Let X be a compact Hausdor� space and
A ⊆ X a closed subspace. Then we de�ne the relative K-group

K(X,A) to be K̃(X/A), where we think of X/A as X tA {∗}, so that
X/∅ = X+ is the result of adding a disjoint basepoint to X. Again,
the resulting functorK(−,−) takes values in the category of non-unital
commutative rings, but we often just think of it as taking values in the
category of abelian groups.

1In fact, K̃(−) takes values in non-unital commutative rings, because each K̃(X)
is an ideal of the ring K(X). But its ring structure is often not that interesting.
For example, every element in K̃(X) is nilpotent if X is connected [Kar78, II.5.9].
If moreover X is a union of two compact contractible subspaces containing the
basepoint, then the product in K̃(X) is trivial [Hat03, Example 2.13].

2It cannot be an isomorphism of rings in general becuase K̃(X) does not have a
unit in general.
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1.4. Relation between the di�erent K-groups. They are related
as follows:

Lemma 3. Let X be a compact Hausdor� space. Then there are canon-

ical ring isomorphisms

K(X) ∼= K̃(X+) = K(X,∅).

Proof. The equality on the right hand side follows from the equality
at the level of spaces, which was already mentioned above. The ring
isomorphism on the left hand side is given by

[(E,F )] 7→ [(E t ({∗} × {0}), F t ({∗} × {0}))].
Direct computation shows that this is indeed a ring morphism. �

1.5. Negative K-groups. Let X be a compact Hausdor� space, let
n ∈ N a natural number and let x0 ∈ X be a basepoint. Then we
de�ne K̃−n(X) := K̃(SnX). Similarly, for a closed subspace A ⊆ X
we de�ne K−n(X,A) := K̃−n(X/A). And �nally, in order to keep the
same relations between the K-functors as in the case of n = 0, we just
de�ne K−n(X) := K−n(X,∅). Once again, we think of the resulting
functors as only taking values in abelian groups. In this case we have a
more relevant reason to do so. Namely, that we are later going to de�ne
a product on the direct sum ⊕n∈NK−n(X) turning it into a graded ring
and extending the previous ring structure on K0(X).

1.6. The long exact sequence of a pair. Let X be a compact Haus-
dor� space and let A ⊆ X be a closed subspace. We have seen in Vera's
talk [Ati67, Proposition 2.4.4] that there is an exact sequence

· · · → K−1(A)→ K0(X,A)→ K0(X)→ K0(A).

As an immediate consequence [Ati67, Corollary 2.4.7], if i : A ↪→ X
is a retract of X, i.e. if there exists r : X → A such that r ◦ i = idA,
then the exact sequence splits and we obtain isomorphisms K−n(X) ∼=
K−n(X,A)⊕K−n(A) for all n ∈ N. If Y is another compact Hausdor�
space and we choose basepoints both on X and on Y , we can apply
this as in [Ati67, Corollary 2.4.8] to obtain isomorphisms

K̃−n(X × Y ) ∼= K̃−n(X ∧ Y )⊕ K̃−n(X)⊕ K̃−n(Y )

for all n ∈ N.

1.7. External products. For compact Hausdor� spaces X and Y and
vector bundles E and F on X and Y respectively, we denote

E � F = (π∗XE)⊗ (π∗Y F )

their external product, where πX andπY are the corresponding projec-
tions from the product X × Y . This induces a pairing

K(X)⊗K(Y )→ K(X × Y ).
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Remark 4. If we take Y = X, then we can recover the ring structure
on K(X) by pulling back along the diagonal ∆: X → X ×X, because
E ⊗ F = ∆∗(E � F ).

Assume now that X and Y have basepoints. If the class ξ1 ∈ K(X)
restricts to zero over the basepoint x0 ∈ X and the class ξ2 ∈ K(Y )
restricts to zero over the basepoint y0 ∈ Y , then their external product
ξ1�ξ2 ∈ K(X×Y ) restricts to zero over X∨Y . In particular also over
the basepoint (x0, y0) ∈ X×Y , so we have ξ1�ξ2 ∈ K̃(X×Y ). Since it
restricts to zero over X∨Y , identifying K̃(X∨Y ) ∼= K̃(X)⊕K̃(Y ), we
deduce that ξ1�ξ2 maps to zero in K̃(X)⊕K̃(Y ) under the isomorphism
from [Ati67, Corollary 2.4.8] seen at the end of the previous subsection.
So we may regard ξ1 � ξ2 as an element in K̃(X ∧ Y ). Therefore the
external product de�nes a product

K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ).

Following [Hat03, p. 54], we can summarize all these identi�cations and
splittings into the following commutative diagram:

K(X)⊗K(Y ) ∼= (K̃(X)⊗ K̃(Y )) ⊕ K̃(X) ⊕ K̃(Y ) ⊕ Z

K(X × Y ) ∼= K̃(X ∧ Y ) ⊕ K̃(X) ⊕ K̃(Y ) ⊕ Z

From this, using associativity of smash products on compact Haus-
dor� spaces3, we deduce the existence of pairings

K̃−n(X)⊗ K̃−m(Y )→ K̃−n−m(X ∧ Y )

for all n,m ∈ N. And if A ⊆ X and B ⊆ Y are closed subspaces,
then we may consider the corresponding pairing for the pointed spaces
X/A and Y/B, which yields pairings

K−n(X,A)⊗K−m(Y,B)→ K(X × Y, (X ×B) ∪ (A× Y ))

for all n,m ∈ N, where we are using the natural identi�cation (X ×
Y )/((X ×B) ∪ (A× Y )) = X/A ∧X/B.
In particular, taking Y = X and B = A = ∅, this de�nes a graded-

commutative ring structure on

K#(X) :=
⊕
n∈N

K−n(X),

and taking only A = ∅ we obtain a graded K#(X)-module structure
on

3Or more generally on compactly generated spaces.
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K#(X,B) :=
⊕
n∈N

K−n(X,B).

We use the periodicity isomorphism [Ati67, Theorem 2.4.9] to iden-
tify K−n with K−n−2 and to extend the de�nition of the various func-
tors Kn to all n ∈ Z. Because of this periodicity we only care about
K0 and K1. So we de�ne:

De�nition 5. Let X be a compact Hausdor� space.

(1) We de�ne K∗(X) = K0(X)⊕K1(X).
(2) If x0 ∈ X is a basepoint, then we de�ne K̃∗(X) = K̃0(X) ⊕

K̃1(X).
(3) If A ⊆ X is a closed subset, then we de�ne K∗(X,A) =

K0(X,A)⊕K1(X,A).

In particular, we still have

K∗(X) = K∗(X,∅) = K̃∗(X+).

The previously discussed ring and module structures on K#(X) and
K#(X,A) yield a Z/2Z-graded ring structure on K∗(X) and a Z/2Z-
graded K∗(X)-module strucutre on K∗(X,A).

1.8. The six-term exact sequence. Let X be a compact Hausdor�
space and let A ⊆ X be a closed subspace. Using the periodicity iso-
morphism [Ati67, Theorem 2.4.9], we encoded the long exact sequence
of the pair (X,A) into a six-term exact sequence

K0(X,A) K0(X) K0(A)

K1(A) K1(X) K1(X,A)

With the notation of the previous subsection, after checking that the
coboundary map K−1(A) → K0(X,A) is a K(X)-module morphism
[Ati67, Lemma 2.6.0], we can rewrite this six-term exact sequence into
the exact triangle

K∗(X) K∗(A)

K∗(X,A)

of K∗(X)-module morphisms.

2. Thom spaces

De�nition 6 (Thom space). Let p : E → X be a complex vector
bundle over a compact Hausdor� space X. Then we de�ne its Thom

space XE as the one-point compacti�cation of E.
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The goal of this talk is to study the K-theory of XE. Recall that all
our base spaces are always assumed to be compact Hausdor� spaces;
this explains why we want to study the one-point compacti�cation XE

rather than E itself. Another reason is that E is homotopy equivalent
to X, so at the level of cohomological invariants we would not obtain
any new interesting information.
Whenever we need to think of XE concretely, we will use one of two

alternative descriptions. After �xing a metric on E, we can think of
XE as the quotient space B(E)/S(E), where B(E) is the disc bundle
associated to E and S(E) is the sphere bundle associated to E. Explic-
itly, B(E) consists of all vectors in E with length at most 1, and S(E)
consists of all vectors in E with length exactly 1. Alternatively, we may
construct XE as the quotient P (E⊕1)/P (E), where by 1 we mean the
trivial line bundle X × C and where we regard P (E) ⊆ P (E ⊕ 1) as
the image of the section given by

P (E)→ P (E ⊕ 1)

[(v1, . . . , vn)] 7→ [(v1, . . . , vn, 0)]

Thus we are adding a �common point at in�nity� to all the �bers of
E → X.
Quoting Atiyah, �We shall now digress for some time to give an

alternative and often illuminating description of K(X,A) which has
particular relevance for products.� This alternative description will also
allow us to �nd a canonical element in the K-theory of the Thom space
XE. This element will play a central role in the Thom isomorphism
theorem.
This detour is indeed rather lengthy, occupying most of [Ati67, �2.6].

The upshot is the following. A complex of vector bundles on X consists
of a sequence

0→ En
σn−→ En−1

σn−1−−−→ · · · → E0 → 0

of vector bundles on X such that σi ◦σi+1 = 0 for all i ∈ {1, . . . , n−1}.
A complex of vector bundles E• exact over the subspace A de�nes an
element χ(E•) ∈ K(X,A). If A = ∅, this element is given by the
formula

χ(E•) =
n∑
i=0

(−1)i[Ei] ∈ K(X).

If Y is another compact Hausdor� space, B ⊆ Y is a closed subspace
and F• is a complex of vector bundles on Y exact over B, then the
external tensor product de�nes a complex of vector bundles E•�F• on
X × Y which is exact over X ×B ∪ A× Y . We have then

χ(E• � F•) = χ(E•)χ(F•),
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yielding a new and convenient way to understand the relative exter-
nal product

K(X,A)×K(Y,B)→ K(X × Y,X ×B ∪ A× Y ).

Example 7. We have seen that K̃2(S2) ∼= Z as an abelian group,
generated by [H] − 1 ∈ K(S2). The line bundle H → S2 is the hy-
perplane bundle obtained from regarding S2 as the projective bundle
P ({∗} ×C2) over {∗}. We again change our point of view slightly and
regard S2 as the quotient B(C)/S(C), where B(−) and S(−) denote
here the unit disc and unit sphere. We consider the complex of vector
bundles on B(C) given by

0→ B(C)× Λ0C α−→ B(C)× Λ1C→ 0,

where α(v, w) := (v, v ∧ w), i.e. α(v, λ) = (v, vλ) under the identi�-
cations Λ0C = C and Λ1C = C. Let us call E1 := B(C) × Λ0C and
E0 := B(C) × Λ1C. In this case both E1 and E0 are the trivial line
bundle, and the di�erential in the complex is an isomorphism over all
points v ∈ B(C) \ {0}. In particular, the complex E• is exact over
S(C). Hence, this complex de�nes an element

χ(E•) ∈ K(B(C), S(C)) = K̃(S2).

Let us go through the proof of [Ati67, Lemma 2.6.7] with this ex-
ample and see what χ(E•) is. Let X0 and X1 be two copies of B(C),
let A = S(C) and let Y = X0 ∪A X1 be the result of gluing the two
disjoint copies of B(C) along S(C). Using α as a clutching function
we obtain a vector bundle [E1, α, E0] ∈ K(Y ) = K(S2). The clutching
function de�ned by α is given by S1 3 z 7→ (λ 7→ zλ). Let r1 : Y → X1

be the retraction of X1 which is given by sending a point on X0 to the
corresponding point on X1, and let i1 : X1 → Y denote the inclusion
into the pushout. This de�nes a splitting of the long exact sequence
from [Ati67, Proposition 2.4.4], hence an isomorphism

K(Y ) ∼= K(Y,X1)⊕K(X1)

ξ 7→ (ξ − r∗1i∗1ξ, i∗1ξ),
where by the �rst component ξ − r∗1i

∗
1ξ we really mean the bun-

dle over X/A = Y/X1 whose pullback along the quotient morphism
q : Y → Y/X1 is that element of K(Y ). Since q is the quotient
of a contractible subspace, it induces a bijection on isomorphism
classes of vector bundles [Ati67, Lemma 1.4.8]. Thus we regard
χ(E•) = [E1, α, E0] − r∗1i

∗
1[E1, α, E0] ∈ K(X0, A). Since [E1, α, E0]

has clutching function z 7→ (λ 7→ zλ), we have [E1, α, E0] = [H]−1

[Ati67, p. 49]. From the equation ([H] − 1)2 = 0 in K(S2) we de-
duce that [H]−1 = 2 − [H]. And since X1 is contractible, we have
r∗1i
∗
1[E1, α, E0] = 1. Therefore χ(E•) = 1− [H].
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More generally, let V be an n-dimensional complex vector space and
let v ∈ V be a vector. For each i ∈ N we consider the morphism

ΛiV → Λi+1V

α 7→ v ∧ α

These morphisms de�ne a complex Λ•V which is exact if v 6= 0,
see Theorem 8.11 Keith Conrad's expository notes on exterior pow-
ers, available at https://kconrad.math.uconn.edu/blurbs/linmultialg/
extmod.pdf. So considering the complex B(V ) × Λ•V of vector bun-
dles over the unit disc B(V ) whose di�erentials over v ∈ B(V ) are
given by exterior product with v as above, we obtain an element in
λV ∈ K(B(V ), S(V )) = K̃(S2n). From our new description of the
external product we see that

λV = (−1)n([H]− 1)�n ∈ K̃(S2n),

because Λ•(V ⊕ W ) = (Λ•V ) ⊗ (Λ•W ). This λV is the canonical
generator of K̃(S2n) up to a sign [Hat03, Corollary 2.12].
Globalizing the previous discussion, if p : E → X is a vector bundle

of rank n over a compact Hausdor� space X, then we consider the
associated unit disc bundle B(E) and the associated unit sphere bundle
S(E). Then Λ•(p∗E) is a complex of vector bundles over B(E), with
the di�erential over the point v ∈ B(E) ⊆ E corresponding to the
exterior product by v as above. This complex is then exact over S(E),
so we obtain an element λE ∈ K(B(E), S(E)) = K̃(XE) which we
call the Thom class associated to E. From the above discussion and
from the construction of this complex we deduce the following two
properties:

(A) The Thom class λE restricts to a generator of K̃({x}E) ∼=
K̃(S2n) for each x ∈ X.

(B) Under the appropriate identi�cations of disc and sphere bun-
dles, λ(E⊕F ) = λE � λF in K̃(XE⊕F ).

We turn now to our second description of XE. Let us consider the
hyperplane bundle H over P (E ⊕ 1). Tensoring the inclusion H∗ ⊆
π∗(E ⊕ 1) with H we obtain morphisms

1 ∼= H ⊗H∗ ↪→ H ⊗ π∗(E ⊕ 1) = (H ⊗ π∗(E))⊕H,

where π : P (E ⊕ 1) → X denotes the projection. Composing fur-
ther with the projection onto the �rst factor we obtain a natural sec-
tion s ∈ Γ(H ⊗ π∗(E)). We use this section to de�ne a complex of
vector bundles Λ•(H ⊗ π∗(E)) over P (E ⊕ 1), with the di�erential
over a point [(v1, . . . , vn, λ)] given by exterior product with the vec-
tor s([(v1, . . . , vn, λ)])). The resulting complex is exact outside of the
zero locus of the section s. This zero locus is given by the points

https://kconrad.math.uconn.edu/blurbs/linmultialg/extmod.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/extmod.pdf
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[(v1, . . . , vn, λ)] ∈ P (E ⊕ 1) such that (v1, . . . , vn) = 0, hence it is the
isomorphic image of X under the section X → P (E⊕ 1) given by x 7→
[(0, . . . , 0, 1)]. So the complex is exact over all points in the image of the
morphism P (E) ↪→ P (E⊕ 1) given by [(v1, . . . , vn)] 7→ [(v1, . . . , vn, 0)].
Therefore it de�nes an element

χ(Λ•(H ⊗ π∗(E))) ∈ K(P (E ⊕ 1), P (E)) = K̃(XE).

It follows from the de�nition of χ [Ati67, De�nition 2.6.2] that the
image of this element in K(P (E ⊕ 1)) is given by

n∑
i=0

(−1)i[H]i[ΛiE].

We claim now that this element is in fact λE under the identi�-
cation K(P (E ⊕ 1), P (E)) = K(B(E), S(E)). Indeed, we look at
the complement of P (E) inside P (E ⊕ 1), with P (E) embedded in
P (E⊕ 1) as above. This complement consists of points [(v1, . . . , vn, λ)]
such that λ 6= 0. We can rescale to obtain a representative of
the form [(v1/λ, . . . , vn/λ, 1)] which is then unique. This shows that
P (E ⊕ 1) \ P (E) ∼= E. Moreover, when we restrict H to this copy
of E inside P (E ⊕ 1), we obtain the trivial line bundle. Indeed,
it su�ces to show that H∗|E is the trivial line bundle, and the sec-
tion [(v1, . . . , vn, 1)] 7→ (v1, . . . , vn, 1) does not vanish on any point of
E ⊆ P (E ⊕ 1). So H|E is the trivial line bundle and the complex
of vector bundles Λ•(H ⊗ π∗(E)) gets identi�ed with the complex of
vector bundles Λ•(p∗E) over B(E) under the embedding of B(E) ⊆ E
in P (E ⊕ 1) described above, at least at the level of vector bundles
appearing on the complex on each degree. Moreover, the section s
evaluated at a point [(v1, . . . , vn, 1)] ∈ B(E) ⊆ P (E ⊕ 1) corresponds
precisely to the vector (v1, . . . , vn) ∈ E itself, so the di�erentials of the
two complexes are also identi�ed. Hence χ(Λ•(H⊗π∗(E))) corresponds
to λE under the identi�cation K(P (E ⊕ 1), P (E)) = K(B(E), S(E)),
as we wanted to show.
Now we are ready to state the main theorem of the talk:

Theorem 8 (Thom isomorphism theorem). Let X be a compact Haus-

dor� space and let E be a vector bundle on X. Then K̃∗(XE) is the

free K∗(X)-module generated by λE.

We will �rst prove this in the case of decomposable vector bundles
and then use this to deduce the general case.

3. Proof: the case of decomposable vector bundles

In Vera's talk we have seen:

Proposition 9. Let X be a compact Hausdor� space. Let L1, . . . , Ln
be line bundles over X and let H be the hyperplane bundle over P (L1⊕
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. . .⊕ Ln). Then the K(X)-algebra morphism sending t 7→ [H] induces
a K(X)-algebra isomorphism

K(X)[t]/
n∏
i=1

([Li]t− 1)→ K(P (L1 ⊕ . . .⊕ Ln)).

We wish to combine this result with the following:

Lemma 10. Let X be a compact Hausdor� space. Then there is a

canonical group isomorphism

K∗X ∼= K(X × S1).

Proof. We follow the argument in [Wir12, p. 38]. If X = ∅, then both
sides are just K(∅) = 0. Otherwise, we pick a basepoint x0 ∈ X. This
induces a decomposition K̃(X × S1) ∼= K̃(S1 ∧ X) ⊕ K̃(S1) ⊕ K̃(X)
[Ati67, Corollary 2.4.8]. But K̃(S1) = 0 and K̃(S1 ∧ X) = K̃1(X) =
K1(X), so we have

K̃(X × S1) ∼= K1(X)⊕ K̃(X).

Therefore we obtain the desired isomorphism after adding the K0 of
the basepoint of X × S1 and of X respectively on both sides. �

Lemma 11. In the situation of Lemma 10, let π : X × S1 → X be

the projection and let p : E → X be a vector bundle on X. Then

P (π∗E) = P (E)×S1. In particular, by Lemma 10, there is a canonical

group isomorphism

K∗(P (E)) ∼= K(P (π∗E)).

Proof. We need to show that there exists a canonical homeomorphism
P (π∗E) ∼= P (E) × S1. So let [(v1, . . . , vn)] ∈ P (π∗E) be a point over
(p(v1, . . . , vn), z) ∈ X × S1. We send this point to ([(v1, . . . , vn)], z) ∈
P (E)× S1. This is a continuous bijection between compact Hausdor�
spaces, hence a homeomorphism. �

Now we can deduce the following:

Proposition 12. Let X be a compact Hausdor� space. Let L1, . . . , Ln
be line bundles over X and let H be the hyperplane bundle over P (L1⊕
. . .⊕Ln). Then the K∗(X)-algebra morphism sending t 7→ [H] induces
a K∗(X)-algebra isomorphism

K∗(X)[t]/
n∏
i=1

([Li]t− 1)→ K∗(P (L1 ⊕ . . .⊕ Ln)).

Proof. It su�ces to show bijectivity, so it su�ces to show that the
underlying group morphism is an isomorphism. Under the isomorphism
K∗(X) ∼= K(X × S1) from Lemma 10, the line bundle Li corresponds
to π∗Li for each i ∈ {1, . . . , n}. Hence we have a commutative diagram
of groups as follows:
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K∗(X)[t]/
∏n

i=1([Li]t− 1) K∗(P (L1 ⊕ . . .⊕ Ln))

K(X × S1)/
∏n

i=1([π
∗Li]t− 1) K(P (π∗L1 ⊕ . . .⊕ π∗Ln))

The two vertical arrows are group isomorphisms by Lemma 10 and
Lemma 11, and the bottom horizontal arrow is the isomorphism from
Proposition 9. Hence the top horizontal arrow is an isomorphism, which
is what we needed to show. �

Remark 13. In the situation of Proposition 12, the elements
1, [H], [H]2, . . . , [H]n−1 form a basis of K∗(P (E)) over K∗(X), because
each coe�cient [Li] is an invertible element in K∗(X). Let us denote
by M∗ the free abelian group generated by 1, [H], [H]2, . . . , [H]n−1 en-
dowed with the Z/2Z-grading induced by the degree of each [H]i, which
is zero for all [H]i anyway. Then the natural map

K∗(X)⊗M∗ → K∗(P (E))

is an isomorphism compatible with the Z/2Z-grading.

We are now ready to prove the Thom isomorphism theorem in the
case of decomposable vector bundles:

Proposition 14. Let X be a compact Hausdor� space. Let L1, . . . , Ln
be line bundles over X, let E := L1 ⊕ . . . ⊕ Ln be their direct sum

and let λE ∈ K̃(XE) be the Thom class. Then K̃∗(XE) is the free

K∗(X)-module generated by λE.

Proof. We think of XE as P (E ⊕ 1)/P (E). We have seen that the
image of λE in K(P (E ⊕ 1)) is

n∑
i=0

(−1)i[H]i[ΛiE] =
n∏
i=1

(1− [Li][H]),

where the equality comes from applying the canonical isomorphisms
Λm(M⊕N) ∼= ⊕p+q=m(ΛpM)⊗(ΛqN) iteratively, cf. [Wir12, p. 42]. We
apply Proposition 12 to E and to E ⊕ 1. Since the hyperplane bundle
on P (E⊕1) restricts to the hyperplane bundle on P (E), the long exact
sequence of K∗(X)-modules associated to the pair (P (E ⊕ 1), P (E))
looks as follows:

· · · → K̃∗(XE)→ K∗(X)[t]/(f)
t7→s−−→ K∗(X)[s]/(g)→ · · · ,

with g(s) =
∏n

i=1([Li]s − 1) and f(t) = (t − 1)g(t). In particular, the
morphism induced by t 7→ s is surjective, so we obtain a short exact
sequence of K∗(X)-modules as follows:

0→ K̃∗(XE)→ K∗(X)[t]/(f)→ K∗(X)[s]/(g)→ 0.

As mentioned in the beginning of the proof, we have

λE 7→ (−1)ng(t),



12 PEDRO NÚÑEZ

and this element generates the kernel of the morphism induced by t 7→ s
as an ideal in K∗(X)[t]/(f). Division by monic polynomials or by
polynomials with a unit as leading coe�cient still works with non-
commutative coe�cient rings, so every element in the kernel of the
morphism induced by t 7→ s can be written as ξg(t) for some ξ ∈
K∗(X). Thus K̃(XE) is the free K∗(X)-module generated by λE. �

4. Proof: the general case

In order to deduce the general case from the case of decomposable
vector bundles, we need the following:

Lemma 15. Let π : B → X be a morphism of compact Hausdor�

spaces. Let µ1, . . . , µn be homogeneous elements of K∗(B) and letM∗ be

the free abelian group generated by µ1, . . . , µn endowed with the Z/2Z-
grading induced by the degree of each µi. Suppose that each x ∈ X has

a neighborhood U such that for all compact A ⊆ U the natural map

K∗(A)⊗M∗ → K∗(π−1(A))

is an isomorphism. Then, for any closed subspace A ⊆ X, the natural

map

K∗(X,A)⊗M∗ → K∗(B, π−1(A))

is an isomorphism.

Proof. Let us call a subset U ⊆ X good if it has the property that for
all compact A ⊆ U the natural map

K∗(A)⊗M∗ → K∗(π−1(A))

is an isomorphism. Suppose U is good and compact. Then consider
the long exact sequence of the pair (U,A):

· · · → K∗(U,A)→ K∗(U)→ K∗(A)→ · · ·
Since M∗ is �at, we obtain a new long exact sequence

· · · → K∗(U,A)⊗M∗ → K∗(U)⊗M∗ → K∗(A)⊗M∗ → · · ·
Using the assumption that U is good we obtain the long exact sequence

· · · → K∗(U,A)⊗M∗ → K∗(π−1(U))→ K∗(π−1(A))→ · · ·
Now we apply the 5-lemma to this sequence and to the long exact se-
quence of the pair (π−1(U), π−1(A)) with the identities and the natural
map K∗(U,A) ⊗M∗ → K∗(π−1(U), π−1(A)) as vertical arrows. This
shows that the natural map K∗(U,A)⊗M∗ → K∗(π−1(U), π−1(A)) is
an isomorphism as well. So in order to prove the lemma, it su�ces to
show that X is a good subset.
By assumption we can cover X by good open subsets. Since X is

compact we may �nd a �nite subcover, so that X is covered by �nitely
many good open subsets. If we show the the union of two good open
subsets is a good open subset, then we are done.
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So let U1 and U2 be good open subsets of X. Let A ⊆ U1 ∪ U2

be a compact subspace. Then we can write A = A1 ∪ A2 with
A1 ⊆ U1 and A2 ⊆ U2 and with A1 and A2 still compact. In-
deed, X is compact Hausdor�, hence normal. Thus we can �nd
disjoint open subsets V and W such that A ∩ (X \ U2) ⊆ V and
(X \ U1) ⊆ W . Then we may take A1 := A ∩ (X \ W ) and A2 :=
A∩(X\V ). We have A/A2 = A1/(A1∩A2) and π

−1(A1)/π
−1(A1∩A2) =

π−1(A1)/(π
−1(A1)∩π−1(A2)) = π−1(A)/π−1(A2), so K

∗(A1, A1∩A2)⊗
M∗ → K∗(π−1(A1), π

−1(A1 ∩ A2)) being an isomorphism implies that
K∗(A,A2)⊗M∗ → K∗(π−1(A), π−1(A2)) is an isomorphism. Combin-
ing this with the assumption that U2 is good and applying the 5-lemma
to the long exact sequences of the corresponding pairs we deduce that
K∗(A) ⊗ M∗ → K∗(π−1(A)) is an isomorphism, thus showing that
U1 ∪ U2 is good and �nishing the proof. �

Corollary 16. Let X be a compact Hausdor� space. Let E be a

vector bundle of rank n over X and let H be the hyperplane bundle

over P (E). Then K∗(P (E)) is a free K∗(X)-module on the generators

1, [H], [H]2, . . . , [H]n−1 and [H] satis�es the equation

n∑
i=0

(−1)i[H]i[ΛiE] = 0.

Proof. We wish to apply Lemma 15 to the morphism π : P (E) → X,
the homogeneous elements 1, [H], [H]2, . . . , [H]n−1 in K∗(P (E)) and
the subspace A = ∅. Let x ∈ X be a point and let U ⊆ X be an open
neighborhood of x over which E is trivial, hence a direct sum of n trivial
line bundles. The restriction of E to any compact subspace of U is then
again the direct sum of n trivial line bundles. Therefore Proposition 12
implies that U is good, cf. also Remark 13. Since K∗(−,∅) = K∗(−),
Lemma 15 �nishes the proof. �

And from this we can �nally deduce the Thom isomorphism theorem
for arbitrary vector bundles over X. Namely, we can use the same
argument as in the proof of Proposition 14 but applying Corollary 16
instead of Proposition 12.
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