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0 Recollections on vector bundles [Skip]

Let F be a topological space. A continuous map 7: F — X is called a fibre bundle
with typical fibre I if for every point x € X there is an open neighborhood U in X
and a homeomorphism ¢y : 7 1(U) — U x F over U, i.e.
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We call gy a (local) trivialization and (U, ¢y ) a bundle chart. We denote the fibre
77 (z) over z € X by E,. Fibre bundles (with typical fibre F') correspond to objects
in the category of arrows in Top, and a morphism of fibre bundles is precisely a
morphism between the corresponding arrows. More explicitly, a morphism from a
fibre bundle 7: £ — X to a fibre bundle n’: £’ — X' is a pair of continuous maps
f: E— E and g: X — X’ such that

E$>E’

ﬂl 0 Jﬂ,

XT>X’

Let G be a topological group acting continuously on the typical fibre F' on the
left. Moreover, let us assume that this action is faithful, so that we may identify
G with a subgroup of the group of self homeomorphisms of F'. A G-atlas for the
bundle 7: E'— X is a collection of charts (U,, ¢,) such that the compositions

as = 9500 1 (Ua nUs) x F = (Ua nUs) x F

are given by pag(x,e) = (x,0,5(x)(e)), where O,5: U, n Ug — G is a continuous
map called the transition map. We say that two G-atlases are equivalent if their
union is also a G-atlas, and we define a G-bundle to be a fibre bundle together with
an equivalence class of G-atlases. We call GG the structure group of the bundle.

Definition 1. Let K be R or C. An rank k vector bundle over K is a fibre bundle
with typical fibre K¥ and with structure group GL(K).

Lemma 2. Equivalently, a rank k& vector bundle over K is a fibre bundle with typical
fibre K* in which all fibres are equipped with a K-vector space structure such that
for every chart (U, ) the restriction to every fibre py|g,: E, — {z} x KF is a
K-linear homeomorphism.

Proof: Let (Uy, ¢a) and (Ug, @) be two bundle charts and let x € U, n U =:
U,p. Consider the composition

Cap: Uap x KF — Uy,p x KF

Since ¢a|g, and ¢g|g, are K-linear, so is pg|g, palp 1 K¥ — KF. So we can
assign to x an element 6,5(z) € GL,(K). We have to check that this defines a
continuous transition map 6,5: Usp — GLj(K).

Let e; € K* be the j™ standard basis vector in K* and let p;: K¥ — K be
the " coordinate projection. As in any other fibre bundle, the map

Uap ¥ KF 228, af X Kr P, gk

is continuous. In particular, if we fix e; € K* we get a continuous map
which sends (z,¢e;) — (x,0(x)(e;)). Composing further with the i** coordi-
nate projection pr;: K¥ — K we get a continuous map which sends (z,¢;) —
pr;(0(z)(ej)) =: a;j(x). But a;;(x) € Kis then ij-entry of the matrix represent-
ing 6(x) with respect to the standard basis, and since a;;(x) varies continuously
on = we get that the map 0: U, — GL;(K) is indeed continuous. O
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A morphism of vector bundles is then a bundle morphism which is linear on each
fibre. In particular we can define the category of vector bundles over X, denoted by
Vec(X). If confusion is possible, we will also include the base field in the notation,
and write Vecg (X ) instead.

Lemma 3. Let m1: By — X and my: E5 — X be two vector bundles over X. Let
f: E; — Ej be a continuous map over X which sends each fibre 77! (x) to 73 ()
linearly. Then f is a vector bundle isomorphism if and only if it is an isomorphism
of vector spaces on each fibre.

Proof: If f is a vector bundle isomorphism, then the map on each fibre is a
bijective linear morphism, hence an isomorphism of vector spaces.

Conversely, if f is an isomorphism of vector spaces on each fibre, then
it is a continuous bijection. So we have to check whether its inverse f=1
is continuous or not. Continuity is a local property, so it suffices to show
that f~'|y = (f|]y)™' is continuous, where U is an open subset of X over
which both vector bundles m; and w9 are trivial. Since trivializations are
homeomorphisms, the continuity of f~!|; is equivalent to the continuity of
pruofHoopsy: UxKE - U x K

-1
) Y2 )

@2,UT [®) L.DLU

The inverse of this composition is given by (z,v) — (z,0(x)(v)) where 0(x) €
GLk(K) is a linear morphism (composition of three linear morphisms by hy-
pothesis) which varies continuously on x because f|y is continuous. So this
composition is given by (z,v) — (z,0(z)"*(v)). The inverse of a matrix can
be computed algebraically by a formula that depends continuously on the co-
efficients of the matrix. Hence, this composition is also continuous, and this
finishes the proof. O

As we have seen before, a vector bundle 7: ' — X has a collection of transition
functions 0,5: Uss — GLi(K) which are continuous. They satisfy three straightfor-
ward properties:

1. Oaa(z) = idgr € GLE(K) for all z € U,.
2. ega($> = ((%B(x))_l € GLk(K) for all z € Uaﬁ.
3. Os,(x) 0 0ap(x) = 0oy (x) € GLE(K) for all x € Uyp,,.

Lemma 4. Let X be a topological space and let Ugyne be an open cover of X.
As before, denote U, = U, n Us and suppose we are given continuous functions
0o Usp — GLE(K) satisfying the three properties above. Then there is an rank
k K-vector bundle 7: F — X which has these functions as transition functions.
Moreover, m: E — X is uniquely determined up to isomorphism of vector bundles.



Proof: As a set, define
E=| |UaxK*)/ ~
where ~ is the equivalence relation defined on by
(x € Uy,v) ~ (' € Ug,v') <=  z=2a"and O,p(x)(v) =

The three properties above guarantee that ~ is an equivalence relation. For
every x € U, and v € K¥, the equivalence class [(z,v)] has a unique represen-
tative (z,vq) € U, X KF: there is at least one because x € U, and there is at
most one because 0,4 (x) = idgr. Therefore the obvious projection 7: £ — X
turns this into a vector bundle with trivializations o,: 7=1(U,) — U, x K*
given by [(z,v)] — (z,v4). If (z,v) € Uyp x KF, then ¢ 1 ((z,v)) = [(z,v)] =
[(x,04p(x)(v))], thus @s([(x,v)]) = (2, 04s(x)(v)) and therefore the transition
functions are indeed the given ,5: Uys — GL(K").

Let now 7’: E' — X be another vector bundle with bundle charts (U,, ¢.,)
and transition functions 0,5: U,s — GLg(K). Then define

ol [Uax K — E

(x € Uy,v) —> ¢ (z,0)

This is a continuous surjection and we have that (z,v) ~ (z,v’) if and only
if Gup(z)(v) = @slk © alz (v) = v/, hence (x,v) ~ (x,0') if and only if
f((z,v)) = f((x,v")). By the universal property of the quotient we get a
continuous bijection f: E — E’ over X, and by lemma [3| it must be a vector
bundle isomorphism. O

A (global) section of a vector bundle 7: F — X is a continuous map s: X — E

such that 7o s = idy, i.e.
E
SN
X X

We always have the zero section sq: X — E which sends each x € X to the zero
vector of the corresponding fibre E,. We denote by Ej the complement of the zero
section F\so(X).

Lemma 5. A rank k vector bundle 7: F — X is trivial if and only if it admits &
sections (o1, ...,0x) which are linearly independent at each point z € X.

If U is an open set of X, a local section of m over U is a section of the vector bundle
71 (U) — U. The sheaf of sections of a vector bundle determines the vector bundle
up to isomorphism. Moreover, there is a bijection between K-vector bundles over
X and locally free sheaves of finite type over the sheaf Ox of K-valued continuous
functions on X. If we replace continuous by smooth, holomorphic, algebraic... we
get a bijection with vector bundles in the corresponding category.

We can also pullback vector bundles (via the usual pullback in the category of
topological spaces) and define new vector bundles from old using certain construc-
tions, e.g. the product E x E' — X x X' of vector bundles. We won’t recall these
here.



1 The projective bundle formula

1.1 The Euler class of a vector bundle

In this talk we will work with complex vector bundles and singular cohomology with
integer coefficients (see lemma [8| for a justification). Our goal is to introduce Chern
classes (definition and study their basic properties (theorem . This theory
is rather formal, but there is a lot of geometry encoded inside Chern classes. This
geometric content is in fact concentrated in the first Chern classes of line bundles,
which in our case will be given by the Euler class. The rest of Chern classes of all
vector bundles are completely determined by their formal properties and the first
Chern classes of line bundles. For this reason we will also spend some time recalling
the Euler class and discussing some of its geometric content.

The analogous definition for real vector bundles, Stiefel-Whitney classes, works
the same way with [Fy coefficients. All the results in that case are analogous.

Remark 6. All the results are the same for complex vector bundles and singu-
lar cohomology with coefficients in an arbitrary ring R, with essentially the same
proofs. So we will change the coefficient ring when necessary without making further
comments about it. If no coefficients are specify, we are working with R = Z.

Let m: B — X be a rank k C-vector bundle and let Ey = FE\so(X), where
so: X — FE is the zero section.

Definition 7. A Thom class with R coefficients is a class u = u(FE) € H*(E, Ey; R)
such that the restriction of u to each fibre F = C¥ is a generator of H**(C*, C¥\{0}; R)
R.

We know from the previous talk that a vector bundle is R-orientable if and only if
a Thom class with R coefficients exists. Every vector bundle is Fy-orientable (every
family of orientations on the fibres is trivially coherent), but not every vector bundle
is Z-orientable. We say that a bundle is simply orientable if it is Z-orientable.

Lemma 8. Complex vector bundles have a canonical orientation. In particular,
complex manifolds are orientable, because their tangent bundles are.

Proof: We have to find a coherent family of orientations on the fibres. But this
is possible, because every finite dimensional C-vector space V' has a canonical
orientation as an R-vector space: for any basis vy,...,v, of V over C, the
(ordered) collection vy, ivy, . .., vk, iU is a basis of V over R, and its orientation
does not depend on the original basis over C because GLj(C) is path connected.

m

Recall from Domenico’s talk:

Theorem 9 (Leray-Hirsch). Let R be a ring. Let (F, F') 5 (E, E') 5 X be a fibre
bundle pair, i.e. £ — X is a fibre bundle with typical fibre F' and E’ € FE a subspace
such that the restriction of the bundle charts turns £/ — X into a fibre bundle with
typical fibre F” € F. Suppose that H'(F, F'; R) is a finitely generated free R-module.
Let ¢; € H*(E, E'; R) be a family of classes whose restrictions i*(c;) form a basis of
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H*(F, F'; R) over R in each fibre (F, F’). Then we have an isomorphism of graded
R-modules

H*(X; R) ®@p H*(F, F'; R) —> H*(E, E'; R)

r®i*(¢cj) — 7 (x) U ¢y

In particular, H*(E; R) is a free (graded) H*(X; R)-module with basis {c;}.

In the case of our vector bundle (E, E') = (E, Ey) — X, we have that HY(F, F") ~
H'(CF, CF\{0}) = H'(S?**) which is Z if | = 2k and 0 otherwise. Moreover, we know
that there exists a Thom class u € H%(E'7 Ey), so we can apply the Leray-Hirsch

theorem to deduce that
H'(X) =~ H**(E, Ey)

via z — 7*(z) U u for all [ € N. This is called the Thom isomorphism.

Note also that we can linearly contract the vector bundle E to the zero section
so(X) = X, so the fibre bundle projection induces isomorphisms in cohomology
7 : H*(X) = H*(E). The inverse of this isomorphism is precisely the pullback
along the zero section si: H*(E) = H*(X).

Definition 10. The Euler class e = e(E) € H?**(X) is the image of the Thom
class under the composition H*(E, E) Z, H*(E) 2 H?*(X), where j: (E,2) —
(E, Ey) is the natural inclusion.

Remark 11. Note that the Euler class of a vector bundle is a priori only defined
up to a sign, and this sign depends on the orientation of the vector bundle (i.e. on
the choice of the Thom class). But by lemma |8 every complex vector bundle has
a canonical orientation, so we have in fact a canonical choice of Thom and Euler
class, and these are what we call the Thom and Euler classes.

Consider the long exact sequence in cohomology of the pair (F, Ey). Using the
previous two isomorphisms we can replace H'(E, Ey) by H2*(X) and H'(E) by
H'(X) to obtain the Gysin sequence

RN Hl—l(EO) N Hl—?k‘(X) (—)ve HZ(X) ﬁ) Hl(EO) .

So vanishings on the cohomology of Ej, will yield isomorphisms between the
cohomology groups of the base X given by multiplication with the Euler class.

Lemma 12 (Functoriality of the Euler class). Let 7: E — X and n’: £/ — X' be
two rank k vector bundles with a vector bundle morphism (g, f): (E', X') — (E, X)
such that g(Ej) € Ey. Then we have e(E') = f*(e(E)) € H*(X").

Proof: We have a commutative square
F 25 E

-| |

X’LX

By functoriality we get a commutative diagram
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H**(E, Ey) —— H**(E) —— H*(X)

| Js I

H%(E/,E(/)) - H2k(E/) é H2k(X/>

*

So it suffices to check that the Thom class u = u(E) € H*(E, Ey) is sent to the
Thom class g*(u) € H**(E’, E}). The condition g(E})) S F, means in particular
that the map on the fibres is injective, so it is a C-linear isomorphism and hence
the canonical orientation is preserved. So for every fibres F’ = 7/~!(y) and
F =771(f(y)) we have a commutative diagram

(F, Fo) — (E, Ey)
oo
(F", F) — (E', Ep)
Applying cohomology we obtain
H*(E, Ey) —— H*(F, F)
g*l O l;
H*(F', Ey) —— H*(F', F)
and this shows that ¢*(u) also restricts to a generator on each fibre. O
Corollary 13. Isomorphic vector bundles over X have the same Euler class.

Proof: The map induced on each fibre is an isomorphism, and in particular
we can apply lemma [I12] with f = idy. O

Corollary 14. The Euler class of the pullback of a vector bundle 7: F — X along
f: X' — X is given by e(f*(E)) = f*(e(E)).

Proof: The map induced by the pullback ¢g: f*FE — E is the identity on each
fibre, so we can apply lemma n

Lemma 15 (Additivity of the Euler class). Let 7: F — X and 7’: E' — X' be two
vector bundles of ranks k and k' respectively. Then their product £ x £/ — X x X’
has Euler class e(E x E') = e(E) x e(E') e H* ™ (X x X").

Proof: We have a commutative diagram
E x FE'

FE mgxw'q £

|

|

|

1
v

XXX/ i
X/

7
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Note that (E x E')g = (Fo x E') u (E x Ef). We claim now that
u(E x E') = ¢*(u(E)) v ¢" (u(E')) = u(E) x u(E')

For this consider the following commutative diagram

-/

(F x F',(F x F")) (E x E',(E x E'))
quFxF’ lq/
e (R ~ (B, E)
(F’ FO) : (Ev EO)

Take now the Thom classes v = u(E) and v’ = u(E’). By definition, they
restrict to generators i*(u) and ¢*(u’) on the corresponding fibres. The cross
product of these generators is a generator i*(u) x i"*(u/) H***?* (F x F',(F x
F")o) by the relative Kiinneth formula (the fibres are nice Euclidean spaces).
But by definition i*(u) x "*(u') = (q|pxr)*i* () U (¢ |pxp)*1"*(u'), which by
the previous commutative diagram is the same as (i x')*¢* (u) U (i x@")*¢"* (u),
and this in turn is the same as (i x ')*(¢*(u) U ¢*(v')) = (i x 7')*(u x ) by
naturality of the cup product. This proves the claim.

To obtain the Euler class of F x E’ we need to pullback u x u’ along the zero
section X x X' — E'x E’. But the zero section is precisely sopx sop’: X x X' —
E x F', fitting into the commutative diagram

X x X'
P i 4
i
sopxsyp’ X’
i
|
.
50 E x E' )
/ K
1) B’

So using again naturality of the cup product and commutativity of the previous
diagram we obtain

* /%

(s0p % sop')*q" (u) U (sop x spp)*q* (') = p*sg(u) U p™sg (W) = e(E) x e(E)

Il

Corollary 16. Let 7: £ — X and n’: E/ — X be two vector bundles on X of
ranks k and k' respectively. Then e(E ® E') = e(E) u e(E'") € H*¥ (X).

Proof: The sum EFDFE’ — X is defined as the pullback of the product £ x E' —
X x X along the diagonal A: X — X x X. By lemma [12] lemma and
definition of the cross product we have

e(E@®FE)=A*(e(Ex E")) =A%e(E) xe(E")) =e(E)ue(E)



1.2 Geometric interpretation of the Euler class

Let X be an n-dimensional smooth orientable closed connected manifold and let
m: EF — X be a smooth rank k real vector bundle and let ¢ = so: X — FE be the
zero section. Up to homotopy we can replace E by the associated disk bundle and
Ey by the corresponding sphere bundle which is the boundary of the fibre of the disk
bundle over each point. So we can apply the Poincaré-Lefschetz duality theorem (see
[Bre97,, Corollary 9.3.])

(=) n[E]: H(E, Ey) = Hypii(E)
Lemma 17. The Thom class is the unique class u € H*(E, E;) such that
un [E] =i X]

Proof: See [Bre97, Lemma 11.5.] for a complete proof.

The idea is first to show that the restriction to any fibre cannot be zero. If
this was the case, one can use the bootstrap lemma (see |Bre97, Lemma 7.9.])
to show that u = 0 globally, which is not the case.

So the restriction is not zero. Suppose it was not +1 and let p be a
prime factor of this restriction. Then we can repeat the same argument with
coefficients in Z/pZ to obtain that u = 0 € H*(E, Ey; Z/pZ), which is again a
contradiction. O

So we have a nice geometric interpretation of the Thom class, namely, the coho-
mology class in H*(E, Ey) whose Poincaré dual is the manifold X embedded as the
zero section.

The Euler class was then defined as the pullback i*(u) € H*(X). Recall that the
intersection product of two homology classes [a] e [b] on a manifold is defined by
cupping their Poincaré duals.

Proposition 18. The Poincaré dual in X of the Euler class e = i*(u) € H*(X)
corresopnds to the self intersection of X in E under the isomorphism ..

Proof: Using the properties in [Bre97, Thm. VI.5.2.] and their relative versions
we have

ix[X]oiu[X]=(uvu)n[E]=un (un[E]) =unifX] =1i.(e n[X])
0

This gives a nice geometric interpretation of the Euler class. The homology cycle
that we are self intersecting is the image of the zero section. But any other section
s: X — F yields a homologous cycle, because both sections induce isomorphisms in
homology with the same inverse, namely m,. The intersection product of two cycles
corresponds geometrically to intersecting two representatives which are in general
position. So in our case, to compute the Euler class as in proposition we can
intersect two sections that meet transversally at each point. We can take one of
them to be the zero section and the other one to be any section transversal to the
zero section, which we will simply call a transversal section. Computing such an
intersection corresponds therefore to computing the zero locus of our section. Hence
we get the following:



Corollary 19. The Euler class e € H*(X) is the Poincaré dual of the zero locus of
a transversal section.

Proof: A more rigurous proof of this fact can be found in [BT82, Prop. 12.8.].
]

Remark 20. As we will see later, Chern classes are uniquely determined by their
formal properties and by the Euler classes of line bundles. Compare corollary
with [Har77, Prop. I1.7.7.] and [Har77, A.3.C1]. This provides a link between the
topological category and the algebraic category.

1.3 The cohomology ring of projective bundles

Let m: E — X be a rank k vector bundle over C. Define its projectivization P(E)
to be the quotient F,/C*. This has a natural structure of fibre bundle with typical
fibre P~ given by

p:P(E) — X
[v] — 7 (v)
To see this, let (U, py) be a chart for 7: E — X. Since C* acts on Ej fibrewise,
the action induces an action on 7=*(U). Since @y is C-linear on each fibre, it is a

C*-equivariant homeomorphism (with C*-equivariant inverse). Quotienting out by
the scalar action we get a homeomorphism

“HU) = U x PF-1
\ o) /
P pru

U

This construction is functorial on injective vector bundle morphisms. Indeed,
if f: By — FE, we obtain a P*! fibre bundle morphism P(f): P(E,) — P(E,),
because vector bundle morphisms are linear on the fibres, and P(f) is well defined
by injectivity.

The space P(F) in turn comes equipped with a tautological line bundle, namely

p

Ly — P(E)

where Lg = {(l,e) € P(F) x E | e € I} and the projection is given by (l,e) — L.
Let ap € H*(P(E)) be the Euler class associated to this line bundle. We will use
the Leray-Hirsch theorem to express the cohomology ring of P(E) in terms of the
cohomology ring of X and the Euler class ag.

Example 21. We may regard P" as the projectivization of the trivial vector bundle
C"*! — {«} over a point. Then L is the usual tautological line bundle on P" and
the Euler class o € H*(P") generates the cohomology ring:

H*(P") = Z[a]/(a""")

10



Indeed, in this case Ly ~ S***!, so we have H'(S***1) = 0 for all [ € {1,...,2n}, so
by the Gysin sequence multiplication with « yields isomorphisms

Z =~ H'(P") =~ H*(P") =~ --- =~ H*"(P")

For odd I we know by cellular cohomology that H'(P") = 0.
Consider now
P = lim P"
with the direct limit taken over the inclusions P* — P"*! given by the usual CW
structure, or in coordinates given by [(vi,...,v,)] — [(v1,...,v,,0)]. Since the
cohomology ring functor commutes with direct limits of topological spaces, we get

H*(P*) = lim Z[a]/(a™"") = Z[a]

n

where the restrictions to each skeleton ¥ : H*(P*) — H*(P") are the maps induced
by the inverse limit. Let ¢q: Lo, — P® be the tautological line bundle on P*. Since
i*Ly =~ ¢ Y(P") =~ L, is the tautological line bundle on P", we have i*(e(F)) =
e(ifF) = a by example . But a € H*(P®) is by definition the (only) element in
the inverse limit such that i*a = « for all n € N. Hence e(F) = a.

Remark 22. The generator « found in example is not the usual generator,
which is the Poincaré dual of the linear subspace [P""!] € Hy, »(P") given by
the usual CW complex. We can see this in two different ways. Algebraically, the
tautological bundle corresopnds to O(—1), and hence its first Chern class is given
by —H. Topologically, we will see in example |30 that e(TP") = (—=1)"(n + 1)a™.
We can compute the Euler characteristic of P" as the evaluation of the Euler class
e(TP") e H*"(P") at the ground class [P"] € Ho(P"), which is then

e(TP")([P"]) = (=1)"(n + Da([P"]) = e(P") = n + 1

We need therefore a[P"]) = (—1)". So v is (—1)" times the usual generator of the
cohomology ring of projective space.

Now for the general case:

Proposition 23 (Projective bundle formula). In the situation above, there is an
H*(X)-module isomorphism

(H*(X)[a])/(a") — H*(P(E))

given by ol — ok, i.e. fal — p*(B) U al;.

Proof: Consider p: P(E) — X as above, with typical fibre P¥~1. We have a
pullback square

¢ PPN =L Lg

| I

Pl P(E)

11



So by lemma [12] we have that i*(ap) = « is the Euler class of example [21]
But we have seen in example [21] that
H* (P = Z[a]/(a¥)
Hence each power o is a free generator of the corresponding cohomology of
the fibre HQZ(]P”“_l). And in the odd degrees we have zero cohomology groups.
We are thus in the hypothesis of the (absolute) Leray-Hirsch theorem for the
fibration ‘
P L P(E) S X

And we obtain therefore

~

H(X) @ HY (B*) 2 H* (P(E))

via B®i*(ay) = B®al — p*(B) U ak. By example [21] again, we have that
the left hand side is

H*(X) @ H(P™1) = H*(X) ® Z[a]/(a*) = (H*(X)[a])/(a")

2 Chern classes

2.1 Definition and first properties

Let 7: E — X be arank k complex vector bundle and let ap € H*(P(E)) be its Euler
class. From proposition[23|we know that H*(P(E)) is a free H*(X)-module with basis
1,ag,...,a% . The scalar multiplication on H*(P(E)) is given by 8-7 := p*(3) u~.
So writing ok, € H**(P(E)) as a linear combination of these basis elements (modulo
signs) we can find unique classes ¢; = ¢;(E) € H*(X) for i € N such that ¢y = 1,
¢; =0 for all i > k and

Z(—Dip*(cz') Uaj 't =0e H*(P(E))

Definition 24. The classes ¢;(E) € H*(X) are called the Chern classes of the
vector bundle 7: F — X. The total Chern class is defined as their sum

¢(E)=14c¢(FE)+c(E)+ -+ cx(FE)e H(X)

- The Stiefel-Whitney classes of a real vector bundle 7: E — X, denoted w;(E) €
H'(X,TFy), and the total Stiefel-Whitney class of the vector bundle, denoted w(FE) €
H*(X,Fy), are defined in the exact same way.

Theorem 25. The Chern classes ¢;(E) only depend on E up to isomorphism. More-
over, they satisfy the following three properties:

1. Functoriality: if f: Y — X is a continuous map, then
o(f*E) = [*(c(E))

12



2. Normalization: for any line bundle 7: L — X, we have

(L) =1+e(L)

3. Additivity: for every pair of complex vector bundles Ey, Fy € Vec(X) we have
C(El (—D Eg) = C(El) U C(EQ)

In other words, ¢;(Ey @ E) = Y, _; ai(E1) U ¢ (E2) € H*(X).

Proof: Let f: By = FE, be an isomorphism of vector spaces over X. By
functoriality of P(E) we get an isomorphism P(f): P(E,) = P(E,) of PF~!
fibre bundles over X with P(f)*(Ls) = L;, because f induces a vector bundle
morphism L; — P(f)*(Ly) which is an isomorphism on every fibre. Hence we
have P(f)*(ag) = a4, and so Zfzo(—l)ipg‘(ci(EQ)) U a5~ = 0 implies that

=0

k k
P(f)* (Z(—l)ipé‘(ci(@ Uay” ) Z )'pi(ci(E2)) vy~ =0

This shows that the Chern classes ¢;(E,) are also a solution to the defining
equation of the Chern classes ¢;(E7). By uniqueness of the solutions, we must
have ¢;(E71) = ¢;(E») for all i, so Chern classes are invariant under isomorphism
of vector bundles.

For the functoriality, consider the pullback square

Ey#E

w| k

YL>X

Since ¢ is an isomorphism on the fibres we get a commutative square

P(Ey) —2 P(E)

| &

y — 1 . x
and as before g induces an isomorphism Ly =~ P(g)*(Lg). Thus ay =
P(g)*(ag), so arguing as before we get from the equality

’ (Z(—l)ip*(ci(E U o ) = 2 (DB B)) v ay

= =0

To see that the normalization property also holds, note that P(L) = X and
L — P(L) is again L — X. So we have aj = e(L). The defining equation of
c1(L) is then
e(L) —p*(er(L)) =0

13



But p: P(L) = X — X is the identity, so the equation is just
e(L) = ar(L)

It remains to show additivity. Let m;: £fy — X and my: EFy — X be two
vector bundles of ranks k; and ks on X. We need to show that

G(BE\®E) = Y, a(Br) v cn(E)

l+m=t

for all i € N. Denote ¢: Ey® FEy — P(E;@ E») the quotient map and p: P(E;®
Ey) — X the projection. The total spaces E; and Ey are closed subsets in
E1®E,. Identify P(E,) with the subspace {[(e1,0)]} € P(E1@®E;) and similarly
for P(E,). Then E; = ¢ Y(P(E})) and Ey = ¢ (P(E,)), so by definition of
the quotient topology we have that P(E;) and P(FE3) are closed subspaces of
P(E; @ E5). Moreover, since Ey N Ey = 5¢0(X) € E; @ FEy, we have P(E;) n
P(F,) = @ inside P(E; @ E,). So these two closed subspaces are disjoint. If
we define open sets Uy = P(E; @ E»)\P(E,) and Uy = P(E) @ E»)\P(E,), we
get an open cover

P(El @EQ) = U1 U U2

The subspace P(E;) = {[(e1,e2)] € P(E; @ E3) | e = 0} is a deformation
retract of Uy = {[(e1,€2)] € P(E1 ® E») | e; # 0} via

([(er, e2)], 1) — [(e1, (1 = t)e)]

Denote by ji: Ey — E; @ E» the inclusion and let P(jy): P(E;) — P(E, @
E5) be the induced inclusion on projectivizations. Under the previous iden-
tification P(E,) = {[(e1,0)]} < P(E; @ E») we can also identify Ly, =
{([(e1,0)], (Ne1,0))} € Lg,@r,- Under this identification, Lg, is the restric-
tion of Lp g, to the subspace P(E;), so by lemma [12] we get that ap, =
P(j1)*(ag,@E,). This implies that the class

k1

n = ),(=1)'p*(a(E1) U o gp, € BM(P(E) @ Ey))

=0

restricts to 0 over the subspace P(E;). But because P(F;) is a deformation
retract of Us, the class y; must also restrict to 0 over Us. Similarly, the class

ko
Yo = D (=1)"p*(em(E2)) L a2 g, € H*2(P(E) @ Ey))
m=0

restricts to 0 over U;. Since U; and U, form an open cover of P(E; @ Es) the
cup product v, U v, € HX®M ) (P(E, @ E,) is zero. Since the cup product is
Z-bilinear we get

k1+ko
O=nun= ) (-1)p ( > a(B)u cm(E2)> U bR

i=0 l+m=i
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By uniqueness of the solutions as before we deduce finally that

G(E1®E) = Y a(Br) v cn(E)

l+m=1

]

Example 26. The trivial vector bundle X x C* — X, denoted C*, is the pullback
of the trivial vector bundle {#} x C*¥ — {+} along the unique map X — {+}. So its
Chern classes are the pullback of the Chern classes of the trivial vector bundle over
a point. Since a point has no cohomology on degree i > 0, we get

c(CH =1

Example 27. Let £ — X and £/ — X’ be two complex vector bundles. For all
1 € N we have

ci(Ex E') = Z a(E) x cpn(E')

l+m=1

To see this, write £ x E" as (p*E)® (p*E’), wherep: X x X' —» X and p': X x X' —
X' are the respective projections. Then by additivity we have

G(ExE)= > a@E)em®*E)
l+m=i
And by naturality this is equal to

Y, PHaENp*(en(EN) = Y, alE) x en(E)

l+m=i l+m=1i

2.2 Stability of Chern classes

An immediate consequence of example together with the additivity from theo-
rem [25]is that taking the direct sum of a vector bundle with a trivial vector bundle
does not affect its Chern classes. This easy observation turns out to be very useful
in many situations.

Example 28. The sphere S™ embedded in R™™! has a rank 1 normal vector bunlde
which is trivial, because taking the outward pointing unitary vector at each point
gives a nowhere vanishing section. We have

Tsn (‘D E ~ KnJrl
Hence w(T'S") = w(TS" ®R) = w(R"*") = 1 and in particular

for all 7 > 0.

Example 29. (See [MS74, Lemma 4.4.]) The real projective n-space P} is the
quotient of S™ by the antipodal map. The differential of this map sends the tan-
gent vector v € T,S5™ and the tangent vector —v € T_,S™ to the same tangent
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vector in TPR, so we can identify the tangent bundle TR with the set of pairs
{{(z,v),(—z,—v)} | € S™,v e T,;S"}. So an elmenet in Tj,P} yields a linear map

1
Lp) — Liy
r —> v

where L, is by definition the fibre of the tautological line bundle L — Py over
the point [x]. Moreover, any such linear morphism determines a unique elmenet
in 17, Pg, because if we started with the point —x € S™ we would only get the
same morphism by picking —v instead of v. This construction gives a canonical
isomorphism
TPy ~ Hom(L, E)

where E has the property that E@® L =~ R""'. The line bundle Hom(L, L) is trivial,
because the identity gives a non vanishing global section. Hence

TP ®R =~ Hom(L, F) @ Hom(L, L)

The canonical isomorphisms from linear algebra yield globally defined morphisms of
vector bundles (they glue because they are canonical) which are also isomorphisms
(because this can be checked on the fibres). Hence the last bundle is isomorphic to

Hom(L, E® L) =~ Hom(L,R"™) = L&
By normalization in the analogous of theorem [25|for Stiefel-Whitney classes, the Eu-
ler class e(L) is the generator o € H' (Pg P", Fy) such that H* (P2, Fy) = Fy[a]/(a™+1).
By additivity w(L®"™!) = (14+a)"*!. Since w(TPEAR) = w(TPE) we deduce finally
w(TPy) = (1 + )" e H*(Pg, Fy)

Example 30. (See [MS74, Theorem 14.10.]) Let now P™ be the complex projective
n-space. Let L: P™ be the tautological line bundle and let £ — P" be its orthogonal
complement inside the trivial bundle C*** — P". Define a vector bundle morphism
¢: Hom(L,E) — TP" as follows. For [z] € P" with we are given a linear map
f: L — Lﬁ%] on the fibres. Together with the identity on Lp,), this map yields a

linear map into the direct sum

L[x] iduf [x] @Lf;:] ~ QTH—I

The image of this linear map is again a line L, which is closer to L, the closer
f(x) is to zero. If t € R, then tf: Ly — L[{E] is a new linear map, and we get
a path t — L;; passing through Ly,; when ¢ = 0. Therefore we get an element
¢(f) € T»P", and the resulting vector bundle morphisms is an isomorphism on
each fibre. Now add Hom(L, L) = C as before to obtain

TP"®C =~ Hom(L, E® L) = Hom(L, C)®"*!
In proposition |44 we will see that ¢; (Hom(L,C)) = —c¢;(L), so we get
c(TP") = (1 —a)"* e H*(P")
where « is the Euler class from example
Remark 31. In algebraic geometry, example |30| corresponds to the Euler sequence
0— Ox — Ox(1)®"*! - Ty -0
of sheaves on P" (dual of the short exact sequence in [Har77, Theorem I11.8.13.]).
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2.3 The splitting principle

This principle will help us to reduce questions about arbitrary vector bundles to the
case of sum of line bundles, which is much easier to handle thanks to the normal-
ization and additivity properties in theorem [25]

Proposition 32. Let 7: £ — X be a complex vector bundle over a paracompact
base X. Then there is a space F'(F) and a map f: F(E) — X such that the map
f*: H*(X) — H*(F(F)) is injective and the vector bundle f*F is a direct sum of

complex line bundles.

Proof: By induction on the rank of F it is enough to find a space F/(F) and
a map f: F(F) — X such that f* is injective and f*F ~ E' @ L for some
complex line bundle L, because composition of injective maps is injective, pull-
backs of line bundles are line bundles and pullbacks commute with direct sums
of vector bundles. The last statement holds because the vector bundle mor-

phism f*(E,® Ep) — f*(E£1)® f*(E2) given by (y, (e1,€2)) = ((y,e1), (y, e2))

is an isomorphism on each fibre.
Consider F(E) = P(E) and f = p: P(E) — X. Consider the injective
bundle morphism

p: L — p*(F)
([e]; Ae) — ([e], Ae)

Since X is paracompact, we may choose an Hermitian inner product on F
(see [Hat13, Prop. 1.2.]). But this induces one on p*FE, so we can take £’ =
¢o(Lp)t < p*E. Then we have

PE~F @l

By proposition [23| the map p*: H*(X) — H*(P(FE)) is injective, because it is
the inclusion of the subring of polynomials of degree 0 in a. O]

Corollary 33. Let m: E — X be a rank k& complex vector bundle over a paracom-
pact base X. Then ¢,(E) = e(F) € H*(X).

Proof: Let f: F(F) — X be the map from proposition , so that f*F ~
Li@®---@® Ly is a direct sum of complex vector bundles. Then by theorem
we have

FAE) =cli® - ®Ly) = (1 +e(Ly) U0 (1+e(Ly))
In particular we have
fr(en(B)) = e(L1) v -+ v e(Ly)
But on the other hand by lemma [[2] and lemma [[5] we have
fr(e(B)) = e(f*E) =e(Li @ ®Ly) = e(L1) U v e(Ly)

The corollary follows then from injectivity of f*. m

17



Corollary 34. Let X be a paracompact space. The Chern classes on X are uniquely
determined by the properties in theorem [25] More precisely, every sequence of
functions {c}},en assigning to each complex vector bundle £ — X a class ¢;(E) €
H?(X) which depends on E only up to isomorphism and which verifies the properties
1 to 3 coincides with the Chern classes {¢;}en.

Proof: The normalization property determines the Chern classes of all complex
line bundles on X. The additivity property determines the Chern classes of
all sums of line bundles on X. Let £ — X be any rank k£ vector bundle
and let f: F(F) — X be the map given by proposition . Then the Chern
classes of f*E are already determined, because it is isomorphic to a sum of
line bundles and they are isomorphism invariant. But since f* is injective,
the Chern classes of E are also determined as the only classes whose pullback
under f are the Chern classes of f*F. [

Remark 35. The previous result also holds for arbitrary base spaces X, because
we can always find CW approximations (see [Hat02, Prop. 4.13.]) and because every
CW complex is paracompact (see [Hat13, Prop. 1.20.]). But the paracompactness
assumption is very mild in any case: compact Hausdorf spaces, CW complexes and
metric spaces are all paracompact spaces.

3 Computation of Chern classes

In this section we will deduce some formulas to compute Chern classes. From now
on we will omit the U symbol when multiplying cohomology classes.

As we briefly mentioned in example canonical morphisms of vector spaces
such as those induced by a universal property yield well defined vector bundle mor-
phisms. Once we have globally defined vector bundle morphisms we can check if
they are an isomorphism on the fibres. So canonical isomorphisms of vector spaces
give canonical isomorphisms of vector bundles. For example, we have the usual
tensor-hom adjunction

E®(—) 4 Hom(E, —)

3.1 The Picard group and the first Chern class

Tensor product of line bundles corresponds to multiplication of transition functions
and product of sections corresponds to a section of the tensor product. Isomorphism
classes of complex line bundles over X form an abelian group with respect to the
tensor product. The neutral element is the trivial line bundle C and the inverse of
a line bundle L is given by its dual LY = Hom(L, C), because the canonial map

LR®LY—-C

is the corresonding canonical isomorphism of complex vector spaces over each fibre.
We call this group the Picard group of X, denoted Pic(X).

Lemma 36. Let L; — X and Ly — X be two line bundles. Then we have
6(L1 ® LQ) = G(Ll) + €(L2)
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Proof: Let us first show the universal case. Consider

P* x P*
P P
Let L — P be the tautological line bundle and let L; = pfL and Ly = p5 L.
Consider the tensor product L1 ® Ly — P* x P*.

We know that e(L) = « is a generator of H*(P*) and that H*(P*) = Z[a]
(see example 21). Let oy = pfa = e(L;) and oy = pia = e(L). Then
H*(P*® x P*®) = Z[ay, az] by the Kiinneth theorem. The inclusion P* v P* <
P* x P* induces an isomorphism on the second cohomology group (which can
be seen geometrically via cellular cohomology). So we can compute e(L; ® Lo)
by restricting this line bundle over the wedge sum. Over each copy of P*, one
of the two factors becomes trivial, so the tensor product is isomorphic to the
remaining factor, which is isomorphic to the tautological line bundle over P®.
This means that e(L; ® Ls) restricts to ay over the corresponding copy of P®
and to ay over the other one. Hence e(L; ® Ls) and «a; + ag have the same
restrictions, but since the inclusion induces an isomorphism they must be the
same. Therefore

e(L1 ® Lg) = e(Ly) + e(Lo)

The general case follows now by naturality of the Euler class. The two
line bundles on X are the pullback of the tautological line bundle L — P®
under some maps X — P®. Take the product of these maps to obtain a map
f: X — P% x P® so that the two line bundles on X are the pullbacks of the
line bundles L; and Ls respectively. Then use that pullbacks commute with
tensor products to conclude:

e(f"Li ® [ L) = e(f* (L1 ® L2)) = [*(e(Ln) + e(L2)) = e(f*L1) + e(f*Lo)
0

Corollary 37. The first Chern class induces a group homomorphism
c1: Pic(X) — H*(X)

Proof: We have already seen in example that the trivial line bundle has
zero first Chern class. lemma [36] shows that the first Chern class of the tensor
product of line bundles is the sum of their first Chern classes. Hence c¢; is
indeed a group homomorphism. O

Remark 38. Let X be smooth projective variety over C. Consider the analytic
exponential sequence on X, (see [Har77, Appendix B)

0—7Z— Ox, - O% —0
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On the level of global sections, the map C — C* is given by the exponential function,
hence is surjective. So we get a long exact sequence

0 — HY(X},,Z) — H' (X}, Ox,) — H' (X, 0%,) —
— H*(X,,,Z) — H*(X), Ox,) — -

Using Cech cohomology one sees that Pic(X}) =~ H' (X}, 0%, )- Since X}, is a closed
orientable manifold, singular cohomology with integer coefficients agrees with sheaf
cohomology of the constant sheaf of integers (see [Spa66]). So the boundary map of
the exponential sequence yields a group homomorphism

Pic(X,) — H*(X,, Z)

which coincides with the first Chern class homomorphism. If we apply the GAGA
theorems we can recover algebraic information from this analytic information, be-

cause H' (X, Ox) = H'(X,, Oy,), H*(X, Ox) ~ H*(X;, Ox, ) and Pic(X) = Pic(X}).

3.2 The Chern character

The formulas for the Chern classes of the tensor product of vector bundles of higher
rank get a bit uglier. The Chern character will allow us to express the information
given by the Chern classes in a more convenient way and get nicer formulas. To
define the Chern character of a vector bundle we will work with coefficients in Q (see
remark @ Let E — X be a vector bundle. We are looking for a class in H* (X, Q),
so by the splitting principle it suffices to define Chern characters for direct sums of
line bundles.

Definition 39. Let L — X be a line bundle and let a = ¢;(L) € H*(X, Q) be its
first Chern class. Define
a>  ad a”
h(L)=e“=1 —+ =+ = — e HY(X
ch(D)=e" =T+a+ >+ + ;Nn!e (X.Q)
Let now £ = L1 ®---® Ly — X be a direct sum of line bundles and a; = e(L;) €
H?(X,Q) be their first Chern classes. Define

k
ch(E) = > e
=1

Let now E — X be an arbitrary vector bundle on X. Pick a map f: F(E) — X as
in proposition [32] We would like to define ch(E) to be the unique class in H*(X, Q)
such that f*(ch(F)) = ch(F(F)), but this is not well defined a priori. So we need
to do some work. If £ = L{ ®---@® L;, is a sum of line bundles, we can recover its

Chern class as
k

o(B) =] [ +a)

i=1
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By the Cardano-Vieta formulas, the Chern classes ¢;(F) are the elementary degree
[ symmetric polynomials in the variables aq,...,a;. On the other hand, we can
expand the Chern character as follows

ai +aj3+--+ad +a’f+~--+a’,§

h(E) = k
ch(FE) + (a1 4+ +ag) + 5 o

By the fundamental theorem on symmetric polynomials, every degree [ symmetric
polynomial can be expressed as a unique polynomial in the elementary symmetric
polynomials with degrees less or equal to [. In particular, a} + - - - al, can be written
as a unique polynomial s;(ci(E), c2(E),...,c(E)) (which is called the {** Newton

polynomial). Hence

ch(E) = k+ s1(c1(E)) + sa(c1(E), c2(E)) fomke Y sl(cl(E),l.'. L alE))

2 >0

This shows that the definition does not depend on f: F(E) — X and provides an
explicit formula for the Chern character in terms of the Chern classes. The first
terms of the Chern character of a rank k£ vector bundle £ — X are

1 1 1
ch(F) = k—i—Cl+§<C%—262)—|—6(6%—36103—1—303)+ﬂ(011—46%024-40163—1—203—464)+' o

Remark 40. We will usually work with spaces X that do not have cohomology
in arbitrarily high degrees, e.g. manifolds. In those cases, the sum in the previous
definition is actually a finite sum.

3.3 Formulas to compute Chern classes

We are ready now to start going through the usual constructions with vector bundles.

Proposition 41 (Pullback). Let f: Y — X be a continuous map and £ — X a

vector bundle. Then
ch(f*E) = f*ch(E)

Proof: Follows from functoriality in theorem [25| and from the fact that the
pullback is Q-linear. O

Proposition 42 (Direct sum). Let F — X and E' — X be two vector bundles.
Then
ch(E® E') = ch(F) + ch(E")

Proof: It suffices to check this for direct sums of line bundles, because we can
pullback along a first map f turning f*FE into a direct sum of line bundles and
then along a second map g turning ¢*(f*E’) into a direct sum of line bundles
(direct sums commute with pullbacks). But

(Li® L) (L1® - OLy)=Li® - OLi®dL® - Ly

and so the Chern character of the direct sum is the sum of the Chern characters
by definition. m
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Proposition 43 (Tensor product). Let £ — X and E' — X be two vector bundles.
Then
ch(E® E') = ch(F) ch(E")

Proof: Tensor products also commute with pullbacks, so it suffices again to
show the result for direct sums of line bundles. By lemma we know al-
ready the result for the tensor product of line bundles, because e®(F®L) —
ect(l)tal) — eerll)eerl) - For higher ranks we use proposition 42| to obtain

ch((@iL:) ® (®;L})) = ch(@i;Li ® L}) = > ch(L; ® L))

1:7j
And if we expand this expression we get

ST eh(Ly) eh(L) = (3 ch(L:))(Y ch(L) = ch(@iLs) ch(@; L)

,J i J
]

Proposition 44 (Dual). Let £ — X be a vector bundle and EY — X be its dual.
Then '
a(EY) = (=1)'ci(E)

Proof: As usual it suffices to show this for a direct sum of line bundles. If L —
X is a single line bundle, ¢;(L) = —c¢;(LY) follows from LY being the inverse
of L in Pic(X) and ¢;: Pic(X) — H?*(X) being a group homomorphism. For
asum of line £ = L; ®@--- L, note that EY = LY ®@--- @ L}/, so that

o(BY) =] [(1 = (L))
And therefore ¢;(EY) = (—1)i¢;(E). O
Combining these basic results and the splitting principle one can deduce formulas
for more involved constructions.

Example 45 (Hom). For the hom bundle one can combine proposition [43| and
proposition [44] with the canonical isomorphism

EY ® E' =~ Hom(E, E)

Example 46 (Determinant). The determinant of a rank k vector bundle E is de-
fined as the line bundle /\k E—- X IfE=L® --®Ly, weget /\]’C E=L® QL

hence

ci(det E) = ch(Li) = (F)

Example 47 (Symmetric squares). Let £ = L; @ Ly be a rank 2 vector bundle.
Then
S*(E) = LY ® (L @ L) @ L§?
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and thus if we define ay = ¢1(L1) and ag = ¢1(Lo) we get
c(S*(E)) = (14 201)(1 + a1 + o) (1 + 2a)
which can be rewritten as
1+ 2(a; + as) + (202 + 8ajay + 2a3) + dayas(aras)
Since ¢1(E) = a1 + ag and c3(E) = oy we can rewrite this as
1+ 2¢1(E) + (2¢1(E)? + 4ea(E)) + 4ey(E)ca(E)

By the splitting principle, this formula for ¢(S?(E)) is valid for any rank 2 vector
bundle.

And similarly we can compute other symmetric powers and exterior powers.

4 Applications

4.1 Nonimmersions of projective spaces

Following the ideas in example [28] we will see that the stability of Chern and Stiefel-
Whitney classes allow us to determine in some cases the non existence of an immer-
sion of a smooth manifold in some euclidean space.

Definition 48. Let f: M — N be a smooth map between smooth manifolds. We
say that f is an tmmersion if the induced map on tangent spaces is injective at each
point, i.e. if for all z € M we have

(Df)s: TuM — Ty N
We denote an immersion by f: M ¢ N.

Being an immersion is not directly related to injectivity, as the following two
examples show.

Example 49. The map f: R — R sending ¢ — ¢ is a smooth injective map which
is not an immersion, because the derivative vanishes at 0.

Example 50. A map i: S' 9 R? with image a shape o0 and with constant speed
is an immersion which is not injective. The Boy surface is an immersion of P in R?
which is not injective.

Let M be a smooth manifold of dimension n. We want to know if we can find
an immersion i: M 9 R for some N > n. So suppose we have such an immersion,
giving hence an injective map of vector bundles

Di: TM — RY

Then we can look at the normal bundle NM — M which has the property that
TM @® NM =~ RY. This implies the Whitney duality theorem:

w(TM)w(NM) =1
Since the rank of NM is k = N — n, we know that w;(NM) = 0 for all j > k.
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Example 51. As a particular example, we can use example [29 to discard the pos-
sibility of existence of immersions

Pz 9> RY
for different values of n and N. We know from example 21| that the cohomology
ring of Py with coefficients in Fy is
H*(Pg, Fy) = Fy[a]/(a™*)
We have also computed the Stiefel-Whitney class of the tangent space
w(TPg) = (1+a)™"!
The Stiefel-Whitney class of the normal bundle in an immersion P% 9> R¥ is by the
previous discussion equal to

1

2 k
e = 0o + G + aga” + - - + ap
1+ o)y 0ot a1 2 k

where kK = N — n and a; € Fy.

For example, for n = 2 we have (1+a)* = (1+a?)? =14+a*=1,50 1+« is
the inverse of w(TPR). For N = 2 we get k = 0, so in order to have an immersion
we need this inverse to be a polynomial of degree 0. But it has degree 1, so no such
immersion is possible, i.e.

i P2 9> R?

4.2 Real division algebras
We have seen in example 29| that
w(TPE) = (1 + )"t e Fya]/ (™)

Recall that a manifold is called parallelizable if its tangent bundle is trivial. In
particular, if Pg is parallelizable, then w(TPg) = 1, that is

(1+a)"=1=1+a""!

For this to happen, n + 1 must be a power of two. Indeed, if n + 1 = 2¥m with m
odd, we have

(1+oz)2km=(1+a2k)m=1+ma2k+<ﬂ;>a2k+2k+...:1+a2k+...

And if m > 1 then o2" # 0 and this is the only term in degree 2* in the sum.
Corollary 52. If Py is paralellizable, then n + 1 is a power of 2.

Definition 53. A not necessarily associative algebra over R is called a real division
algebra if every equation of the form ax = b and xa = b with a # 0 has a unique
solution.
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Note that a finite dimensional real division algebra has no zero divisors, be-
cause multiplication with an element yields an endomorphism which is by definition
surjective (and hence by dimension argument it is also injective).

Corollary 54. If a real division algebra of dimension n exits, then n is a power of
2.

Proof: Up to isomorphism, our real division algebra looks like (R™, +) equipped
with an R-bilinear product p: R® x R®” — R" without zero divisors. Let e¢;
be the " vector of the standard basis on R™. The map p(—,e;) is then an
automorphism, so we can define

v; = p(—, €;) op(—, 61)_1

We have v; = idg» and for any x € R"\{0}, the collection

{x,v9(x),...,vn(2)}

is linearly independent over R. Indeed, ) . \;jv;(x) = 0 means that (3}, \;p(—, e;))o
p(—,e1)7 (z) = 0, which by injectivity and R-bilinearity implies

p(x,z Aie;) =0

But x # 0 is not a zero divisor, so we get Y. \;e; = 0, hence all \; are zero.
Recall now from examplethat we had an isomorphism TP ! =~ Hom(L, E),
where L — P! is the tautological line bundle and F is such that E®L =~ R",
with the fibre of E over a point [x] € P! being the orthogonal complement
of the line L, in R".
Let L, be a line through the origin and through 0 # z € R". Each v;
defines a linear map

Gi: Lig) — Lig
by sending y € L to the orthogonal projection of v;(y) onto Lﬁ]. Since
v1(y) = y, we have v; = 0. But since vy, vs,...,v, are everywhere linearly
independent and v; = 0, none of the other v; is in the line L[, and so their
projections vs, . .., v, remain linearly independent. This holds for every point

x € R™\{0}, and since everything is linear, everything is also continuous. We
get n — 1 linearly independent continuous sections of Hom(L, E) = TP, so
Pi ! is parallelizable. By corollary n must be a power of 2. O

This restricts already a lot the candidates for real division algebras. But in fact
we know that the only possibilities are n € {2,4,8}.

4.3 How many lines are there on a cubic surface?

This question concerns algebraic objects: a line is meant to be an actual straight line
in (projective) space, not just some curve homeomorphic to a line. The topological
category is therefore too flexible for our purposes, and we need more rigid morphisms.
We will thus work on the algebraic category. The objects involved are algebraic
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objects, given locally by the zero locus of a family of polynomials in some affine
space C". The morphisms between these objects are continuous maps which locally
look like quotients of polynomials.

We will work in complex projective space P? with homogeneous coordinates
T, T1, T2, T3. A line will mean a linear subspace of P? of dimension 1. A cubic
surface is a subspace S < P? which is described as the zero locus of a degree 3
homogeneous polynomial in C[xg, 21, x9, x3]. For example we could consider the
Fermat cubic

S ={ad+2°+a5+25 =0} <P

The zero locus of a homogeneous polynomial f € C[x, x1, T2, 3] will be denoted by
Z(f), and depending on the context we regard this as a locus in P? or as a vector
subspace in C*.

Such a surface is said to be smooth if the partial derivatives of the polynomial
defining it do not vanish all at once in any of the points of the surface.

In the algebraic category, vector bundles are better understood in terms of their
sheaves of sections, which are locally free sheaves of finite rank over the structure
sheaf O. These sheaves are objects in the larger category of sheaves of abelian
groups, which is an abelian category. So we have exact sequences, derived functors,
ete.

Remark 55. In the topological category, every short exact sequence of vector bun-
dles splits, because we can always put an Hermitian inner product in the middle
term and the right term is then the orthogonal complement of the left term. But
in the algebraic category this is not true anymore, because we cannot always find a
holomorphic metric on a holomorphic vector bundle (complex analytic and algebraic
categories are equivalent by GAGA).

Definition 56. The line bundle O(1) on P? is the line bundle with sections which
are locally degree 1 quotients of polynomials in C[xg, 21, x9, x3]. Over the open
set U; = {x; # 0} this line bundle is trivial, with a non-zero section given by
[(x0, 1, 2, 23)] — x;. The transition functions from U; to U; are given by multipli-
cation with .

We can a]gain form the group of isomorphism classes of line bundles with the
tensor product. The product of sections of two line bundles corresponds to a section
of their tensor product. The transition functions of the tensor product are the
product of the transition functions. We denote by O(n) the line bundle which is the
n-fold tensor product of O(1).

If X < P? is a subspace, we denote by Ox(n) the restriction of O(n) to X.

The global sections of a vector bundle £ on a space X are denoted by H(X, £).

Example 57. The tautological line bundle on P3 is O(—1). To see this, one can
write down explicit equations for the transition functions of the tautological line
bundle and check that they agree with the transition functions of O(—1).

Back to our question, how many lines are there on a given cubic surface S?
To answer this question, we first need to study the cohomology ring of the
Grassmannian G(2,4), which parametrizes lines in P3.
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Lemma 58. Let G = G(2,4) be the Grassmannian of lines in P?. Fix a complete
flag {po} < Lo S Hy < P3, which may be assumed to be given by Hy = {x3 = 0},
Ly = {x35 = o = 0} and py = {x1 = 22 = 23 = 0}. Define the Schubert cycles as
follows

* 20 =200=G,

. lezlvoz{LeG\LmLosfé@},
® 2 =2no={LeG[pel}

® >, =1{LeG|Lc Hp},

. 22’1={LGG|pOEL§HO},

® >y = {Lo}

We have inclusions

{Lo} —— 22,1

/N

2
AN
21 —G
e
2

The lines contained in each Schubert cycle and not contained in the previous ones
form euclidean disks of dimensions 0, 2, 4, 6 and 8 respectively (from left to right).
These constitute the cells of a CW structure on G, each of them freely generating
the corresponding homology group by dimension arguments. Define the Schubert
classes o0;; € H2<i+j)(G) to be the Poincaré dual of the corresponding homology
class. Then we have relations

° U% = 01,1 + 02,

® 01011 = 0102 = 0271,
® 01021 = 022,

o 0%,1 = 03 = 02,2,

® 01102 = 0.

It follows that o? = 2041, 0f = 2092 and 07011 = 0}0y = 099, and by dimension
arguments any product with degree more than 8 vanishes. We get

H*(G) = Z[oy, 05]/(0} — 20109, 0F05 — 03)

Proof: See [EH16, Thm. 3.10.] for a proof. To compute cup products, use
Poincaré duality and compute intersection products of the corresponding ho-
mology cycles, which correspond to intersections of linear spaces. O]
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Theorem 59. Every smooth cubic surface S € P? contains exactly 27 distinct lines.

Proof: (Sketch)

Let F' € Clxg,z1,x9, 23] be the polynomial defining S. Note that this
polynomial F' corresopnds to a global section of O(3).

The Grassmannian G = (G(2,4) parametrizes lines in P3. Let L € G.
What does it mean for L to be contained in S? The surface S is given by
the cubic form F. A line L is contained in S if this cubic form restricts to
the zero cubic form on L. But cubic forms on L =~ P! are a vector space
H°(L,0L(3)) of dimension 4, and as L varies in G this 4 dimensional vector
space varies forming a vector bundle £ of rank 4 over G. The cubic form
F e H(P,O(3)) gives then a global section sp whose zero locus is the set of
lines L < S. As pointed out in corollary , this corresponds then to (the
Poincaré dual of) the Euler class e(€), which by corollary [33| corresponds to
ci(§) € H¥(G) = Z[oy,09]/(0} — 20109, 0209 — 02), where 0, € H*(G) and
0y € HY(G) are the Schubert classes of lemma

To compute ¢4(£) we want to understand £ in terms of a simpler bundle.
This will be the dual of the tautological bundle & — G. The fibre of S over
a point L € G is the 2-dimensional vector space V < C* such that L = P(V).
Its dual SV is then a rank 2 bundle whose fibre over each line L € G is the
vector space of linear forms on the plane V' < C* such that P(V) = L. This is
precisely the vector space of global sections H(L, O (1)) = H(P', O(1)). By
the discussion in the previous paragraph, the bundle £ is given over each fibre
by H(L, O(3)), so we have

£ =~ S3(8*)

Now we need to compute the Chern class of $*. Let f be a linear form
on C*. Then f restricts to a linear form on each plane V representing a line
L € G, giving a global section of §*. By example 46| we know that c;(S*)
is the Poincaré dual of the locus over which two generic global sections f1, fs
become linearly dependent, which is precisely the set of lines L = P(V) € G
such that

VnZ(f1) n Z(f2) 2 {0}

because this means that there is a whole line in V' along which f; and f; are
zero, thus a non trivial linear combination of f; and f; over V which is zero.
But VnZ(f1) nZ(f2) containing a line means that P(V)nP(Z(f1)nZ(f2)) #
@, so this zero locus is given by the Schubert cycle »},. We get

01(8*> = 01

For ¢3(S*) we need to compute the zero locus of a section f. This is now
the set of lines L = P(V) € G such that f|, = 0, i.e. L < Z(f) which is a
hyperplane. So we get

Co (S*) = 0171

And therefore
C(S*) =1+ o1 + 01,1

28



The claim now is that ¢4(€) = ¢4(53(8*)) = 27042. To prove this formula
we may assume by proposition [32] that S* splits as the sum of two line bundles
LBM. Let a = ¢1(L) and 8 = ¢1(M). Then

(S*)=1+o01+011=(1+a)(1+pP)
and therefore a + 3 = 0y and a8 = 011. Now
S}SH =L (L2OM)D (LR M) D M?
We get from lemma [30] that
¢(S83(8*) = (1 +3a)(1 + 20+ B)(1 + a +28)(1 + 38)

We are only interested in the top degree of this polynomial expression. This
is given by

3a(2a + B)(a + 28)38 = 9aB(2a” + 5a 3 + 26%) = 9aB(2(a + B)* + o)

Using the relations obtained from the splitting, we can express this again
in terms of Chern classes of 8* as 90;1(207 + 011). Using the relations in
lemma |58 we get 901 1(2011 + 202+ 011) = 270%71 = 2705 5. Therefore

C4<5) = C4<53(S*)) = 270’2’2

This corresponds in homology to 27 copies of the ground class [G] € Hy(G),
each of them being a point (line in P?). So there are exactly 27 lines contained
in a smooth cubic surface. [
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