
RIEMANN-ROCH THEOREM FOR SURFACES.

1 Arithmetic genus and irregularity of a surface.
Let k = k̄ be a field, R = k[T0, . . . , Tn] and Pn = Proj(R). Let X ⊆ Pn be a closed
subset and let R(X) = R/I(X) be its homogeneous coordinate ring, which is a
finitely generated graded R-module.
Fact (cf. Thm. I.7.5). There is a unique polynomial PX(T ) ∈ Q[T ] such that

PX(d) = dimk R(X)d

for all big enough d. We call it the Hilbert polynomial of X.

Example. Let us first compute the Hilbert polynomial of projective space. Some
combinatoric argument shows that

PPn(T ) =
(
n+ T

T

)
∈ Q[T ]

Let us now compute the Hilbert polynomial of a degree d hypersurface X ⊆ Pn,
defined as the zero locus of some homogeneous polynomial f ∈ Rd. We have a short
exact sequence 0 → R(−d) → R → R/(f) → 0 of graded R-modules. Looking at
the degree T part, we have a short exact sequence of k-vector spaces. By additivity
of the dimension (vector spaces ⇒ sequence splits) we obtain

PX(T ) =
(
n+ T

T

)
−
(
n+ T − d
T − d

)
∈ Q[T ]

Definition. Let X be a variety of dimension r in Pn and PX ∈ Q[T ] be its Hilbert
polynomial. We define the arithmetic genus of X as

pa(X) = (−1)r(PX(0)− 1)

�Note that the Hilbert polynomial depends on the projective embedding of X.
For example if X is a degree d hypersurface in Pn, then (n − 1)! times the leading
coefficient is d. But d depends on the embedding, e.g. P1 can be embedded in P2 as
a linear subspace or as a conic. One could think that the arithmetic genus depends
on the embedding, as the Hilbert polynomial does. But this is not the case, as the
following formula shows
Fact (cf. Exercise III.5.2). The Hilbert polynomial can also be characterized by

PX(d) = χ(OX(d))

where recall that χ(F ) = ∑
i(−1)ihi(F ) and hi(F ) = dimk H

i(X,F ).

In particular, we may write the arithmetic genus of our X as

pa(X) = (−1)r(χ(OX)− 1)
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This shows that the arithmetic genus is independent of the projective embedding
of X and also allows us to generalize this definition to any projective scheme of
dimension r over a field k.

Suppose first that X = C is a smooth projective curve. Then the previous
formula reads

pa(C) = −(h0(OC)− h1(OC)− 1) = h1(OC)
By Serre duality, H1(C,OC) is dual to H0(C, ωC) and in particular we have

pa(C) = h1(OC) = h0(ωC) = pg(C)

Suppose now that X = S is a smooth projective surface. Then the formula reads

pa(S) = −(h0(OS)− h1(OS) + h2(OS)− 1) = h2(OS)− h1(OS)

Again by Serre duality we get

pa(S) = h0(ωS)− h1(OS) = pg(S)− h1(OS) 6 pg(S)

This motivates the following
Definition. Let S be a smooth projective surface over some field k. Its irregularity
is defined as

q(S) = pg(S)− pa(S) = h1(OS) = dimk H
1(S,OS)

Proposition. Irregularity, arithmetic genus and geometric genus are birational in-
variants of smooth projective surfaces.

Proof:
We know that the geometric genus is a birational invariant (cf. Thm.

II.8.19). It suffices to show that the arithmetic genus is also a birational
invariant.

Recall from João’s talk that we can factor a birational equivalence into a
finite sequence of blow ups at certain points (cf. Thm. V.5.5). So it suffices
to show that the arithmetic genus is invariant under blowing up a point. But
in fact we have a much stronger statement:

H i(S,OS) ∼= H i(S̃,OS̃)

for all i > 0 (cf. Prop. V.3.4).

Example. Let S ⊆ P3 be a smooth projective surface over k = k̄. Say S = V (f)
with deg(f) = d. From the short exact sequence 0 → O(−d) → O → i∗OS →
0, the corresponding long exact sequence · · · → H1(P3,O) → H1(P3, i∗OS) →
H2(P3,O(−d)) → H2(P3,O) → · · · and the usual cohomology vanishing on P3 (cf.
Thm. III.5.1) we deduce that H1(P3, i∗OS) = 0. But closed immersions are affine,
so by Exercise III.8.2 we have

H1(S,OS) ∼= H1(P3, i∗OS) = 0

and therefore q(S) = 0. Therefore surfaces in P3 are "regular", meaning that they
have zero irregularity.
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2 (Recall) Divisors and linear systems.

2.1 Divisors and line bundles.
Let now X be a smooth projective variety over k = k̄ (for convenience/simplicity).
Definition. A Weil divisor is a formal Z-linear combination of codimension 1 sub-
varieties Y ⊆ X. A divisor whose coefficients are all non-negative is called effective.
Thanks to DVR’s we can associate to every non-zero rational function f ∈ K(X)×
its divisor (f) of zeros and poles. Such a divisor is called principal, and two divisors
are said to be linearly equivalent if their difference is principal.

Definition. A Cartier divisor is a global section of the sheaf K ×
X /O×X . A divisor

which is a global section of the subsheaf K ×
X ∩OX/O

×
X is called effective. A divisor

which is in the image of the natural map K ×
X → K ×

X /O×X is called principal. Two
divisors are said to be linearly equivalent if their difference is principal.

A Cartier divisor can be thought of as some vanishing/pole data on our variety:
it can be represented by an open cover Ui together with some rational functions
fi ∈ K ×

X such that fif
−1
j ∈ O×X(Ui ∩ Uj) is a unit, that is, such that fi and fj have

the same zero/pole behavior on Ui ∩Uj. With this description, a divisor is effective
if fi ∈ OX(Ui) is regular on Ui and principal if it can be represented by the trivial
open cover and a unique rational function. And the sum of divisors corresponds to
multiplication of rational functions.

These two notions are equivalent in our situation: with the DVR’s we go from
Cartier divisors to Weil divisors (same zero/pole behavior on intersections implies
that this map is well-defined) and since X is regular every Weil divisor is locally
principal, giving thus a Cartier divisor (cf. Prop. II.6.2 and Prop. II.6.11). And the
notions of effective and principal divisor are preserved by this correspondence, so we
may safely talk about divisors on X and use one description or the other depending
on the situation.

We denote the group of divisors on X by Div(X), and the group of divisors on
X modulo linear equivalence by Cl(X).
Definition. An invertible sheaf or line bundle on X is an OX-module which is
locally isomorphic to the structure sheaf OX (the name line bundle is justified by
the correspondence with geometric line bundles as established in Exercise II.5.18).

Line bundles come by definition with some trivializing open cover Ui and iso-
morphisms ϕi : OUi

∼=−→ LUi
. Consider the following commutative diagram:

OUi∩Uj
LUi∩Uj

OUi∩Uj
LUi∩Uj

∼=

ϕi

ϕ−1
j

The isomorphisms OUi∩Uj
→ OUi∩Uj

are given by multiplication with some in-
vertible elements fij ∈ O×X(Ui ∩ Uj). These are the transition functions.
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This third notion is again equivalent to the two previous ones in our situation.
There is an obvious relation between Cartier divisors and line bundles: if we have
a line bundle, the transition functions f0i from some fixed U0 to each Ui give a
Cartier divisor (every two non-empty open sets intersect), and if we have a Cartier
divisor we can get an obvious line bundle by taking the OX-module locally generated
by the f−1

i (taking the inverse rational function here makes these two constructions
mutually inverse). We denote the line bundle associated to the divisor D by OX(D).
For an open subset U of X we have

f ∈ H0(U,OX(D))⇔ D|U + (f)|U is an effective divisor on U .

So the sections of OX(D) are rational functions with zeros forced by the poles of
D and with poles allowed by the zeros of D.

�Note that the line bundle associated to a divisor is a subsheaf of the sheaf of
KX . This is not the case for all invertible sheaves, but for integral schemes such as
X we have at least that every invertible sheaf is isomorphic to a subsheaf of KX .
Remark. The (Weil) divisor corresponding to a line bundle L as above plays an
important role in intersection theory. It is called the first Chern class of the line
bundle, denoted by c1(L ). There are higher codimensional analogues of the first
Chern class for vector bundles (locally free sheaves) of higher rank. They appear for
example in the Hirzebruch Riemann Roch theorem, a generalization of the Riemann
Roch theorems for curves and surfaces.

Example. Let X = P1 and let O(1) be Serre’s twisting sheaf. Let Ω0 = {[t0 : t1] ∈
P1 | t0 6= 0} ∼= Spec(k[T1/T0]) = A1 and Ω1 = Spec(k[T0/T1]) be the usual open
cover of P1.

Over Ω0 we have sections such as T0, T1, T
2
1 /T0, T

3
1 /T

2
0 , . . . Note that these aren’t

rational functions, so our line bundle is not the line bundle associated to any divisor.
But sinceX is integral, the equivalence class of O(1) contains line bundles associated
to divisors, and we may use the procedure described above to find one.

Since T0 is a invertible over Ω0 we have an isomorphism O|Ω0

∼=−→ O(1)|Ω0 given by
multiplication with T0. Similarly, over Ω1 we have an isomorphism O|Ω1

∼=−→ O(1)|Ω1

whose inverse is given by multiplication with T−1
1 . If we fix Ω0 as our favorite

open set in the cover, we have transition functions 1 (from Ω0 to Ω0) and T0/T1
(from Ω0 to Ω1). Hence, the corresponding Cartier divisor is given by the data
{(Ω0, 1), (Ω1, T0/T1)} and the corresponding Weil divisor has all coefficients equal
to 0 (the valuation of 1 in any of the local rings) except at most the coefficient of
the point [0 : 1] ∈ P1, which is the only point not contained in the open Ω0. We
compute its coefficient as the valuation of the element T = T0/T1 in the local ring
of A1 = k[T ] at the origin T = 0, that is, the valuation of T in k[T ](T ), which is 1.
Therefore we obtain the Weil divisor [0 : 1] =: H ∈ Div(X).

Now we may go backwards and consider the corresponding line bundle O(H),
which by definition has O(H)|Ω0 = O|Ω0 and O(H)|Ω1 = (T1/T0)O|Ω1 . Over
Ω0, the isomorphism of k[T1/T0]-modules 〈T0, T1, T

2
1 /T0, T

3
1 /T

2
0 , . . .〉 → k[T1/T0]

given by multiplication with T−1
0 induces an isomorphism of sheaves of modules

O(1)|Ω0

∼=−→ O(H)|Ω0 (via the equivalence of categories of Corollary II.5.5). Simi-
larly, multiplication by T−1

0 gives an isomorphism O(1)|Ω1

∼=−→ O(H)|Ω1 . Hence the
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map given (also on global sections) by multiplication with T−1
0 is an isomoprhism

O(1) ∼= O(H), showing that they are the same element in Pic(P1).

2.2 Line bundles and maps to projective space.
Let X be a smooth projective variety over k = k̄ as before (again, for simplicity).
We saw in the previous section that Weil divisors, Cartier divisors and line bundles
are all the same in this case.
Proposition (cf. Thm. II.7.1). Maps ϕ : X → Pn correspond bijectively to the
data of a line bundle L on X and n + 1 global sections s0, . . . , sn ∈ H0(X,L )
which generate L , up to isomorphism of line bundles which maps one tuple of
global sections into the other.

Proof:
Suppose we are given a map ϕ : X → Pn. On Pn we have the line bundle

O(1), which is generated by the global sections T0, . . . , Tn. Then ϕ∗O(1) is a
line bundle on X (local triviality of O(1) and inverse image functor commuting
with open restrictions implies that locally we are tensoring with the base ring,
so nothing happens) and the global sections ϕ∗(Ti) generate ϕ∗O(1) (since
Ti generate O(1), we get a surjective morphism O⊕n+1 � O(1), and since
the inverse image functor is exact and tensor product is right exact we get a
surjective morphism ϕ−1O⊕n+1⊗ϕ−1OOX = (ϕ−1O⊗ϕ−1OOX)⊕n+1 = O⊕n+1

X �
ϕ∗O(1)). Note how this direction is easier to think of with the more general
machinery of invertible sheaves than with actual geometry and divisors.

Conversely, if we are given a line bundle L generated by global sections
s0, . . . , sn, then there is a very explicit and geometric way to define a map
ϕ : X → Pn. Let x ∈ X be a closed point. Since the sections si generate L , at
least one of them is not in the maximal ideal of the stalk Lx

∼= OX,x, i.e. there
is some i ∈ {0, . . . , n} such that si(x) 6= 0 in the residue field k. Then we can
map x to the (closed) point [s0(x)/si(x) : . . . : sn(x)/si(x)] ∈ Pn. If sj(x) was
also not zero, the corresponding coordinates are obtained from the previous
ones by multiplication with si(x)/sj(x) ∈ k×, hence represent the same point
of projective space. Since the subsets on which a section si is not zero in the
residue field are open, cover X and on the intersections the previous formula
agrees, we get a well defined map ϕ : X → Pn.

This result can be restated in terms of representable functors and in fact one can
take this proposition as the definition of Pn (cf. Stacks Project Tag 01ND).

Note that the (effective) divisors of zeros of the global sections si (defined by
gluing the divisors of regular functions that they locally represent) correspond to
hyperplane sections of ϕ(X). Indeed, if Hi denotes the hyperplane ti = 0 in Pn and
x ∈ X is a closed point, then si(x) = 0 if and only if ϕ(x) ∈ Hi. Moreover, we
have a bijection between effective divisors linearly equivalent to these hyperplane
sections and non-zero global sections H0(X,L ) up to scalar (cf. Prop. II.7.7). This
motivates the following
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Definition. A complete linear system on X is the set of effective divisors linearly
equivalent to some given divisor D, denoted |D|. The previous bijection shows that
|D| is in bijection with the closed points of the projective space over the (finite
dimensional) k-vector space H0(X,L ), with L ∼= O(D).

A linear system d on X corresponds to a linear subspace of the projective
space |D|, which in turn corresponds to a k-vector subspace of global sections
V ⊆ H0(X,L ).

A base point of the linear system is a point x ∈ X which lies in the support of all
divisors in the linear system (the support of a divisor being the union of its prime
divisors).

Hence, a base point of the linear system corresponding to V is a point x ∈ X
such that s(x) = 0 in k for all s ∈ V . In particular we can reformulate the previous
proposition as follows: a map ϕ : X → Pn corresponds to a base point free linear
system on X and a set s0, . . . , sn ∈ V of generators of the corresponding vector
space. If we omit the generators, we understand that we are taking a basis of V .
The maps induced by two bases differ only by an automorphism of Pn, so there is
no much ambiguity. If our linear system has base points, we would get at most a
rational map X 99K Pn defined on the open set U ⊆ X (possibly empty) on which
a basis of V has no common zeros.
Definition. If d gives an embedding into projective space Pn, we say that the
invertible sheaf L is very ample (relative to Spec(k), as everything else we have
said so far).

Note again that in this case any (effective) divisor D ∈ d corresponds to a
hyperplane section of X sitting inside Pn. This is a more interesting case, since
the embedding allows us to study the geometry of X as a subvariety (maybe only
quasi-projective) of projective space.

A theorem by Serre (Thm. II.5.17) asserts that for any F ∈ Coh(X) there is
some n ∈ N such that F (m) can be generated by finitely many global sections for
all m > n. This property turns out to be the right definition of ample invertible
sheaf, since it characterizes (over nice schemes like our X) the invertible sheaves
L ∈ Pic(X) such that L m is very ample (relative to Spec(k)). For simplicity we
state the definition directly in this nice case:
Definition. A divisor D on X is ample if some positive multiple mD with m > 0
is a hyperplane section in some projective embedding X ↪→ Pn.

Note that the existence of an ample divisor on a complete variety X ensures
projectivity, because an immersion of a proper scheme is automatically a closed
immersion. So ampleness is indeed an interesting notion. It has also some analogues
in higher codimension, but the case of divisors is especially nice, because we have
three different approaches that lead to the same notion of ampleness (over nice
schemes like our X), namely:

• Geometric approach (our definition): some positive multiple of our divisor is
a hyperplane section in some projective space.
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• Cohomological approach: tensoring with high enough multiples of the associ-
ated invertible sheaf kills cohomology groups of coherent sheaves (cf. Thm.
III.5.2).

• Numerical approach: the divisor and its self intersections are numerically pos-
itive (Nakai Criterion).

Back to linear systems: from our base point free linear system d we get a mor-
phism ϕ : X → Pn. When is ϕ a closed immersion?
Fact (cf. Prop. II.7.3 and Remark II.7.8.2). The map ϕ : X → Pn induced by the
linear system d is a closed immersion if and only if d separates points and tangent
vectors.

Separating points means that for any two different (closed) points in X, there is
some D ∈ d passing through one of them but not through the other. This ensures
injectivity (and homeomorphism onto the image if X is complete): recall that the
elements in our linear system corresponded to hyperplane sections of the image, so
we are asking that two different points in X go to points of projective space such
that there is a hyperplane passing through one but not through the other (hence
different points).

Separating tangent vectors means that for any (closed) point x ∈ X and any
non-zero tangent vector t ∈ TxX, there is some D ∈ d passing through x but in
a direction orthogonal to t, that is, such that t /∈ TxD. More explicitly, if f is a
local equation for D around x (hence fx ∈ mx), we want t(f̄x) 6= 0, where f̄x is
the reduction modulo m2

x. If the map induced by ϕ on tangent spaces at x is not
injective and t is a nontrivial element of the kernel, this this doesn’t happen. So this
condition implies injectivity on tangent spaces. And this, after some local algebra,
implies surjectivity on the stalks.
Example. Consider again X = P1 and the line bundle O(2) ∈ Pic(P1). Take the
global sections T 2

0 , T0T1 and T 2
1 . They generate O(2), so we get a map

ϕ : P1 −→ P2

[t0 : t1] 7−→ [t20 : t0t1 : t21]

Since the previous sections generate O(2), they never vanish simultaneously on P1.
Hence the image of a point is never [0 : 0 : 0].

The linear system that we are dealing with corresponds to the wholeH0(P1,O(2)),
and we may denote it by |O(2)|. The (effective) divisors in this linear system the
are sums of two points of P1.

Since ϕ is just the inclusion of a plane conic in P2 (draw picture for t0 6= 0),
we know it is a closed embedding. But let us check that ϕ satisfies the conditions
to be a closed embedding. |O(2)| separates points, because if P 6= Q are different
points in P1 then 2P ∈ |O(2)| separates them. |O(2)| separates tangent vectors,
because if P ∈ P1 is a point, we may take any other point Q ∈ P1 \ P and then
D = P +Q ∈ |O(2)| vanishes at P but only with multiplicity 1, which implies that
TPD = 0. Hence ϕ is a closed immersion.
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3 The case of curves.
Let X = C be a smooth projective curve over k = k̄. Recall that a divisor on C is
just a Z-linear combination of (closed) points in our curve and in particular divisors
on curves have a well defined degree, equal to the sum of the coefficients. This
doesn’t work in higher dimension (we can say that a reduced closed point has degree
1 without ambiguity, but not anymore for curves or higher dimensional varieties).
Recall also that in this case the canonical sheaf ωC is just the sheaf of relative
differentials ΩC/k and that Serre duality implies pa(C) = pg(C) = h1(OC) =: g.
Recall finally
Theorem (Riemann-Roch for curves). Let K ∈ Div(C) be the canonical divisor
corresponding to ωC and let D ∈ Div(C) be any other divisor on C. Then

h0(O(D))− h0(O(K −D)) = deg(D) + 1− g

We will use this theorem and the previous discussion on divisors to prove the
following
Proposition. A divisor D ∈ Div(C) is ample if and only if deg(D) > 0.

Proof:
Lemma. |D| base point free ⇔ dim |D − P | = dim |D| − 1 for all P ∈ C.

Proof:
Consider the short exact sequence

0→ O(D − P )→ O(D)→ κ(P )→ 0

where κ(P ) denotes here the skyscraper sheaf (check the stalks to see
exactness). We take global sections to get an exact sequence

0→ H0(C,O(D − P ))→ H0(C,O(D))→ k

If the last map is zero, then dim |D − P | = dim |D|. If not, then it is
surjective, the sequence (of finite dimensional k-vector spaces) splits and
we get dim |D − P | = dim |D| − 1. Hence, it suffices to show that the
map

ϕ : |D − P | → |D|
E 7→ E + P

which is linear and injective (as it is induced by multiplication with some
non-zero global section of O(P )), is not surjective. But surjectivity of
this map is equivalent to P being a base point of |D|, so we deduce the
equivalence that we wanted.

Lemma. D very ample ⇔ dim |D − P −Q| = dim |D| − 2 for all P,Q ∈ C.
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Proof:
We may assume that |D| is base point free, as this is a necessary

condition for both sides of the equivalence (on the right side, we saw in
the proof of the previous lemma that at each step the dimension reduces
at most by 1, so in order for it to reduce by 2 when removing two points
it must reduce by 1 when removing the first one, so |D| must be base
point free).

So assume |D| base point free and consider the corresponding map
ψ : C → Pr. We have to check that ψ separates points and tangent
vectors.

Separating points means that for all pairs of distinct points P,Q ∈ C
we have that Q is not a base point of |D − P |. By the previous lemma,
this is equivalent to dim |D − P −Q| = dim |D − P | − 1, but since |D|
is base point free we also have dim |D − P | = dim |D| − 1.

Separating tangent vectors means P is not a base point of |D − P |
for any P ∈ C (same argument as above). Hence, again by the previous
lemma, this is equivalent to the condition on the RHS of the equivalence.

Lemma. If degD > 2g, then |D| has no base points. Moreover, if strict
inequality holds, then D is very ample.

Proof:
By RR, the degree of the canonical divisor K corresponding to the

canonical invertible sheaf is 2g − 2. So if degD > 2g − 2, then K − D
has negative degree and thus O(K −D) has no global sections.

In our case, degD > degD − P = degD − 1 > 2g − 1 > 2g − 2,
so we have h0(O(K − D)) = h0(O(K − D + P )) = 0. From RR we
deduce now that dim |D| = h0(O(D))−1 = degD−g and similarly that
dim |D − P | = deg(D−P )−g = degD−1−g. In particular we see that
dim |D − P | = deg |D|− 1, so by the first lemma above |D| is base point
free. And in case of strict inequality, we also get deg(D−P−Q) > 2g−2.
As before, this implies that dim |D − P −Q| = dim |D| − 2, so by the
second lemma above D is very ample.

Finally we can aim at our original goal. Suppose that D is an ample divisor
on our curve C. Then there is some integer n > 0 such that nD is very ample,
that is, nD is linearly equivalent to a hyperplane section in some projective
embedding of C. But this implies that deg nD > 0, hence degD > 0.

Suppose conversely that degD > 0. Then we may find some big enough
integer n > 0 such that deg nD > 2g. So by the third lemma above nD is very
ample, and therefore D is ample.
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4 The case of surfaces.
Let X = S be a smooth projective surface over k = k̄. In this case, a divisor on
S is a Z-linear combination of curves (not necessarily smooth) contained in S. To
simplify the language, we will use the term curve now for any non-zero effective
divisor on S. Hence a curve may have several irreducible components and a non
reduced structure.

4.1 (Recall) The intersection pairing.
Recall that we had our (unique) intersection pairing Div(X) × Div(X) → Z with
the following properties:

1. If C and D are non-singular and they meet transversally, then C.D is the
number of points of C ∩D.

2. Symmetry: C.D = D.C.

3. Additivity: (C1 + C2).D = C1.D + C2.D.

4. Invariant under linear equivalence: if C1 ∼ C2, then C1.D = C2.D.

Recall also that if C is a non-singular irreducible curve and D meets C transver-
sally, then the number of intersection points is equal to the degree of the restriction
of O(D) to C:

#(C ∩D) = degC(O(D)⊗ OC)

And if C and D are curves in S without any common component, then we may
compute its intersection number with some algebra:

C.D =
∑

P∈C∩D

multP (C ∩D)

where multP (C ∩D) is the intersection multiplicity of C and D at P , defined as the
dimension of OP/(f, g) over k, where f (resp. g) is a local equation for C (resp. for
D) around P .

An interesting case is the self intersection of a curve C.C = C2. Here all com-
ponents are in common, so we cannot sum the intersection multiplicities at each
intersection point. To deal with this case we must follow the existence proof and we
see that the expression

C2 = degC O(C)⊗ OC

still makes sense. But the thing on the RHS is precisely the normal sheaf of C in
S. Indeed, the ideal sheaf of C in S is O(−C), so by tensoring with I = O(−C)
in 0→ I → OS → OC → 0 we get I /I 2 ∼= O(−C)⊗OC . On the other hand, the
normal sheaf of C in S is defined as its dual of (I /I 2)∨ = H om(I /I 2,OC). So
we have what we wanted:

C2 = degC NC/S
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Example (cf. Prop. V.3.2). Let us study as an example the intersection theory on
the blow-up π : S̃ → S of our surface at a point x ∈ S. Denote by E the exceptional
divisor.

First note that E2 = −1, because the normal sheaf of E in S̃ is just the tauto-
logical line bundle on P1 (draw a picture).

Now we claim that Pic(S̃) = Pic(S)⊕ Z, where the summand Z is generated by
E and the inclusion Pic(S) → Pic(S̃) is given by π∗. For this, consider the exact
sequence (cf. Prop. II.6.5)

Z→ Pic(S̃)→ Pic(S)→ 0

which on the left send 1 7→ E. For any n 6= 0, n 7→ nE and nE 6= 0 in Pic(S̃),
because (nE)2 = −n2 6= 0. So the map on the left is injective and we have a short
exact sequence

0→ Z→ Pic(S̃)→ Pic(S)→ 0
We can find a section of the map on the right by pulling back line bundles with π∗,
so the sequence splits and we get our claim.

Next, if C is any curve in S, then

(π∗C).E = 0

The reason is that we may find a curve linearly equivalent to C and not passing
through x to compute the intersection number, because in the proof of Lemma
V.1.2 we had by Bertini a whole dense open subset of choices of such divisors. So
we may assume π∗C is disjoint with E, hence their intersection number is 0.

The same argument shows that to compute the intersection (π∗C).(π∗D) for
C,D ∈ Pic(S) we may assume that C,D ∈ Pic(S \ {x}), hence π∗ (which restricts
to an isomorphism there) does not affect the outcome and we get

(π∗C).(π∗D) = C.D

Finally, again by assuming that C does not go through x, we get that if C ∈
Pic(S) and D ∈ Pic(S̃), then

(π∗C).D = C.(π∗D)

where π∗ : Pic(S̃)→ Pic(S) denotes the projection.

4.2 The adjunction formula.
In general, if X is a smooth projective variety of dimension n and Y is a smooth
subvariety of codimension 1, we can express the canonical sheaf of Y in terms of the
canonical sheaf of X as follows.

Start with the short exact sequence (Thm. II.8.17)

0→ TY → TX → NY/X → 0

or its less geometric dual

0→ I /I 2 → ΩX ⊗ OY → ΩY → 0
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Now take determinants (Exercise II.5.16)

ωX ⊗ OY
∼= det(ΩX ⊗ OY ) = det(I /I 2)⊗ det(ΩY ) ∼= det(I /I 2)⊗ ωY

Tensor both sides by the inverse line bundle of det(I /I 2), which is det(NY/X) =
NY/X as we mentioned early, to obtain

ωY
∼= ωX ⊗ OY ⊗NY/X

Finally, identify as before NY/X with O(Y )⊗ OY to obtain our general adjunction
formula

ωY
∼= (ωX ⊗ OY )⊗ (O(Y )⊗ OY )

In our case, if C is a smooth curve of genus g on S and K is a canonical divisor
on S, we get

C.(C +K) = degC(ωS ⊗ O(C)⊗ OC) = degC(KC) = 2g − 2

Note that with this formula we can easily compute the genus of a curve in a
surface, for example the genus of a degree d curve in P2 would be

g = d(d− 3) + 2
2 = 1

2(d− 1)(d− 2)

(Another nice way to show this is using Hurwitz’s theorem. Hint: project to one
axis, reformulate ramification and use Bézout).
Example (cf. Prop. V.3.3). To illustrate this formula, let us compute the canonical
divisor of the blow-up π : S̃ → S of our surface at a point x ∈ S. From the previous
example and since the canonical sheaf on S̃ \ E is the same as the canonical sheaf
on S \ {x}, we may write

KS̃ = π∗K + nE

for some n ∈ Z. We only have to determine this n, and for this we use our adjunction
formula for E. We get E.(E + KS̃) = −1 + E.KS̃ = −2, hence E.KS̃ = −1. On
the other hand, by the previous example, E.KS̃ = E.(π∗K + nE) = E.nE = −n.
Therefore n = 1.

In particular we have K2
S̃

= K2 − 1.

4.3 Riemann-Roch theorem for surfaces.
Recall that the arithmetic genus of our surface S was given by pa = χ(O)−1. Recall
also our sloppy notation hi(F ) = hi(S,F ) for dimk H

i(S,F ). Sometimes we will
be even more sloppy and write hi(D) instead of hi(O(D)).
Theorem (Riemann-Roch). For any divisor D on S we have

h0(D)− h1(D) + h0(K −D) = 1
2D.(D −K) + 1 + pa
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Proof:
First, by Serre duality, we have h0(K −D) = h2(D). Hence, on the LHS

we have just χ(D).
Both RHS and LHS depend only on the linear equivalence class of D, so

by the usual Bertini trick we may assume that D = C − E is a difference of
smooth curves on S.

From the short exact sequences

0→ O(−E)→ O → OE → 0 and 0→ O(−C)→ O → OC → 0

we obtain by tensoring with O(C) the short exact sequences

0→ O(C − E)→ O(C)→ O(C)⊗ OE → 0

and
0→ O → O(C)→ O(C)⊗ OC → 0

Now we use additivity of the Euler characteristic in short exact sequences to
deduce

χ(D) = χ(C − E) = χ(O) + χ(O(C)⊗ OC)− χ(O(C)⊗ OE)

But χ(O) = 1 + pa and the other two terms can be computed with Riemann-
Roch for curves:

χ(O(C)⊗ OC) = C2 + 1− gC and χ(O(C)⊗ OE) = C.E + 1− gE

Using the adjunction formula we get as above we obtain

gC = 1
2C.(C +K) + 1 and gE = 1

2E.(E +K) + 1

And putting it all together we are done.

4.4 Nakai-Moishezon criterion.
In the case of curves we had that D is ample if an only if degD > 0. If we try to
do something similar here, we have a problem: how to define the degree of a divisor
on a surface? Such a divisor is a curve, and the degree of a curve is not intrinsic. It
depends on the embedding. So instead the condition that we look for is that D and
all its self intersections should be numerically positive.
Theorem (Nakai-Moishezon criterion for ampleness). A divisor D on S is ample if
and only if D2 > 0 and D.C > 0 for all irreducible curves C in S.

This characterization also works in higher dimensions:
Theorem. Let X be a complete scheme of finite type over k = k̄. Let D be a
(Cartier) divisor on X. Then D is ample if and only if Ds.Y > 0 for all integral
closed subschemes Y ⊆ X of dimension s and all s 6 dim(X).
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