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The main references for this talk are [SGA4] and [Sta21]. I would like
to thank Nicola Nesa for pointing out a mistake in a previous version of
these notes!

0. Notation and conventions

We will use the font C, D, ... for categories and the font F, G, ... for
presheaves. We will use the font � , � , ... for functors which are not
presheaves or which we are not interested in regarding as such. We will
use greek letters for natural transformations. We will ignore most of the
set theoretic issues.

We will sometimes depict categories as follows: objects are bullet points,
morphisms are arrows and identities are not depicted at all. So for example

•

• •
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represents a category with three objects, three identity morphisms and two
morphisms from two of the objects to the third object. This determines the
category up to isomorphism of categories, so we will sometimes talk about
the category represented by such a picture.

Caveat 1. Such a picture does not need to be a commutative diagram. More
generally, a diagram will only be assumed to be commutative if we expli-
citly say so.

Here is a list with some categories that we might use:
(1) The category Set of sets.
(2) The category Set∗ of pointed sets.
(3) The category Cat of categories and functors.
(4) The category Grp of groups.
(5) The category Ab of abelian groups.
(6) The category Ring of commutative rings with one and ring homo-

morphisms sending one to one.
(7) If' is a commutative ring with one, then we consider the categories

'-Mod and '-mod of '-modules and �nitely generated '-modules
respectively.

(8) The category Top of topological spaces.
(9) The category Top∗ of pointed topological spaces.

(10) The category S� of schemes and its full subcategory A� of a�ne
schemes.

(11) If C is a category and - is an object in C, then C- is the category
of objects in C over - , whose objects are morhpisms . → - in
C and whose morphisms are morphisms . → . ′ in C making the
corresponding triangle commute.

(12) If C and D are two categories, then Fun(C,D) is the category of
functors between them, with morphisms given by natural trans-
formations.

(13) If C is a category, then Cop denotes its opposite category.
(14) If C is a category, then PSh(C) := Fun(Cop, Set) is the category of

presheaves on C.
(15) If - is a topological space, then Op(- ) denotes the category cor-

responding to the partially ordered set of open subsets of - and
PSh(- ) := PSh(Op(- )) denotes the corresponding category of
presheaves.

1. Recollections from previous talks

1.1. Limits. The limit construction takes as input a bunch of objects and
morphisms between them in some category C and gives as an output a
new object together with compatible morphisms to each of the previous
objects having a nice universal property, which we can think of as this
object being the largest possible object with such properties. We need to
make a few things precise here:
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(1) Let us start by making the sentence “a bunch of objects and morph-
isms between them in some category C” precise. We want to con-
sider something like

�

� �

or maybe something without any morphisms like

� �

or maybe even something without anything at all. We can make
this notion precise using set theoretic language, e.g., a set of objects
in C and a set of objects and a set of morphisms between them. But
we want to make this notion precise using categorical language
instead. A neat way to do this is by considering such a bunch of
objects and morphisms in C as the image of a functor from some
other category. This leads to the notion of a diagram in C, which
is simply a functor � : I → C. The previous three examples would
correspond to taking I as the category

•

• •
or the category (• •) or the empty category respectively.

So the input of the limit construction is a diagram, i.e., a functor.
(2) Let us discuss the sentence “a new object together with compatible

morphisms to each of the previous objects” now. Given a diagram
� : I→ C in C, we want its limit to be an object in C together with
morphisms to each object in the diagram making this new diagram
commute when starting from this object. Again, we could make
this precise using set theory, but it is more natural to continue us-
ing categorical language instead. A way to phrase this in categor-
ical terms is using the notion of a cone over the diagram � . We �rst
de�ne the auxiliary category � (I) as the category obtained from
adding a new object to I (together with the corresponding iden-
tity morphism) and adding a single morphism from this new object
to every object in the old category I. We can compose these new
morphisms with the old ones, but since we have only added a single
morphism from the new object to each old object, every composi-
tion starting from the new object and �nishing in some other object
has to agree and be equal to the single morphism that we added. A
cone over � is then a diagram � : � (I) → C that restricts to � over
the full subcategory I ⊆ � (I). Explicitly, such a cone consists of a
new diagram obtained from the old one by adding a new object +
and a new morphism from + to every object in the old diagram in
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such a way that this new diagram commutes when starting from
+ . We can picture this by putting the old diagram in a horizontal
plane (this would be the base of the cone) and placing + above it
(this would be the vertex of the cone):

+

� �

� �

We stress again that this diagram is only supposed to commute
when starting from + ; for example, the two arrows � → � need
not be equal.

So the output of the limit construction is a cone over the input
diagram, i.e., a new diagram which we can picture as a cone having
the old diagram as a base.

(3) Finally, let us make the sentence “the largest possible object with
such properties” precise. This is arguably the most imprecise sen-
tence in our initial description and yet the most important part of
the concept of limit. Cones over � form a category, namely, the sub-
category of the category of functors Fun(� (I),C) whose objects are
functors that restrict to � over I ⊆ � (I) and whose morphisms are
the natural transformations that restrict to the identity on � , mean-
ing that the component at each object of I ⊆ � (I) is the identity on
the image of the corresponding object under � . We can picture this
by drawing the common base of the two cones as a single base, as
shown in the following picture:

+ + ′

� �

� �

Again, this diagram is only supposed to commute starting from +

and starting from + ′.
So we have a category Cones(� ) of cones over our diagram � .

The limit of � , if it exists, is precisely a terminal cone, i.e., a terminal
object in the category Cones(� ). The reason to have used the word
“largest” in our informal description is two-fold. On the one hand,
we can think of a partially ordered set as a category having the same
set of objects, in which there is a morphism G → ~ if and only if
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G ≤ ~. If this poset has a largest element, then this element is a
terminal object in the corresponding category. More generally, the
categorical product (which is a particular case of limit) of a subset
of this poset, if it exists, corresponds to the in�mum of this subset,
which is the largest lower bound of all the elements in the subset.
On the other hand, one can intuitively think of limits as subobjects
and colimits as quotient objects, because this is indeed a possible
way to construct limits and colimits in many familiar categories,
e.g., in the category of sets, in which the limit can be constructed
as a suitable subset of the product of all sets in the diagram.

Remark 1. Let C be a category in which all limits exist, meaning that for
all I and all � : I → C the limit lim(� ) exists. Then, for every category I,
we have a functor

lim
I
: Fun(I,C) → C.

This functor is right adjoint to the functor
const(−) : C→ Fun(I,C)

sending an object - in C to the functor sending every object in I to - and
every morphism in I to the identity on - . In particular, the functor limI
preserves limits.

Example 2 (Terminal objects). Let C a category and let I = ∅ be the empty
category and ∅ : ∅ → C the empty functor. Then lim(∅) is a terminal
object in C. Examples of terminal objects include:

(1) A singleton {∗} in the categories Set, Set∗, Cat, Top, Top∗, Grp, Ab,
Ring, '-Mod, '-mod, ... (with the corresponding structure on {∗}
omitted in each case).

(2) Spec(Z) in S� and in A� .
(3) - in C- .
(4) - in Op(- ).
(5) ∅ in Setop.
(6) The constant presheaf with value {∗} in PSh(C).

Some categories in which terminal objects to do not exist include:
(1) The subcategory of Set consisting of in�nite sets.
(2) The category A�( of a�ne schemes over a non-a�ne scheme ( .
(3) Any set with more than one element regarded as a category with

only the identities as morphisms.
(4) The partially ordered set of �nite subsets of an in�nite set.
(5) The totally ordered set (R, ≤).

Example 3 (Binary products). LetC be a category and let I be the category
(• •). We consider a diagram � : I → C, which then consists of two
objects � and � in C without any morphisms between them. Then lim(� )
is a product � × � in C, that is, an ojbect � × � in C with morphisms
�×� → � and�×� → � such that for every other object) in C admitting
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morphisms to � and to � in C there exists a unique morphism ) → � × �
making the corresponding diagram commute. In a picture:

)

� × �

� �

∃!

Examples of binary products include:
(1) The cartesian product�×� (with the corresponding projections) in

Set, Set∗, Cat, Top, Top∗, Grp, Ab, Ring, '-Mod, '-mod, ... (again
omitting the induced structure on � × � in each case).

(2) The intersection � ∩ � in Op(- ).
(3) The in�mum inf{�, �} in a partially ordered set (if it exists).
(4) The disjoint union � t � in Setop.
(5) The point-wise product

* ↦→ F(* ) × G(* )
in PSh(C).

(6) The tensor product � ⊗ � (over Z) in Ringop.
(7) The spectrum of the tensor product of coordinate rings in A� , i.e.,

Spec(�) × Spec(�) = Spec(� ⊗ �).
(8) The scheme - ×. obtained from - and . by gluing the product of

a�ne open subschemes.
Some categories in which binary products do not always exist include:

(1) The binary product of two sets with 5 elements in the category of
sets with at most 5 elements does not exist.

(2) Any set with more than one element regarded as a category with
only the identities as morhpisms does not have any binary products
except the product of each object with itself.

Example 4 (Products). Let C be a category and let � now be a set regarded
as a category with only the identities as morphisms. The limit of a diagram
� : � → C is then a product indexed by � ; this time we don’t spell out
the universal property and jump straight to the examples. Examples of
products include:

(1) The cartesian product
∏
8∈� �8 in Set, Set∗, Cat, Top, Top∗, Grp,

Ab, Ring, '-Mod, ... (again, we don’t make precise the induced
structure in each case).

(2) The point-wise product

* ↦→
∏
8∈�

F8 (* )

in PSh(C).



TALK ON SITES AND TOPOLOGIES 7

(3) The in�mum inf8∈� {08} of a bounded-below collection of numbers
in (R, ≤).

Some examples of situations in which products do not exist include:
(1) The product of in�nitely many sets each containing more than one

element does not exist in the category of �nite sets.
(2) The product of in�nitely many positive dimensional :-vector

spaces does not exist in :-mod.
(3) The product of the diagramN→ Op(R), = ↦→ (−1/=, 1/=) does not

exist in Op(R).
(4) Let (0=)=∈N be a decreasing sequence of rational numbers conver-

ging to c ∈ R. Then the product inf=∈N{0=} does not exist in (Q, ≤).
Example 5 (Equalizers). Let C be a category and let I be the category
(• ⇒ •). A diagram � : I → C corresponds to the data of two parallel
morphisms 5 : � → � and 6 : � → �, and its limit is called the equalizer
of 5 and 6, denoted Eq(5 , 6). The universal property of the equalizer can
be pictured as follows:

)

Eq(5 , 6) � �

∃!

5

6

Examples of equalizers include:
(1) The subset {0 ∈ � | 5 (0) = 6(1)} (with the corresponding inclu-

sion) in Set, Set∗, Cat, Top, Top∗, Grp, Ab, Ring, '-Mod, '-mod, ...
(as usual we don’t make precise the induced structure in each case).

(2) We have Eq(0, 5 ) = Ker(5 ) in Grp, Ab, '-Mod and '-mod.
(3) The point-wise equalizer

* ↦→ {B ∈ F(* ) | 5* (B) = 6* (B)}
in PSh(C).

Some examples in which equalizers do not exist include:
(1) The equalizer of (•⇒ •) does not exist in I itself.
(2) The equalizer of two morphisms 5 , 6 : - → . which agree only on

a �nite subset of - does not exist in the category of in�nite sets.

Exercise 6. Let C be a category and let 5 , 6 : � ⇒ � be parallel arrows in
C such that Eq(5 , 6) exists in C. Show that the morphism Eq(5 , 6) → � is
a monomorhpism in C.

1.2. Fiber products. These are particular cases of limits, but they will be
so relevant later on that they deserve their own subsection. We take I to
be the category

•

• •
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The limit of a diagram � : I → C is called a �ber product in C. Before
looking at particular examples, let us introduce some notation and ter-
minology around �ber products. Consider two morphisms 5 : � → � and
6 : � → � in C. Their �ber product is denoted by � ×� � . If we need
to be precise about the morphisms 5 and 6, we can also use the notation
� ×5 ,�,6 � . By de�nition of the limit, the �ber product � ×� � comes with
two projections ?1 : � ×� � → � and ?2 : � ×� � → � which �t into a
commutative diagram as follows:

� ×� � �

� �

?1

?2

6

5

Such a diagram is sometimes called a cartesian square, and it satis�es a
universal property which can be pictured as follows:

)

� ×� � �

� �

∃!

?1

?2

6

5

Spelled out, this means that if the outer (deformed) square commutes, then
there exists a unique arrow (the dashed arrow) making the whole diagram
commute.

Remark 7. If we say that the diagram

� �

� �

@1

@2

6

5

is cartesian, we mean that it commutes and it has the previously discussed
universal property, which in turn implies that there exists an isomorhpism
ℎ : � → �×�� such that @1 = ?1◦ℎ and @2 = ?2◦ℎ. Limits are only unique
up to isomorphism anyway, so we are running around a bit in circles here;
but in practice we usually have an explicit construction of � ×�� in mind,
and such a � may not be explicitly given like that.

Cartesian diagrams are sometimes marked as

� �

� �

�@1

@2

6

5

or sometimes also as
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� �

� �

y@1

@2

6

5

A mnemonic to remember the orientation of the symbol in the middle is
that the two sides of the right angle are pointing to the two morphisms
which were given by the universal property of the limit. This notation
avoids confusion with the dual notion of a pushout square, in which the
two arrows created by the universal property of the colimit would be the
ones pointing towards the bottom right object.

Exercise 8 (Pasting lemma). Let C be a category. Consider a commutative
diagram as follows:

� � �

� � �

y

Then the left square is cartesian if and only if the outer rectangle is
cartesian. As a corollary we have the formula

(- ×. / ) ×/ , � - ×. , .

The similarity with the formula
(' ⊗( (′) ⊗( ′ ) � ' ⊗( )

is no coincidence, as hinted at by one of the previous examples (using the
equivalence between A�op and Ring).

Moving on to some more terminology. There are many situations in
which we are working over a given object as our base. For example, vector
bundles over a topological space, schemes over another scheme, covering
spaces over a topological space... If we are working over an object � in C
and we have a morphism 5 : � → � in C, we are sometimes interested in
using this morphism as a base change morphism and start working over
� instead. In this situation we can say that @1 : � → � is the pull back of
6 : � → � under 5 .

Let P be a property of morphisms in a category C. We say that the
property P is stable under pull back if the following holds: for all cartesian
squares

� �

� �

y@1

@2

6

5

in C, 6 has P implies that @1 has P. In the last talk, Tanuj sketched the proof
that “being an isomorphism” is stable under pull back. The same is true
for monomorphisms, but not necessarily true for epimorphisms.
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Remark 9. A comprehensive list of properties of morphisms which are
stable under pull back in algebraic geometry can be found in [GW10, Ap-
pendix C].

Let us �nally come to particular examples of �ber products. We want
to abstract the theory of sheaves on topological spaces into a theory of
sheaves on categories, so let us focus on the categoryTop for the remaining
of this subsection.

Let 5 : . → - and 6 : / → - be two continuous maps between topolo-
gical spaces. Then their �ber product can be constructed as

. ×- / = {(~, I) ∈ . × / | 5 (~) = 6(I)}.
This set is endowed with the subspace topology and the projections
?1 : . ×- / → . and ?2 : . ×- / → / are the restrictions of the pro-
jections from the cartesian product.

Example 10. Let - be a topological space and let 8 : * → - be the inclu-
sion of an open subset. Let 5 : . → - be a continuous map. Then:

5 −1(* ) .

* -

y5 |5 −1 (* ) 5

Note that 5 −1(* ) is not equal to the �ber product as described above, cf. Re-
mark 7.

A particular example of the previous example is the following:

Example 11. Let- be a topological space and let 8 : * → - and 9 : + → -

be inclusions of two open subsets. Then:
* ∩+ +

* -

y

Again, cf. Remark 7.

Example 12. Let - be a topological space and let 8 : {∗} → - be a map,
which corresponds to picking a point 8 (∗) ∈ - . Let 5 : . → - be a con-
tinuous map. Then:

5 −1(8 (∗)) {∗}

. -

y 8

5

Example 13. Let - be a topological space and let ? : � → - be a vector
bundle on - . Let 5 : . → - be a continuous map. Then we de�ne the pull
back 5 ∗� → . of � along 5 as
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5 ∗� �

. -

y ?

5

The morphism 5 ∗� → . is a vector bundle on . and the �ber of 5 ∗� → .

over a point ~ ∈ . is isomorphic (I really want to say “the same” here) as
the �ber of � → - over 5 (~).

Example 14. Let- be a connected topological space and let ? : -̃ → - be
a covering space. Let’s say it is a 7-sheeted covering space, i.e., each �ber
has exactly 7 points. Then ?∗-̃ → -̃ is again a 7-sheeted covering of -̃ , so
the composition ?∗-̃ → - is a 49-sheeted covering of - .

Exercise 15. The homotopy lifting property is stable under pull back in
Top, i.e., the pull back of a Hurewicz �bration is again a Hurewicz �bration.

Example 16. Let C be a category with a terminal object ) and let � and
� be objects in C. Then:

� × � �

� )

y

This applies for instance to C = Top with ) = {∗}.
Exercise 17. Construct the �ber product of a diagram

�

� �

of sets using only products and equalizers. (There is nothing special about
the category of sets nor about the �ber product; we’ve already seen in
previous talks that this can be done for every kind of limit in any category.
But the computations are simpler in this case.)

1.3. The Yoneda embedding. Let C be a category and let - be an object
in C. We denote by ℎ- the presheaf

. ↦→ ℎ- (. ) := Hom(.,- )
with restriction morphisms ℎ- (5 ) = (−) ◦ 5 . If 5 : - → . is a morphism
in C, then we obtain a morphism ℎ 5 : ℎ- → ℎ. given by 5 ◦ (−). In this
way we obtain a functor

ℎ : C→ PSh(C),
and as a consequence of the Yoneda lemma we know that this is a fully
faithful functor. This means that we may as well think of the object - as
the presheaf ℎ- , and we do not lose any information by doing so.

Suppose that we have now a diagram
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/

. -

in C. It may well happen that the �ber product . ×- / does not exist in C.
But we have seen in previous talks that limits of presheaves always exist
and can be computed point-wise, so the �ber product ℎ. ×ℎ- ℎ/ does exist
in PSh(C). Explicitly, this is the presheaf given on objects by

) ↦→ Hom(),. ) ×Hom(),- ) Hom(), / ).
The �ber product.×-/ exists in C if and only if this presheaf is represent-
able, i.e., if there exists an object ! in C such that ℎ! � ℎ. ×ℎ- ℎ/ . Spelling
out the de�nitions we see that in this case such an object ! is necessarily
a �ber product . ×- / .

Caveat 2. From now on we may allow ourselves a slight abuse of termin-
ology and notation and think and talk about an object - in a category C
as if it was really the same as the corresponding presheaf ℎ- . So we may
say stu� like “the �ber product . ×- / is representable” instead of saying
“the �ber product . ×- / exists”. Forcing ourselves to have this �exibility
may make some of the upcoming concepts more natural.

1.4. Pretopologies. Let - be a topological space and let F be a presheaf
on - . Let * be an open subset of - and let {*8}8∈� be an open covering of
* . First de�ne a morphism

d : F(* ) →
∏
8∈�

F(*8)

B ↦→ (B |*8
)8∈�

induced by each restriction morphism d*
*8
: F(* ) → F(*8), B ↦→ B |*8

and
the universal property of the product. Next we want to restrict each family
of sections (B8)8∈� in

∏
8∈� F(*8) to the intersections*8 ∩* 9 . There are two

ways to do this. The �rst one corresponds to the morphism

f1 :
∏
8∈�

F(*8) →
∏
(8, 9)∈�×�

F(*8 ∩* 9 )

(B8)8∈� ↦→
(
d
*8

*8∩* 9
(B8)

)
(8, 9)∈�×�

,

and the second one corresponds to the morphism

f2 :
∏
8∈�

F(*8) →
∏
(8, 9)∈�×�

F(*8 ∩* 9 )

(B8)8∈� ↦→
(
d
* 9

*8∩* 9
(B 9 )

)
(8, 9)∈�×�

.

The presheaf F is a sheaf if and only if for every * and every open cover
{*8}8∈� the diagram
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F(* ) ∏
8∈� F(*8)

∏
(8, 9)∈�×� F(*8 ∩* 9 )

d
f1

f2

is exact, meaning that the left arrow is an equalizer of the two parallel
arrows on the right. We will refer to this as the sheaf condition with respect
to the open cover {*8}8∈� .

In order to state the sheaf condition we had to use the notion of an open
cover of an open subset in - and we needed to consider intersections of
elements in the open cover as well. So we were looking at open covers of
objects in Op(- ) and we were considering �ber products of elements of
the cover. We axiomatize the relevant properties of open covers in order to
make sense of the sheaf condition in arbitrary categories other thanOp(- )
for a topological space - .

In particular, we will need to assume the existence of �ber products. So
it is convenient to introduce the following de�nition �rst:

De�nition 18 (Quarrable morphism). Let C be a category. A morphism
5 : - → . in C is called quarrable if for every morphism / → . in C the
�ber product - ×. / is representable.

We are now in a more comfortable position to introduce the following:

De�nition 19 (Pretopology). Let C be a category. A pretopology on C
consists of the data, for each object - in C, of a set Cov(- ) of sets {-8 →
- }8∈� of morphism in C with target - , subject to the following axioms:
(PT0) For every object - in C, every {-8 → - }8∈� in Cov(- ) and every

8 ∈ � , the morphism -8 → - is quarrable.
(PT1) For every object - in C, every {-8 → - }8∈� in Cov(- ) and every

morphism 5 : . → - in C, the set {-8 ×- . → . }8∈� is in Cov(. ).
(Stability under base change.)

(PT2) Let - be an object in C, let {-8 → - }8∈� be a set in Cov(- ) and
for each 8 ∈ � let {-8, 9 → -8} 9∈�8 be a set in Cov(-8). Then the set
of compositions {-8, 9 → - }8∈� , 9∈�8 is in Cov(- ). (Stability under
composition.)

(PT3) The collection {- id-−−→ - } is in Cov(- ).

We will call a collection {-8 → - }8∈� in Cov(- ) a covering of - in C
(endowed with this pretopology). We will also use Cov(C) to denote the
collection of all coverings in a given pretopology on C.

Remark 20. This is the de�nition in [SGA4]. In [Sta21], condition (PT3) is
apparently strengthened a bit to ask that every isomorphism {. �−→ - } is
in Cov(- ). But this follows from (PT3), (PT1) and the cartesian square

. -

- -

y
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Exercise 21. Convince yourself that open coverings of an open subset of
a topological space have the properties above.

Once we have endowed our category C with a pretopology, we can ask
ourselves whether a given presheaf F in PSh(C) is a sheaf with respect
to this pretopology. The de�nition is the same as it was for topological

spaces. For each object - in C and each covering {-8
58−→ - }8∈� we de�ne

the morphism d : F(- ) → ∏
8∈� F(-8) by applying the universal property

of the product to the morphisms F(58) : F(- ) → F(-8). For each (8, 9) ∈
� × � we have a cartesian diagram as follows:

-8 ×- - 9 - 9

-8 -

y

?
(8, 9)
2

?
(8, 9)
1 59

58

The �rst morphism f1 :
∏
8∈� F(-8) →

∏
(8, 9)∈�×� F(-8 ×- - 9 ) is the one

induced by the morphisms F(? (8, 9)1 ), and the second morphism f2 is the
one induced by the morphisms F(? (8, 9)2 ). The presheaf F is then a sheaf if
and only if for every object- in C and every cover {-8 → - }8∈� in Cov(- )
the diagram

F(- ) ∏
8∈� F(-8)

∏
(8, 9)∈�×� F(-8 ×- - 9 )

d
f1

f2

is exact. We will refer to this as the sheaf condition with respect to the
cover {-8 → - }8∈� .
Lemma 22. Let - be a topological space and let F be a presheaf on - . Let
* ⊆ - be an open subset and let {*8}8∈� be an open cover of* . Let {+9 } 9∈� be
a re�nement of {*8}8∈� , i.e., {+9 } 9∈� is still an open cover of * and for every
9 ∈ � there exists some 8 ∈ � such that +9 ⊆ *8 .

(a) If F(* ) →∏
9∈� F(+9 ) is injective, then so is F(* ) →∏

8∈� F(*8).
(b) If F satis�es the sheaf condition with respect to {+9 } 9∈� and for every

8 ∈ � the map F(*8) →
∏

9∈� F(+9 ∩*8) is injective, then F satis�es
the sheaf condition with respect to {*8}8∈� .

Proof. Using the axiom of choice we may �x a function V : � → � such that
+9 ⊆ *V ( 9) for all 9 ∈ � .

We �rst show (0). Suppose that B, C ∈ F(* ) are sections such that B |*8
=

C |*8
for all 8 ∈ � . Then we have

B |+9 = (B |*V ( 9) ) |+9 = (C |*V ( 9) ) |+9 = C |+9
for all 9 ∈ � , so B = C .

Let us show (1) now. The sheaf condition for {+9 } 9∈� tells us that for
every family of sections (B 9 )9∈� ∈

∏
9∈� F(+9 ) such that for each ( 91, 92) ∈

� × � we have
B 91 |+91∩+92 = B 92 |+91∩+92
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there exists a unique section B ∈ F(* ) such that B 9 = ( |+9 for all 9 ∈ � .
To check the sheaf condition for {*8}8∈� , let now (B8)8∈� ∈

∏
8∈� F(*8) be a

family of sections such that for every (81, 82) ∈ � × � we have
B81 |*81∩*82

= B82 |*81∩*82
.

We de�ne a collection (C 9 )9∈� ∈
∏

9∈� F(+9 ) as follows. Then we set C 9 :=
BV ( 9) |+9 for each 9 ∈ � . So we have a collection (C 9 )9∈� ∈

∏
9∈� F(+9 ). Then

we have
C 91 |+91∩+92 = (BV ( 91) |*V ( 91)∩*V ( 92)

) |+91∩+92 = (BV ( 92) |*V ( 91)∩*V ( 92)
) |+91∩+92 = C 92 |+91∩+92

for all ( 91, 92) ∈ � × � . Hence there exists a unique B ∈ F(* ) such that
C 9 = B |+9 for all 9 ∈ � . It remains to show now that B |*8

= B8 for all 8 ∈ � . By
assumption, the map F(*8) →

∏
9∈� F(+9 ∩*8) is injective for every 8 ∈ � ,

so it su�ces to show that B |*8
and B8 have the same image under this map.

But now
B |+9∩*8

= C 9 |+9∩*8
= (BV ( 9) |*V ( 9)∩*8

) |+9∩*8
= (B8 |*V ( 9)∩*8

) |+9∩*8
= B8 |+9∩*8

.

�

Remark 23. Essentially the same proof works in the context of categor-
ies and pretopologies, requiring only some slightly more involved nota-
tion and some extra assumptions to ensure existence of �ber products,
cf. [Sta21, Tag 0G1L].

Corollary 24. Let C be a category. For simplicity, let us assume that all
�ber products exist in C. Let Cov1(C) and Cov2(C) be two pretopologies on
C and assume that every cover {*8

58−→ - }8∈� in Cov1(C) admits a re�nement

{+9
6 9−→ - } 9∈� in Cov2(C), meaning that there exists a function V : � → �

and for each 9 ∈ � a morphism U 9 : +9 → *V ( 9) such that the diagram

+9 *V ( 9)

-

6 9

U 9

5V ( 9)

commutes. If a presheaf F is a sheaf with respect to the pretopology given
by Cov2(C), then it is also a sheaf with respect to the pretopology given by
Cov1(C).
Proof. Part (0) of Lemma 22 ensures that F is separated with respect to
the pretopology Cov1(C), which in turn allows us to apply part (1) of
Lemma 22. �

This already hints at the main motivation point for this talk: di�erent
pretopologies may give rise to the same notion of sheaf on a category. A
bit like when one de�nes a notion of smooth function on a topological
manifold; di�erent smoothly compatible atlases may give rise to the same
notion of smooth function. A way to solve this is to de�ne a smooth struc-
ture on a topological manifold as a maximal smoothly compatible atlas.

https://stacks.math.columbia.edu/tag/0G1L
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This solution has a similar �avor to the one that we will adopt in our situ-
ation; we will come back to this later on.

Example 25. Let - be a set and consider the indiscrete topology {∅, - }
on - . If * ⊆ - is an open subset, the only possible open covers of * are
{* } and {∅,* }. If we want F to be sheaf, we need at the very least that
F(∅) = {∗}, because we can always take the empty covering of the empty
set and an empty product of sets is a terminal object in Set, i.e., a singleton.
But other than that, there is no restriction on F to be a sheaf. Indeed,
assume F(∅) = {∗} and let * ⊆ - be a non-empty open subset. Let us
�rst consdier the open cover {* } of* . Let Δ* = {(G,~) ∈ * ×* | G = ~},
which is isomorphic to* . Then we have a cartesian square

Δ* *

* *

y?1

?2

The sheaf condition with respect to this cover translates into the diagram

F(* ) F(* ) F(Δ* )
?∗1

?∗2

being exact, where we use the shorthand notation ?∗8 instead of F(?8) for
each 8 ∈ {1, 2}. Commtuativity of the cartesian diagram above implies
that ?1 = ?2, hence ?∗1 = ?∗2 and the diagram is indeed exact. Let us now
consider the cover {∅,* } of * . Then we want the following diagram to
be exact:

F(* ) F(∅) × F(* )

F(∅ ×* ∅) × F(∅ ×* * ) × F(* ×* ∅) × F(* ×* * )

d

f1f2

The morphism d : F(* ) → {∗} × F(* ) is an isomorphism, so we need to
check that f1 = f2. Let (∗, B) ∈ F(∅) × F(* ). Then we have

f1(∗, B) = (∗, ∗, ∗, ?∗1 (B)) = (∗, ∗, ∗, ?∗2 (B)) = f2(∗, B),

hence this second diagram is exact as well.
This whole discussion shows that the presheaf F is a sheaf if and only

if F(∅) = {∗}. Being a sheaf in the topological sense is the same as be-
ing a sheaf in the category Op(- ) with the pretopology Cov1 given by all
possible open covers of all open subsets. Let now Cov2 be the indiscrete
pretopology on Ob(- ), in which {* } is the only cover of an open subset
* ⊆ - . The di�erence here is that we are not allowing the empty cover-
ing of the empty set. We are in the assumptions of Corollary 24, because
every cover of an open subset* ⊆ - in the indiscrete pretopology can be
re�ned by an open cover, i.e., by a cover in the pretoplogy Cov1. So every
presehaf F which is a sheaf in the topological sense, i.e., with respect to
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the pretopology Cov1, is also a sheaf with respect to the indiscrete preto-
pology Cov2. Indeed, in this case this is easily seen to be the case, because
every presheaf F with F(∅) = {∗} is in particular a presheaf.

Example 26. Let - be a topological space and let B be a basis for the
topology, i.e., a collection of open subsets of - such that

(1) The elements of B cover - , i.e., for every G ∈ - there exists some
� ∈ B such that G ∈ �.

(2) Given two elements �1, �2 ∈ B and given a point G ∈ �1∩�2, there
exists some �3 ∈ B such that G ∈ �3 and �3 ⊆ �1 ∩ �2.

We take Cov1 as the topological pretopology on Op(- ), in which the cov-
erings are just the open covers of open subsets of - ; and we take Cov2 as
the pretopology on Op(- ) in which the open covers are the open covers
of open subsets of - whose elements are all in B. Then a presheaf F is a
Cov1 sheaf if and only if it is a Cov2 sheaf.

Indeed, we can apply Corollary 24 to deduce the claim. If {*8}8∈� is a
cover of * ⊆ - in Cov2, then it is also a cover of * ⊆ - in Cov1, because
we were assuming that the elements of our basisB are all open. This shows
that a Cov1 sheaf is also a Cov2 sheaf. (Note that in this case it is really
on the nose, since Cov2 ⊆ Cov1, so we are just checking a smaller amount
of conditions.) Conversely, every usual open cover of * ⊆ - admits a
re�nement by elements of the basis B, so every Cov2 sheaf is a Cov1 sheaf.

In fact, it would even su�ce to de�ne a presheaf on a basis for the to-
pology to obtain a presheaf on Op(- ), cf. [EGA, Chapter 0, (3.2.1)].

2. Sieves

We have seen that two pretopologies on a category C end up giving the
same notion of sheaf if we can always re�ne the covers of one of the preto-
pologies by covers in the other pretopology and vice-versa. As pointed out
earlier, this resembles a bit the situation that one runs into when trying to
de�ne smooth structures on topological manifolds naively. A solution in
that case is to consider only maximal smoothly compatible atlases. A solu-
tion in our categorical setting will also be very similar to this in �avour:

De�nition 27 (Sieve). Let C be a category and let - in C be an object. A
sieve ( on - is a subfunctor ( ⊆ ℎ- .

Remark 28. Recall that it is convenient to think of - as being the same
as the functor ℎ- , so we may think of ( as a subobject of - in PSh(C).
Conversely, it is also helpful to imagine that ( was in fact representable by
an object ( in C and think of the map ( → ℎ- as a “morphism from ( to
- ”, cf. [Sta21, Tag 00YW].

Let us spell out what it means for a presheaf ( in PSh(C) to be a subfunc-
tor of ℎ- . Since it is a functor, we need to describe how it acts on objects

https://stacks.math.columbia.edu/tag/00YW
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and how it acts on morphisms. On an object ) of C, we want to have a
subset

( () ) ⊆ ℎ- () ) = Hom(),- ).
Given any morphism 5 : ) → ) ′ in C, we have an induced morphism
(−) ◦ 5 : ℎ- () ′) → ℎ- () ). For ( to be a subfunctor of ℎ- we need to have
a commutative diagram as follows:

( () ′) ℎ- () ′)

( () ) ℎ- () )

(−)◦5 (−)◦5

In other words, a sieve on - consists on a collection of subsets ( () ) ⊆
ℎ- () ) such that for all 5 : ) → ) ′ in C we have that

() ′
6
−→ - ) ∈ ( () ′) ⇒ ()

6◦5
−−→ - ) ∈ ( () ). (1)

Example 29. Let C be a category and let - be an object in C. Let ( ⊆ ℎ-
be a sieve such that id- ∈ ( (- ). Then ( = ℎ- . Indeed, let 5 : . → - be a
morphism in C. Then id- ∈ ( (- ) implies 5 ∈ ( (. ) by Equation (1).

Remark 30. It is common (at least in algebraic geometry) to denote
- () ) = ℎ- () ) = Hom(),- ).

These are called the ) -valued points of - when ) and - are schemes,
because if we take for example the scheme - = Spec(Z[G,~]/(G2 + ~2))
and we consider a �eld extension Q ⊆  , then the  -valued points of -
give us the  -valued solutions of the de�ning equation of - :

- ( ) := - (Spec( )) = {(0, 1) ∈  2 | 02 + 12 = 0}.
This notation �ts nicely into our usual abuse of notation and terminology
in which we do not distinguish between - and ℎ- too much.

Some observations:

Lemma 31 (cf. [Sta21, Tag 00YZ]). Let C be a category and let - be an
object in C.

(1) Inclusion de�nes a partial ordering among sieves on - .
(2) The union of a colleciton of sieves on - is a sieve on - .
(3) The intersection of a collection of sieves on - is a sieve on - .
(4) The sieve - = ℎ- is the maximal sieve.
(5) The empty subfunctor is the minimal sieve.

We will need the following two constructions with sieves:

De�nition-Lemma 32 (Generated sieve, cf. [Sta21, Tag 00Z1]). Let C be
a category and let {58 : -8 → - }8∈� be a family of morphisms with �xed
target. Then there exists a unique sieve ( on - , called the sieve generated
by the family of morphisms {58 : -8 → - }8∈� , which is the smallest sieve
on - such that for every 8 ∈ � , the morphism 58 : -8 → - is in ( (-8).

https://stacks.math.columbia.edu/tag/00YZ
https://stacks.math.columbia.edu/tag/00Z1
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Proof. We regard every 58 : -8 → - as a morphism of functors ℎ 58 : ℎ-8
→

ℎ- and we take ( to be the union of their images. Explicitly,

( () ) = {5 : ) → - | ∃8 ∈ � such that ∃6 : ) → -8 with 5 = 58 ◦ 6}.

We check that Equation (1) holds. Let U : ) → ) ′ be a morphism in C and
let 5 ∈ ( () ′). Then there exists some 8 ∈ � and some 6 : ) ′→ -8 such that
5 = 58 ◦ 6. Since 5 ◦ U = 58 ◦ (6 ◦ U), we get 5 ◦ U ∈ ( () ) and ( is indeed a
sieve. �

De�nition-Lemma 33 (Pull back sieve, cf. [Sta21, Tag 00Z2]). Let C be a
category, let 5 : . → - be a morphism in C and let ( be a sieve on - . We
de�ne the pull back of ( by 5 to be the sieve ( ×- . on . de�ned by the
rule

(U : ) → . ) ∈ (( ×- . ) () ) :⇔ (5 ◦ U : ) → - ) ∈ ( () ).

Proof. We check again that Equation (1) holds. Let V : ) → ) ′ be a morph-
ism inC and letU ∈ ((×-. ) () ′). We want to show thatU◦V ∈ ((×-. ) () ),
i.e., we want to show that 5 ◦ (U ◦V) ∈ ( () ). This follows from 5 ◦ (U ◦V) =
(5 ◦U) ◦ V , 5 ◦U ∈ ( () ′) by de�nition of ( ×- . and from Equation (1) and
the assumption that ( is a sieve. �

Remark 34. The notation suggests that the pull back sieve is related to
the �ber product of presheaves in some way. But it cannot be the �ber
product on the nose, because we want the pull back of a sieve ( on -

under a morphism 5 : . → - to be a sieve on . , and the �ber product
(×-. = (×ℎ- ℎ. is not necessarily a subfunctor ofℎ. strictly speaking (the
�ber product is only uniquely determined up to isomorphism anyway). So
instead we look at the image of ( ×- . in . , i.e., at the image presheaf
of the presheaf morphism appearing on the top of the following cartesian
square:

( ×- . .

( -

y 5

The pull back of a monomorphism is a monomorphism, so the abuse of
notation of calling ( ×- . and its image in . the same way is rather harm-
less.

Example 35. Let C be a category and let - be an object in C. Let ( be
a sieve on - and let 5 : . → - be a morphism in ( . Then ( ×- . = ℎ. .
Indeed, from De�nition-Lemma 33 we know that ( ×- . ⊆ ℎ. is a sieve, so
let us prove the other inclusion. Let ) be an object in C and let U : ) → .

be any morphism inC. We want to show thatU ∈ ((×-. ) () ), i.e., we want
to show that 5 ◦ U ∈ ( () ). This follows from 5 ∈ ( (. ) and Equation (1).
Another option is to argue using Example 29 and noting that 5 ∈ ( (. )
implies that id. ∈ (( ×- . ) (. ) by de�nition.

https://stacks.math.columbia.edu/tag/00Z2
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Remark 36. Let C be a category and let {58 : -8 → - }8∈� be a family of
morphisms. Let ( be the sieve on- generated by this family of morphisms
and let 5 : . → - be any morphism in C. Then the pull back sieve (×- . is
the sieve generated by the pulled back family of morphisms {5 ∗(58) : . ×-
-8 → . }8∈� . Indeed, let) be an object in C. The claim is then that C ∈ ((×-
. ) () ) if and only if there exists 8 ∈ � such that there exists 6 : ) → -8 ×- .
with C = 5 ∗(58) ◦6. By de�nition, C ∈ ((×- . ) () ) if and only if 5 ◦C ∈ ( () ).
Since ( is the sieve generated by the family {58 : -8 → - }8∈� , we have in
turn that 5 ◦ C ∈ ( () ) if and only if there exists 8 ∈ � such that there exists
ℎ : ) → -8 such that 5 ◦ C = 58 ◦ ℎ. Suppose �rst that this is the case. Then
we can take 6 : ) → -8 ×- . to be the morphism given by the universal
property of the �ber product as follows:

)

-8 ×- . .

-8 -

C

ℎ

∃!6

?

5 ∗ (58 )
5

58

Conversely, suppose there exists a morphism 6 : ) → -8 ×- . such that
C = 5 ∗(58) ◦ 6. Then we can take ℎ = ? ◦ 6 as in the diagram above.

3. Grothendieck topologies

De�nition 37 (Grothendieck topology). Let C be a category. A topology
on C, also called a Grothendieck topology on C, consists of the data of a set
� (- ) of sieves on- for each object- in C, subject to the following axioms:

(T1) Stability under pull back: for every morphism 5 : . → - in C and
every ( ∈ � (- ) we have ( ×- . ∈ � (. ).

(T2) Locality condition: if ( and (′ are sieves on - with ( ∈ � (- ) and if
for all objects . of C and all 5 ∈ ( (. ) we have (′×- . ∈ � (. ), then
(′ ∈ � (- ).

(T3) For every object - in C we have - ∈ � (- ).
The sieves in � (- ) are called covering sieves of - , and a category C en-
dowed with a topology is called a site1. We will sometimes use � to denote
a topology, so we may say stu� like “let (C, � ) be a site...”

Recall that we are trying to abstract the notion of an open cover to a
categorical setting in order to work with sheaves on categories. Our �rst
attempt was endowing the category C with a pretopology. This is in fact
good enough in practice (and even better than what we are about to do),
cf. [Sta21, Tag 00YW]. But we have seen that di�erent pretopologies may
give rise to the same notion of sheaf; so this is not so satisfactory from a

1Mind the terminology clash with [Sta21].

https://stacks.math.columbia.edu/tag/00YW
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conceptual point of view. Therefore we have tried to rephrase our de�ni-
tion in terms of sieves, again, in a way somewhat parallel to how one con-
siders a maximal smooth atlas when trying to de�ne a notion of smooth
function on a topological manifold. Let us now make the comparison more
explicit:

(0) We do not need (PT0) any longer, because the pull back of a sieve
always exists.

(1) We continue to require stability under pull back in (T1) as we did
in (PT1). This corresponds to the fact that if we have an open cover
{*8}8∈� of an open subset * and another open subset + ⊆ * , then
we obtain an open cover {+ ∩*8}8∈� of + .

(2) Condition (T2) corresponds to the fact that we can check whether a
collection {*8}8∈� of subsets of* is an open cover by checking that
it restricts to an open cover on each element of an open cover of* .
(“Open covers are local on the target”.) In the case of a pretopology,
we were considering arbitrary families of morphisms with target
the object that we are trying to cover, but now we are considering
sieves instead. This makes the old (PT2) obsolete, because stability
under composition is baked into the de�nition of a sieve already.

(3) We continue to require that identities be coverings in (T3) as we
did in (PT3). This corresponds to the fact that {* } is an open cover
of the open subset* itself.

Before seeing a couple of examples, we make the following observation:

Lemma 38 ([Sta21, Tag 00Z5]). Let (C, � ) be a site and let - be an object
in C.

(1) Finite intersections of elements of � (- ) are again in � (- ).
(2) If ( ∈ � (- ) and (′ ⊇ ( , then (′ ∈ � (- ) as well.

In particular, the set � (- ) ordered with inclusions is co�ltered [Sta21, Tag
04AZ].

Proof. We begin by showing (1). Let’s stretch the language more than we
perhaps should and take two open covers ( and (′ of- , i.e., let (, (′ ∈ � (- ).
We check that the collection ( ∩ (′ is again an open cover of - , and we do
this by arguing locally on the open cover ( . That is, we want to apply (T2)
to the sieve ( ∩ (′ and the covering sieve ( . So let . be an object in C and
let 5 ∈ ( (. ). Then we have (( ∩ (′) ×- . = (′ ×- . , because

(( ∩ (′) ×- . = ( ×- (′ ×- . = ( ×- . ×- (′ = . ×- (′ = (′ ×- .,

where in the second to last equality we have used Example 35. One can
also check the equality (( ∩ (′) ×- . = (′ ×- . by hand, unravelling the
de�nitions and using Equation (1). But (T1) tells us that ( ×- . is in � (. ),
so by (T2) the sieve ( ∩ (′ is again in � (- ).

Let us show (2) now. Let ( ∈ � (- ) and let (′ ⊇ ( . We check again locally
that this is an open cover of - . Let . be an object in C and let 5 ∈ ( (. ).

https://stacks.math.columbia.edu/tag/00Z5
https://stacks.math.columbia.edu/tag/04AZ
https://stacks.math.columbia.edu/tag/04AZ
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Again using Example 35 we have (′ ×- . = . , because 5 ∈ ( (. ) ⊆ (′(. ).
Hence (′ ×- . = . ∈ � (. ) by (T3), so (′ ∈ � (- ) by (T2).

Finally, for the assertion that � (- ) is co�ltered, note that (T3) implies
that it is non-empty and connected, because every ( ∈ � (- ) admits a
morphism to - ∈ � (- ). Since there is at most one morphism between
two covering sieves in the partially ordered set � (- ), assertion (1) in this
lemma already ensures that � (- ) is co�ltered. �

Remark 39. The proof of Lemma 38 shows that in order to check that a set
of sieves on a category C satis�es the axiom (T2) it su�ces to check that
it satis�es the following two conditions:
(T2)1 Axiom (T2) holds whenever (′ ⊆ ( is a subfunctor.
(T2)2 If ( and (′ are sieves on - , ( ∈ � (- ) and ( ⊆ (′, then (′ ∈ � (- ).

Indeed, suppose that (T2)1 and (T2)2 are satis�ed and let ( and (′ be sieves
on- as in (T2). We have seen in the proof of Lemma 38 that ((′∩()×- . =

(′ ×- . as a consequence of 5 ∈ ( (. ). So the sieve (′ ∩ ( ⊆ ( satis�es the
assumptions in (T2)1 and is therefore in � (- ). It follows now from (T2)2
that (′ ∈ � (- ) as well.

Knowing that � (- ) is co�ltered makes computing limits indexed over
� (- ) and computing colimits indexed over � (- )op easier, cf. [Sta21, Tag
04AX].

De�nition 40 (Finer and coarser topologies). Let C be a category and let
� and � ′ be two topologies on C. We say that � is �ner than � ′, or that � ′ is
coarser than � , if and only if for every object- in C we have � ′(- ) ⊆ � (- ).

Intuitively a �ner topology has more (“smaller”) open subsets than a
coarser topology. For example, the Euclidean topology on R is �ner than
the co�nite topology. More generally, the Zariski topology is coarser than
the analytic topology.

De�nition-Lemma 41 (Intersection topology). Let C be a category and
let {�8}8∈� be a collection of topologies on C. Then we de�ne their intersec-
tion � = ∩8∈� �8 point-wise, i.e.,

� (- ) =
⋂
8∈�

�8 (- )

for all objects - of C. A straightforward check shows that (T1), (T2) and
(T3) are satis�ed for � .

Let C be a category and let us de�ne an order on topologies of C by
declaring that � ≤ � ′ if and only if � ′ is �ner than � , i.e., if � (- ) ⊆ � ′(- )
for all objects - in C. We will also denote this by � ⊆ � ′. The intersection
of a family of topologies is the in�mum of that collection of topologies,
and the intersection of all topologies �ner than all the topologies in the
family is the supremum of that collection of topologies.

https://stacks.math.columbia.edu/tag/04AX
https://stacks.math.columbia.edu/tag/04AX
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De�nition 42 (Covering family). Let (C, � ) be a site and let {58 : -8 →
- }8∈� be a family of morphisms with �xed target. We will say that
{58 : -8 → - }8∈� is a covering family if the sieve generated by this fam-
ily of morphisms is a covering sieve.

As the name suggests, covering families in the context of topologies are
closely related to coverings in the context of pretopologies. See Example 46
for the precise relation between the two notions.

De�nition 43 (Topology generated by families of morphisms). Let C be a
category. Given a collection of families of morphisms with �xed target in
C, we can now de�ne the topology generated by this collection of families
of morphisms as the coarsest topology � on C making all of them covering
families.

In particular, we may de�ne the topology generated by a collection
{(8}8∈� of sieves in C as the topology generated by the collection of families
of morphisms {∪)(8 () )}8∈� , where) ranges over the objects in C. For each
8 ∈ � , the sieve generated by the family of morphisms ∪)(8 () ) is the sieve
(8 itself, so the topology generated by a collection of sieves is the coarsest
topology on C making all of them covering sieves.

Let us close this section with some examples.

Example 44. Let C be a category. The indiscrete topology on C is the
topology � such that for every object - of C has � (- ) = {- }. We check
the three necessary conditions:

(T1) Let 5 : . → - be a morphism in C and let ( = - ∈ � (- ). Then
( ×- . = - ×- . = . ∈ � (. ).

(T2) Let ( be a sieve on an object - and let - ∈ � (- ). Suppose that for
all objects . in C and all morphisms 5 : . → - in - (. ) we have
(×-. ∈ � (. ). In particular, for 5 = id- we have (×-- = ( ∈ � (- ).

(T3) We have - ∈ � (- ) by de�nition.
The name of this topology comes from the indiscrete topology on a set

- , in which the open subsets are only ∅ and - .

A �ner example:

Example 45. Let C be a category. The discrete topology on C is the topo-
logy � in which every sieve is a covering sieve. We check again the three
necessary conditions:

(T1) The pull back of a sieve is again a sieve by De�nition-Lemma 33.
(T2) This condition is automatically true, because all sieves are covering

sieves.
(T3) For every object - of C, - is itself a sieve, so - ∈ � (- ).
The name of this topology comes from the discrete topology on a set

- , in which every subset of - is open. In this context, in turn, the name
discrete comes from the fact that every point of - is isolated in - , so it �ts
our mental picture of a discrete space.
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Example 46 (cf. [Sta21, Tag 00ZD]). Let C be a category endowed with
a pretopology Cov(C). We de�ne the topology � associated to the preto-
pology Cov(C) as the topology generated by the collection of all covering
families in Cov(C). For every object - in C, let us denote by �0(- ) the
collection of sieves ( on- such that there exists a covering {-8 → - }8∈� in
Cov(C) such that ( is the sieve generated by the collection of morphisms
{-8 → - }8∈� . Then a sieve ( on - is in � (- ) if and only if it contains a
sieve in �0(- ).

Proof. For every object - in C, let us denote by � ′(- ) the collection of
all sieves on - which contain a sieve in �0(- ). By Lemma 38, we have
� ′(- ) ⊆ � (- ) in any case. Hence it su�ces to show that � ′ satis�es the
axioms for a topology.

Let us start with (T1). Let ( ∈ � ′(- ) and let 5 : . → - be any morph-
ism in C. We need to show that ( ×- . ∈ � ′(. ), i.e., we need to show
that there exists a covering of . such that the sieve ( ×- . contains the
sieve generated by this covering. Since ( ∈ � ′(- ), there exists a cover-
ing {58 : -8 → - }8∈� such that ( contains the sieve (0 generated by this
covering. Let us check that ( ×- . contains the sieve generated by the
family of morphisms {5 ∗(58) : . ×- -8 → . }8∈� . By Remark 36, the sieve
generated by this pulled back family of morphisms is the pull back sieve
(0 ×- . . So we need to show that ( ×- . contains (0 ×- . . Indeed, for any
6 ∈ ((0 ×- . ) () ) we have 5 ◦6 ∈ (0() ) ⊆ ( () ), hence 6 ∈ (( ×- . ) () ) as
well.

We check (T2) next. Let ( and (′ be sieves on - such that ( ∈ � ′(- ), i.e.,
there exists a sieve (0 ∈ �0(- ) generated by a covering {58 : -8 → - }8∈�
such that (0 ⊆ ( . Assume that for every object . of C and every 5 ∈ ( (. )
we have (′ ×- . ∈ � ′(. ). In particular, for every 8 ∈ � we have 58 ∈
(0(-8) ⊆ ( (-8), so (′ ×- -8 ∈ � ′(-8). This means that for each 8 ∈ � there
exists a covering {58 9 : -8 9 → -8} 9∈�8 such that (′ ×- -8 contains the sieve
(′8 generated by this covering. The family of morphisms

{(58 ◦ 58 9 ) : -8 9 → - }8∈� , 9∈�8

is a covering by (PT2). Let (′0 be the sieve generated by this family, which
is then a sieve in �0(- ). It su�ces to show then that (′0 ⊆ (′, since this
implies then that (′ ∈ � ′(- ) by de�nition. So let ) be an object in C and
let 6 ∈ (′0() ), i.e., there exist 8 ∈ � , 9 ∈ �8 and 68 9 : ) → -8 9 such that
6 = 58 ◦ 58 9 ◦ 68 9 . We would like to conclude that 6 ∈ (′() ), which by
de�nition of the pull back sieve is equivalent to 58 9 ◦ 68 9 ∈ ((′ ×- -8) () ).
Since (′8 ⊆ (′ ×- -8 , it su�ces in turn to show that 58 9 ◦ 68 9 ∈ (′8 () ). But (′8
is the sieve generated by the covering {58 9 : -8 9 → -8} 9∈�8 , so this is indeed
the case.

Let us �nally check (T3), i.e., that - ∈ � ′(- ) as well. We need to �nd a
covering of - such that - contains the sieve generated by this covering.
We consider {id- }, which is a covering of - by (PT3). By Example 29, the

https://stacks.math.columbia.edu/tag/00ZD
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sieve generated by this covering is - itself. Since - ⊆ - , we conclude that
- ∈ � ′(- ). �

4. Topologies and sheaves

Let us start this section with the following de�nition, despite it being
perhaps slightly unmotivated at this point:

De�nition 47 (Sheaf on a site). Let (C, � ) be a site and let F be a presheaf
on C. We say that F is separated (resp. a sheaf ) if for every object - in C
and every covering sieve ' ∈ � (- ) the induced map

Hom(-,F) → Hom(',F)
is injective (resp. bijective). We denote by Sh(C) or Sh(C, � ) the full sub-
category of sheaves in PSh(C).
Example 48. In the indiscrete topology from Example 44, a sheaf is the
same thing as a presheaf, cf. Example 25.

Example 49. Let (C, � ) be a discrete site as in Example 45. For every object
- in C, the empty sieve ∅ is in � (- ). Note that the empty sieve is an initial
object in the category PSh(C) of presheaves on C. So if F is a sheaf in the
discrete topology, then by Yoneda we have

F(- ) � Hom(-,F) � Hom(∅,F) = {∗}.
So only the constant presheaf with value a terminal object is a sheaf in the
discrete topology.

De�nition-Lemma 50 (Topology generated by a family of presheaves).
Let C be a category and let F = {F8}8∈� be a collection of presheaves on C.
For each object - of C, we denote by �F(- ) the collection of sieves ' on -
such that for every morphism 5 : . → - in C the pull back sieve ' ×- .
has the property that the induced map

Hom(.,F8) → Hom(' ×- .,F8)
is bijective (resp. injective) for all 8 ∈ � . Then �F de�nes a topology on C,
called the topology generated by the family of presheaves F, which is the
�nest topology in which all presheaves F8 are sheaves (resp. separated). If
we do not specify, we mean the �nest topology in which all presheaves F8
are sheaves.

Proof. Let us check �rst that axiom (T1) holds. Let ' ∈ �F(- ) and let
5 : . → - be a morphism in C. Then we want to show that '×-. ∈ �F(. ),
so let 6 : / → . be another morphism in C. Then we have ' ×- / =

('×- . ) ×. / as subfunctors of / , where the left hand side is the pull back
sieve along 5 ◦6. Hence the claim follows. Axiom (T3) follows immediately
from the equality - ×- . = . . So it remains only to show axiom (T2). For
this we follow the proof in [SGA4, Exposé II, Proposition 2.2].

We have seen in Remark 39 that it su�ces to show the following two
conditions:
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(T2)1 If '′ ⊆ ' are sieves on - with ' ∈ �F(- ) and if for all objects . of
C and all 5 ∈ '(. ) we have '′ ×- . ∈ �F(. ), then '′ ∈ �F(- ).

(T2)2 If '′ ⊆ ' are sieves on - with '′ ∈ �F(- ), then ' ∈ �F(- ).
Let us check �rst (T2)1. Write ' = colim(/→') / as a colimit of repres-

entable presheaves / as in [SGA4, Exposé I, Proposition 3.4]. Since '′ ⊆ ',
we have '′ = '′ ×- ' in PSh(C). By [SGA4, Exposé I, Corollaire 3.3] we
can then write

'′ = '′ ×- (colim(/→') / ) � colim(/→') ('′ ×- / )

in PSh(C). Each / → ' corresponds to a morphism 6 ∈ '(/ ), so by
assumption we have '′ ×- / ∈ �F(/ ). Therefore:

Hom(',F8) � lim(/→') Hom(/,F8)
� lim(/→') Hom('′ ×- /,F8)
� Hom(colim(/→') '′ ×- /,F8)
� Hom('′,F8).

Now, since ' ∈ �F(- ), we have

Hom(-,F8) � Hom(',F8).

Hence
Hom(-,F8) � Hom('′,F8).

We check next that the assumptions in (T2)1 are stable under pull back
along an arbitrary morphism . → - in C. We still have '′×- . ⊆ ' ×- . ,
and since we have already seen that (T1) is satis�ed, we also have ' ×-
. ∈ �F(. ). Let / be another object in C and let 6 ∈ (' ×- . ) (/ ). Then
('′ ×- . ) ×. / = '′ ×- / ∈ �F(/ ). So the assumptions in (T2)1 are indeed
stable under pull back. It follows that

Hom(.,F8) � Hom('′ ×- .,F8)

for all . → - , i.e., '′ ∈ �F(- ).
Let us show (T2)2 now. Write again

' = colim(/→') / and '′ � colim(/→') ('′ ×- / ).

Since'′ ∈ �F(- ) and (T1) is already known to hold for �F, we have'′×-/ ∈
�F(/ ) for each / → '. From the same isomorphisms as above and the
assumption that '′ ∈ �F(- ) it follows that

Hom(-,F8) � Hom(',F8).

The assumptions in (T2)2 are also stable under pull back along arbitrary
morphisms. → - in C, because inclusions are preserved by pull back and
we already know that (T1) holds for �F. Thus we conclude that ' ∈ �F(- )
as we did for '′ before. �
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Remark 51. Note the contrast with the topology generated by a collec-
tion of families of morphims: the topology generated by a collection of
presheaves is the �nest topology for which all presheaves in the collection
are sheaves, whereas the topology generated by a collection of families of
morphisms is the coarsest topology containig all sieves generated by the
families of morphisms, cf. De�nition 43.

We want to compare the notion of sheaf given by a pretopology on C
with the notion of sheaf given by the associated topology on C. The asso-
ciated topology is the topology generated by the collection of sieves gen-
erated by coverings in the pretopology. This motivates the following:

Lemma 52. Let C be a category and for each object - of C let  (- ) be
a set of sieves on - . Suppose that this collection of sieves  is stable under
pull back, i.e., suppose that (T1) holds for this collection of sieves. Let F be a
presheaf on C. Then F is a sheaf (resp. separated) for the topology generated
by  if and only if for every object - in C and every sieve ' ∈  (- ) the
induced map

Hom(-,F) → Hom(',F)
is bijective (resp. injective).

Proof. Let � be the topology generated by this collection of sieves and let
�F be the topology generated by F. So we deal with the assertion involving
sheaves and bijections; the other assertion is proven similarly.

Suppose that F is a sheaf for the topology � . By de�nition of � , for all
objects - of C we have  (- ) ⊆ � (- ). So the claim follows.

Conversely, suppose that for all objects - of C and all ' ∈  (- ) the
induced map

Hom(-,F) → Hom(',F)
is bijective. Let us check that � ⊆ �F. Let ' ∈  (- ) and let 5 : . → - be
a morphism in C. By De�nition-Lemma 50 we need to check that the pull
back sieve ' ×- . induces a bijection

Hom(.,F) → Hom(' ×- .,F).
But by assumption the collection of sieves  satis�es (T1), so ' ×- . ∈
 (. ) and therefore the previous map is indeed a bijection. This shows
that � ⊆ �F. Since F is a sheaf for the topology �F, it is also a sheaf for
the coarser topology � . �

Corollary 53. Let C be a category endowed with a pretopology Cov(C) and
let � be the associated topology. Then a presheaf F on C is a sheaf with
respect to the pretopology Cov(C) if and only if it is a sheaf with respect to
the topology � .

Proof. We apply Lemma 52 to the collection of  of sieves generated by
morphisms appearing in a covering of Cov(C). Axiom (PT1) implies that
this collection satis�es (T1). From this we deduce that F is a sheaf for the
topology generated by  , i.e., for � , if and only if for every object - in C
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and every sieve ' generated by a covering {58 : -8 → - }8∈� in Cov(C) the
induced map

Hom(-,F) → Hom(',F)
is bijective. We check that this condition is in turn equivalent to the sheaf
condition for F with respect to the covering {58 : -8 → - }8∈� following
[Sta21, Tag 00ZC].

Suppose �rst that this map is bijective and consider the sheaf diagram

F(- ) ∏
8∈� F(-8)

∏
(8, 9)∈�×� F(-8 ×- - 9 ).

d
f1

f2

Let (B8)8∈� be a compatible family of sections in
∏
8∈� F(-8), i.e., with our

usual abuse of notation, a family of sections such that

B8 |-8×-- 9
= B 9 |-8×-- 9

for all (8, 9) ∈ � × � . We want to �nd a unique section B ∈ F(- ) restricting
to B8 on each -8 . By Yoneda, it su�ces to �nd a unique morphism - → F,
and by the sheaf condition for the � topology it su�ces in turn to �nd a
unique morphism i : ' → F. Let us construct such a morphism. Let )
be an object of C and let (U : ) → - ) ∈ '() ). By De�nition-Lemma 32,
this means that there exists 8 ∈ � and there exists 5 8 : ) → -8 such that
U = 58 ◦ 5 8 . We set i) (U) := F(5 8) (B8). The image i) (U) being well-de�ned
follows from the condition that B8 |-8×-- 9

= B 9 |-8×-- 9
for all (8, 9) ∈ � × � .

Indeed, suppose 9 ∈ � is another index such that there exists 5 9 : ) → - 9
such that U = 5 9 ◦ 5 9 . The universal property of the �ber product yields
then a morphism C : ) → -8 ×- - 9 �tting into a commutative diagram as
follows:

)

-8 ×- - 9 - 9

-8 -

C

5 9

5 8 ?
(8, 9)
1

?
(8, 9)
2

59

58

The condition that B8 |-8×-- 9
= B 9 |-8×-- 9

means then precisely that

F(? (8, 9)1 ) (B8) = F(? (8, 9)2 ) (B 9 ).
Combining this with commutativity of the diagram and functoriality of F
we deduce that

F(5 8) (B8) = F(C) (F(? (8, 9)1 ) (B8))

= F(C) (F(? (8, 9)2 ) (B 9 ))
= F(5 9 ) (B 9 ).

https://stacks.math.columbia.edu/tag/00ZC
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Therefore we have a well-de�ned function i) : '() ) → F() ). We check
that these are the components of a natural transformation i : ' → F. Let
6 : ) ′→ ) be a morphism in C. We want to show that the diagram

'() ) F() )

'() ′) F() ′)

i)

(−)◦6 F(6)

i) ′

commutes. So let U ∈ '() ) as above and let 8 ∈ � and 5 8 : ) → -8 such that
U = 58 ◦ 5 8 . Then we have

F(6) (i) (U)) = F(6) (F(5 8) (B8)) = F(5 8 ◦ 6) (B8).

The morphism 5 8 ◦ 6 : ) ′→ -8 is such that U ◦ 6 = 58 ◦ (5 8 ◦ 6). Therefore
we also have

i) ′ (U ◦ 6) = F(5 8 ◦ 6) (B8),

which shows that the diagram commutes. So we have a well-de�ned nat-
ural transformation i : ' → F. The bijection Hom(-,F) → Hom(',F)
is induced by the inclusion 8 : ' → - , whose component at an object ) of
C is just the set-theoretical inclusion 8) : '() ) ⊆ - () ). The natural trans-
formationi corresponds under this bijection to the natural transformation
k : - → F whose component at ) has the property that k) ◦ 8) = i) . We
then consider the section B := k- (id- ) ∈ F(- ). The �rst claim is that
d (B) = (B8)8∈� , i.e., that for every 8 ∈ � we have F(58) (B) = B8 . We apply
the naturality ofk to the morphism 58 to obtain a commutative diagram as
follows:

- (- ) F(- )

- (-8) F(-8)

k-

(−)◦58 F(58 )
k-8

The sectionF(58) (B) is then equal tok-8
(id- ◦58) = k-8

(58). Since 58 ∈ '(-8)
we also have k-8

(58) = i-8
(58). We have 58 = 58 ◦ id-8

, so by construction
we have i-8

(58) = F(id-8
) (B8). Since F is a functor, we �nally deduce that

F(id-8
) (B8) = idF(-8 ) (B8) = B8 , showing that F(58) (B) = B8 as we wanted.

The second claim is that any section B′ ∈ F(- ) with the property that
F(58) (B′) = B8 for all 8 ∈ � is equal to B . Such a section B′ ∈ F(- ) cor-
responds under Yoneda to a natural transformation k ′ : - → F such that
k ′
-
(id- ) = B′, and again by Yoneda it su�ces to show that k = k ′. Since

(−) ◦ 8 : Hom(-,F) → Hom(',F) is a bijection, it su�ces to show that
k ′ ◦ 8 = k ◦ 8 = i . So let (U : ) → - ) ∈ '() ). We apply the naturality of
k ′ to U : ) → - to obtain a commutative diagram as follows:
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- (- ) F(- )

- () ) F() )

k ′
-

(−)◦U F(U)
k ′
)

We see that
k ′) (U) = (k ′) ◦ 8) (U) = F(U) (B′).

By de�nition of ' there exists some 8 ∈ � and some 5 8 : ) → -8 such that
U = 58 ◦ 5 8 . Hence we deduce in turn that

k ′) (U) = F(5 8) (F(58) (B′)) = F(5 8) (B8) = i) (U).

This shows that k ′ ◦ 8 = i , hence B′ = B . Therefore there exists a unique
section F(B) such that d (B) = (B8)8∈� and the presheaf F is a sheaf in the
sense of the pretopology.

Conversely, suppose that the above sheaf diagram is exact and let
i : ' → F. We want to show that there exists a unique k : - → F such
that k ◦ 8 = i , where 8 : ' → - denotes the inclusion. For each 8 ∈ � we
have 58 ∈ '(-8), so we may de�ne B8 := i-8

(58) ∈ F(-8). We want to check
next that the family (B8)8∈� is a compatible family, so let 8, 9 ∈ � . We need
to show that F(? (8, 9)1 ) (B8) = F(? (8, 9)2 ) (B 9 ). Applying naturality of i to the
morphism ?

(8, 9)
1 yields a commutative diagram

'(-8) F(-8)

'(-8 ×- - 9 ) F(-8 ×- - 9 )

i-8

(−)◦? (8, 9)1 F(? (8, 9)1 )
i-8×--9

It follows from the commutativity of this diagram and from the commut-
ativity of the corresponding naturality diagram for ? (8, 9)2 that

F(? (8, 9)1 ) (B8) = i-8×-- 9
(58 ◦ ? (8, 9)1 ) = i-8×-- 9

(5 9 ◦ ? (8, 9)2 ) = F(? (8, 9)2 ) (B 9 ),

showing that (B8)8∈� is indeed a compatible family. Therefore there exists
a unique B ∈ F(- ) such that F(58) (B) = B8 for each 8 ∈ � . We claim that
the natural transformation k : - → F corresponding to B under Yoneda
satis�es k ◦ 8 = i . To show this, let (U : ) → - ) ∈ '() ) and let 8 ∈ �
and 5 8 : ) → -8 such that U = 58 ◦ 5 8 . We need to use the information that
we have on k , namely, that k- (id- ) = B . So we consider the naturality
diagram fork with respect to U :

- (- ) F(- )

- () ) F() )

k-

(−)◦U F(U)
k)
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This diagram shows that

k) (U) = F(U) (B) = F(5 8) (F(58) (B)) = F(5 8) (B8) = F(5 8) (i-8
(58)) .

From the naturality of i with respect to 5 8 we deduce now that

F(5 8) (i-8
(58)) = i) (58 ◦ 5 8) = i) (U),

hencek ◦ 8 = i as we wanted to show. Suppose thatk ′ : - → F is another
natural transformation with the property that k ′ ◦ 8 = i . To show that
k = k ′ it su�ces to show thatk ′

-
(id- ) = B . In order to show this it su�ces

in turn to show that for each 8 ∈ � we have F(58) (k ′- (id- )) = B8 . But
naturality ofk ′ with respect to 58 implies that

F(58) (k ′- (id- )) = k ′-8
(58) = B8 .

This shows that k = k ′, so k : - → F is the only natural transformation
such thatk ◦ 8 = i . �

In this way we recover the notion of sheaf for a pretopology in the con-
text of Grothendieck topologies. But unlike in the pretopology setting, the
notion of sheaf already determines the topology:

Proposition 54. Let C be a category. Then there is a order-reversing cor-
respondence between topologies on C and full subcategories of PSh(C) which
are categories of sheaves for some topology on C, given by

 ↦→ Sh(C,  )

and
Sh(C,  ) ↦→ �Sh(C, ) .

Proof. If  ⊆  ′, then Sh(C,  ′) ⊆ Sh(C,  ). Indeed, we need to check
less conditions to see that a presheaf F is a sheaf with respect to  than
with respect to  ′, because “ ′ has more open covers”. Hence the order-
reversing part of the statement.

It remains to show injectivity of  ↦→ Sh(C,  ), for which it su�ces
to show that  = �Sh(C, ) . The inclusion  ⊆ �Sh(C, ) holds because the
right hand side is the �nest topology on which all presheaves which are
sheaves with respect to are sheaves. To show the other inclusion, one can
characterize covering sieves in terms of the shea��cation functor. Since
we have not discussed shea��cation in these notes, we refer to [Sta21, Tag
00ZP] for the details. �

This correspondence between topologies and categories of sheaves sug-
gests that we can producte a canonical topology on any categoryC starting
from a canonical collection of presheaves. This leads to the following:

De�nition 55 (Canonical topology). LetC be a category. The canonical to-
pology �2 on C is the �nest topology on which all representable presheaves
are sheaves. A topology � on C is called subcanonical if � ⊆ �2 .

https://stacks.math.columbia.edu/tag/00ZP
https://stacks.math.columbia.edu/tag/00ZP
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Therefore a topology � on C is subcanonical if and only if all repres-
entable presheaves are sheaves. This is the case with most topologies that
one encounters in practice. Non subcanonical topologies include the dis-
crete topology in non trivial categories or Voevodsky’s ℎ-toplogy on the
category of schemes over a base scheme [Sta21, Tag 0EV1]. See also [HJ14].
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