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0 Recollections on vector bundles [Skip]
Let F be a topological space. A continuous map π : E Ñ X is called a fibre bundle
with typical fibre F if for every point x P X there is an open neighborhood U in X
and a homeomorphism ϕU : π´1pUq Ñ U ˆ F over U , i.e.

π´1pUq U ˆ F

U

ϕU

π
œ prU
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We call ϕU a (local) trivialization and pU,ϕUq a bundle chart. We denote the fibre
π´1pxq over x P X by Ex. Fibre bundles (with typical fibre F ) correspond to objects
in the category of arrows in Top, and a morphism of fibre bundles is precisely a
morphism between the corresponding arrows. More explicitly, a morphism from a
fibre bundle π : E Ñ X to a fibre bundle π1 : E 1 Ñ X 1 is a pair of continuous maps
f : E Ñ E 1 and g : X Ñ X 1 such that

E E 1

X X 1

f

œπ π1

g

Let G be a topological group acting continuously on the typical fibre F on the
left. Moreover, let us assume that this action is faithful, so that we may identify
G with a subgroup of the group of self homeomorphisms of F . A G-atlas for the
bundle π : E Ñ X is a collection of charts pUα, ϕαq such that the compositions

ϕαβ :“ ϕβϕ
´1
α : pUα X Uβq ˆ F Ñ pUα X Uβq ˆ F

are given by ϕαβpx, eq “ px, θαβpxqpeqq, where θαβ : Uα X Uβ Ñ G is a continuous
map called the transition map. We say that two G-atlases are equivalent if their
union is also a G-atlas, and we define a G-bundle to be a fibre bundle together with
an equivalence class of G-atlases. We call G the structure group of the bundle.
Definition 1. Let K be R or C. An rank k vector bundle over K is a fibre bundle
with typical fibre Kk and with structure group GLkpKq.
Lemma 2. Equivalently, a rank k vector bundle overK is a fibre bundle with typical
fibre Kk in which all fibres are equipped with a K-vector space structure such that
for every chart pU,ϕUq the restriction to every fibre ϕU |Ex : Ex Ñ txu ˆ Kk is a
K-linear homeomorphism.

Proof: Let pUα, ϕαq and pUβ, ϕβq be two bundle charts and let x P UαXUβ “:
Uαβ. Consider the composition

ϕαβ : Uαβ ˆKk
Ñ Uαβ ˆKk

Since ϕα|Ex and ϕβ|Ex are K-linear, so is ϕβ|Exϕα|´1
Ex : Kk Ñ Kk. So we can

assign to x an element θαβpxq P GLkpKq. We have to check that this defines a
continuous transition map θαβ : Uαβ Ñ GLkpKq.

Let ej P Kk be the jth standard basis vector in Kk and let pi : Kk Ñ K be
the ith coordinate projection. As in any other fibre bundle, the map

Uαβ ˆKk ϕαβ
ÝÝÑ Uαβ ˆKk prKk

ÝÝÑ Kk

is continuous. In particular, if we fix ej P Kk, we get a continuous map
which sends px, ejq ÞÑ px, θpxqpejqq. Composing further with the ith coordi-
nate projection pri : Kk Ñ K we get a continuous map which sends px, ejq ÞÑ
pripθpxqpejqq “: aijpxq. But aijpxq P K is then ij-entry of the matrix represent-
ing θpxq with respect to the standard basis, and since aijpxq varies continuously
on x we get that the map θ : Uαβ Ñ GLkpKq is indeed continuous.
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A morphism of vector bundles is then a bundle morphism which is linear on each
fibre. In particular we can define the category of vector bundles over X, denoted by
VecpXq. If confusion is possible, we will also include the base field in the notation,
and write VecKpXq instead.
Lemma 3. Let π1 : E1 Ñ X and π2 : E2 Ñ X be two vector bundles over X. Let
f : E1 Ñ E2 be a continuous map over X which sends each fibre π´1

1 pxq to π´1
2 pxq

linearly. Then f is a vector bundle isomorphism if and only if it is an isomorphism
of vector spaces on each fibre.

Proof: If f is a vector bundle isomorphism, then the map on each fibre is a
bijective linear morphism, hence an isomorphism of vector spaces.

Conversely, if f is an isomorphism of vector spaces on each fibre, then
it is a continuous bijection. So we have to check whether its inverse f´1

is continuous or not. Continuity is a local property, so it suffices to show
that f´1|U “ pf |Uq

´1 is continuous, where U is an open subset of X over
which both vector bundles π1 and π2 are trivial. Since trivializations are
homeomorphisms, the continuity of f´1|U is equivalent to the continuity of
ϕ1,U ˝ f

´1|U ˝ ϕ
´1
2,U : U ˆKk Ñ U ˆKk.

π´1
2 pUq π´1

1 pUq

U ˆKk U ˆKk

pf |U q
´1

œ ϕ1,Uϕ2,U

The inverse of this composition is given by px, vq ÞÑ px, θpxqpvqq where θpxq P
GLkpKq is a linear morphism (composition of three linear morphisms by hy-
pothesis) which varies continuously on x because f |U is continuous. So this
composition is given by px, vq ÞÑ px, θpxq´1pvqq. The inverse of a matrix can
be computed algebraically by a formula that depends continuously on the co-
efficients of the matrix. Hence, this composition is also continuous, and this
finishes the proof.

As we have seen before, a vector bundle π : E Ñ X has a collection of transition
functions θαβ : Uαβ Ñ GLkpKq which are continuous. They satisfy three straightfor-
ward properties:

1. θααpxq “ idKk P GLkpKq for all x P Uα.

2. θβαpxq “ pθαβpxqq´1 P GLkpKq for all x P Uαβ.

3. θβγpxq ˝ θαβpxq “ θαγpxq P GLkpKq for all x P Uαβγ.

Lemma 4. Let X be a topological space and let Ualpha be an open cover of X.
As before, denote Uαβ “ Uα X Uβ and suppose we are given continuous functions
θαβ : Uαβ Ñ GLkpKq satisfying the three properties above. Then there is an rank
k K-vector bundle π : E Ñ X which has these functions as transition functions.
Moreover, π : E Ñ X is uniquely determined up to isomorphism of vector bundles.
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Proof: As a set, define
E “

ğ

α

pUα ˆKk
q{ „

where „ is the equivalence relation defined on by
px P Uα, vq „ px

1
P Uβ, v

1
q ô x “ x1 and θαβpxqpvq “ v1

The three properties above guarantee that „ is an equivalence relation. For
every x P Uα and v P Kk, the equivalence class rpx, vqs has a unique represen-
tative px, vαq P Uα ˆ Kk: there is at least one because x P Uα and there is at
most one because θααpxq “ idKk . Therefore the obvious projection π : E Ñ X
turns this into a vector bundle with trivializations ϕα : π´1pUαq Ñ Uα ˆ Kk

given by rpx, vqs ÞÑ px, vαq. If px, vq P Uαβ ˆKk, then ϕ´1
α ppx, vqq “ rpx, vqs “

rpx, θαβpxqpvqqs, thus ϕβprpx, vqsq “ px, θαβpxqpvqq and therefore the transition
functions are indeed the given θαβ : Uαβ Ñ GLkpKkq.

Let now π1 : E 1 Ñ X be another vector bundle with bundle charts pUα, ϕ1αq
and transition functions θαβ : Uαβ Ñ GLkpKq. Then define

f :
ğ

α

Uα ˆKk
ÝÑ E 1

px P Uα, vq ÞÝÑ ϕ1αpx, vq

This is a continuous surjection and we have that px, vq „ px, v1q if and only
if θαβpxqpvq “ ϕβ|

1
Ex ˝ ϕα|

1´1
Ex pvq “ v1, hence px, vq „ px, v1q if and only if

fppx, vqq “ fppx, v1qq. By the universal property of the quotient we get a
continuous bijection f̄ : E Ñ E 1 over X, and by lemma 3 it must be a vector
bundle isomorphism.

A (global) section of a vector bundle π : E Ñ X is a continuous map s : X Ñ E
such that π ˝ s “ idX , i.e.

E

X X

πs
œ

We always have the zero section s0 : X Ñ E which sends each x P X to the zero
vector of the corresponding fibre Ex. We denote by E0 the complement of the zero
section Ezs0pXq.
Lemma 5. A rank k vector bundle π : E Ñ X is trivial if and only if it admits k
sections pσ1, . . . , σkq which are linearly independent at each point x P X.

If U is an open set ofX, a local section of π over U is a section of the vector bundle
π´1pUq Ñ U . The sheaf of sections of a vector bundle determines the vector bundle
up to isomorphism. Moreover, there is a bijection between K-vector bundles over
X and locally free sheaves of finite type over the sheaf OX of K-valued continuous
functions on X. If we replace continuous by smooth, holomorphic, algebraic... we
get a bijection with vector bundles in the corresponding category.

We can also pullback vector bundles (via the usual pullback in the category of
topological spaces) and define new vector bundles from old using certain construc-
tions, e.g. the product E ˆ E 1 Ñ X ˆX 1 of vector bundles. We won’t recall these
here.
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1 The projective bundle formula

1.1 The Euler class of a vector bundle
In this talk we will work with complex vector bundles and singular cohomology with
integer coefficients (see lemma 8 for a justification). Our goal is to introduce Chern
classes (definition 24) and study their basic properties (theorem 25). This theory
is rather formal, but there is a lot of geometry encoded inside Chern classes. This
geometric content is in fact concentrated in the first Chern classes of line bundles,
which in our case will be given by the Euler class. The rest of Chern classes of all
vector bundles are completely determined by their formal properties and the first
Chern classes of line bundles. For this reason we will also spend some time recalling
the Euler class and discussing some of its geometric content.

The analogous definition for real vector bundles, Stiefel-Whitney classes, works
the same way with F2 coefficients. All the results in that case are analogous.
Remark 6. All the results are the same for complex vector bundles and singu-
lar cohomology with coefficients in an arbitrary ring R, with essentially the same
proofs. So we will change the coefficient ring when necessary without making further
comments about it. If no coefficients are specify, we are working with R “ Z.

Let π : E Ñ X be a rank k C-vector bundle and let E0 “ Ezs0pXq, where
s0 : X Ñ E is the zero section.
Definition 7. A Thom class with R coefficients is a class u “ upEq P H2k

pE,E0;Rq
such that the restriction of u to each fibre F – Ck is a generator of H2k

pCk,Ckzt0u;Rq –
R.

We know from the previous talk that a vector bundle is R-orientable if and only if
a Thom class with R coefficients exists. Every vector bundle is F2-orientable (every
family of orientations on the fibres is trivially coherent), but not every vector bundle
is Z-orientable. We say that a bundle is simply orientable if it is Z-orientable.
Lemma 8. Complex vector bundles have a canonical orientation. In particular,
complex manifolds are orientable, because their tangent bundles are.

Proof: We have to find a coherent family of orientations on the fibres. But this
is possible, because every finite dimensional C-vector space V has a canonical
orientation as an R-vector space: for any basis v1, . . . , vk of V over C, the
(ordered) collection v1, iv1, . . . , vk, ivk is a basis of V over R, and its orientation
does not depend on the original basis over C because GLkpCq is path connected.

Recall from Domenico’s talk:
Theorem 9 (Leray-Hirsch). Let R be a ring. Let pF, F 1q i

ÝÑ pE,E 1q
π
ÝÑ X be a fibre

bundle pair, i.e. E Ñ X is a fibre bundle with typical fibre F and E 1 Ď E a subspace
such that the restriction of the bundle charts turns E 1 Ñ X into a fibre bundle with
typical fibre F 1 Ď F . Suppose that Hl

pF, F 1;Rq is a finitely generated free R-module.
Let cj P H˚pE,E 1;Rq be a family of classes whose restrictions i˚pcjq form a basis of
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H˚pF, F 1;Rq over R in each fibre pF, F 1q. Then we have an isomorphism of graded
R-modules

H˚pX;Rq bR H˚pF, F 1;Rq ÝÑ H˚pE,E 1;Rq
xb i˚pcjq ÞÝÑ π˚pxq Y cj

In particular, H˚pE;Rq is a free (graded) H˚pX;Rq-module with basis tcju.
In the case of our vector bundle pE,E 1q “ pE,E0q Ñ X, we have that Hl

pF, F 1q –
Hl
pCk,Ckzt0uq – H̃ lpS2kq which is Z if l “ 2k and 0 otherwise. Moreover, we know

that there exists a Thom class u P H2k
pE,E0q, so we can apply the Leray-Hirsch

theorem to deduce that
Hl
pXq – Hl`2k

pE,E0q

via x ÞÑ π˚pxq Y u for all l P N. This is called the Thom isomorphism.
Note also that we can linearly contract the vector bundle E to the zero section

s0pXq – X, so the fibre bundle projection induces isomorphisms in cohomology
π˚ : H˚pXq –

ÝÑ H˚pEq. The inverse of this isomorphism is precisely the pullback
along the zero section s˚0 : H˚pEq –ÝÑ H˚pXq.
Definition 10. The Euler class e “ epEq P H2k

pXq is the image of the Thom
class under the composition H2k

pE,E0q
j˚
ÝÑ H2k

pEq
s˚0
ÝÑ H2k

pXq, where j : pE,∅q ãÑ

pE,E0q is the natural inclusion.
Remark 11. Note that the Euler class of a vector bundle is a priori only defined
up to a sign, and this sign depends on the orientation of the vector bundle (i.e. on
the choice of the Thom class). But by lemma 8 every complex vector bundle has
a canonical orientation, so we have in fact a canonical choice of Thom and Euler
class, and these are what we call the Thom and Euler classes.

Consider the long exact sequence in cohomology of the pair pE,E0q. Using the
previous two isomorphisms we can replace Hl

pE,E0q by Hl´2k
pXq and Hl

pEq by
Hl
pXq to obtain the Gysin sequence

¨ ¨ ¨ Ñ Hl´1
pE0q Ñ Hl´2k

pXq
p´qYe
ÝÝÝÑ Hl

pXq
π˚
ÝÑ Hl

pE0q Ñ ¨ ¨ ¨

So vanishings on the cohomology of E0 will yield isomorphisms between the
cohomology groups of the base X given by multiplication with the Euler class.
Lemma 12 (Functoriality of the Euler class). Let π : E Ñ X and π1 : E 1 Ñ X 1 be
two rank k vector bundles with a vector bundle morphism pg, fq : pE 1, X 1q Ñ pE,Xq
such that gpE 10q Ď E0. Then we have epE 1q “ f˚pepEqq P H2k

pX 1q.

Proof: We have a commutative square

E 1 E

X 1 X

g

π1 π

f

By functoriality we get a commutative diagram
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H2k
pE,E0q H2k

pEq H2k
pXq

H2k
pE 1, E 10q H2k

pE 1q H2k
pX 1q

g˚ g˚

–

f˚

–

So it suffices to check that the Thom class u “ upEq P H2k
pE,E0q is sent to the

Thom class g˚puq P H2k
pE 1, E 10q. The condition gpE 10q Ď E0 means in particular

that the map on the fibres is injective, so it is a C-linear isomorphism and hence
the canonical orientation is preserved. So for every fibres F 1 “ π1´1pyq and
F “ π´1pfpyqq we have a commutative diagram

pF, F0q pE,E0q

pF 1, F 10q pE 1, E 10q

œ– g

Applying cohomology we obtain

H2k
pE,E0q H2k

pF, F0q

H2k
pE 1, E 10q H2k

pF 1, F 10q

g˚ œ –

and this shows that g˚puq also restricts to a generator on each fibre.

Corollary 13. Isomorphic vector bundles over X have the same Euler class.

Proof: The map induced on each fibre is an isomorphism, and in particular
we can apply lemma 12 with f “ idX .

Corollary 14. The Euler class of the pullback of a vector bundle π : E Ñ X along
f : X 1 Ñ X is given by epf˚pEqq “ f˚pepEqq.

Proof: The map induced by the pullback g : f˚E Ñ E is the identity on each
fibre, so we can apply lemma 12.

Lemma 15 (Additivity of the Euler class). Let π : E Ñ X and π1 : E 1 Ñ X 1 be two
vector bundles of ranks k and k1 respectively. Then their product EˆE 1 Ñ X ˆX 1

has Euler class epE ˆ E 1q “ epEq ˆ epE 1q P H2k`2k1
pX ˆX 1q.

Proof: We have a commutative diagram

E ˆ E 1

E E 1

X ˆX 1

X X 1

q

πqˆπ1q1

q1

π π1

p p1
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Note that pE ˆ E 1q0 “ pE0 ˆ E
1q Y pE ˆ E 10q. We claim now that

upE ˆ E 1q “ q˚pupEqq Y q1˚pupE 1qq “ upEq ˆ upE 1q

For this consider the following commutative diagram

pF ˆ F 1, pF ˆ F 1q0q pE ˆ E 1, pE ˆ E 1q0q

pF 1, F 10q pE 1, E 10q

pF, F0q pE,E0q

q1|FˆF 1

q|FˆF 1

iˆi1

q1

i1

i

q

Take now the Thom classes u “ upEq and u1 “ upE 1q. By definition, they
restrict to generators i˚puq and i1˚pu1q on the corresponding fibres. The cross
product of these generators is a generator i˚puq ˆ i1˚pu1qH2k`2k1

pF ˆ F 1, pF ˆ
F 1q0q by the relative Künneth formula (the fibres are nice Euclidean spaces).
But by definition i˚puq ˆ i1˚pu1q “ pq|FˆF 1q

˚i˚puq Y pq1|FˆF 1q
˚i1˚pu1q, which by

the previous commutative diagram is the same as piˆi1q˚q˚puqYpiˆi1q˚q1˚pu1q,
and this in turn is the same as pi ˆ i1q˚pq˚puq Y q1˚pu1qq “ pi ˆ i1q˚pu ˆ u1q by
naturality of the cup product. This proves the claim.

To obtain the Euler class of EˆE 1 we need to pullback uˆu1 along the zero
section XˆX 1 Ñ EˆE 1. But the zero section is precisely s0pˆs

1
0p
1 : XˆX 1 Ñ

E ˆ E 1, fitting into the commutative diagram

X ˆX 1

X X 1

E ˆ E 1

E E 1

p

s0pˆs10p
1

p1

s0 s10

q q1

So using again naturality of the cup product and commutativity of the previous
diagram we obtain
ps0pˆ s

1
0p
1
q
˚q˚puq Y ps0pˆ s

1
0p
1
q
˚q1˚pu1q “ p˚s˚0puq Y p

1˚s1˚0 pu
1
q “ epEq ˆ epE 1q

Corollary 16. Let π : E Ñ X and π1 : E 1 Ñ X be two vector bundles on X of
ranks k and k1 respectively. Then epE ‘ E 1q “ epEq Y epE 1q P H2k`2k1

pXq.
Proof: The sum E‘E 1 Ñ X is defined as the pullback of the product EˆE 1 Ñ
X ˆ X along the diagonal ∆: X Ñ X ˆ X. By lemma 12, lemma 15 and
definition of the cross product we have

epE ‘ E 1q “ ∆˚
pepE ˆ E 1qq “ ∆˚

pepEq ˆ epE 1qq “ epEq Y epE 1q
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1.2 Geometric interpretation of the Euler class
Let X be an n-dimensional smooth orientable closed connected manifold and let
π : E Ñ X be a smooth rank k real vector bundle and let i “ s0 : X Ñ E be the
zero section. Up to homotopy we can replace E by the associated disk bundle and
E0 by the corresponding sphere bundle which is the boundary of the fibre of the disk
bundle over each point. So we can apply the Poincaré-Lefschetz duality theorem (see
[Bre97, Corollary 9.3.])

p´q X rEs : Hl
pE,E0q

–
ÝÑ Hn`k´lpEq

Lemma 17. The Thom class is the unique class u P Hk
pE,E0q such that

uX rEs “ i˚rXs

Proof: See [Bre97, Lemma 11.5.] for a complete proof.
The idea is first to show that the restriction to any fibre cannot be zero. If

this was the case, one can use the bootstrap lemma (see [Bre97, Lemma 7.9.])
to show that u “ 0 globally, which is not the case.

So the restriction is not zero. Suppose it was not ˘1 and let p be a
prime factor of this restriction. Then we can repeat the same argument with
coefficients in Z{pZ to obtain that u “ 0 P Hk

pE,E0;Z{pZq, which is again a
contradiction.

So we have a nice geometric interpretation of the Thom class, namely, the coho-
mology class in H˚pE,E0q whose Poincaré dual is the manifold X embedded as the
zero section.

The Euler class was then defined as the pullback i˚puq P Hk
pXq. Recall that the

intersection product of two homology classes ras ‚ rbs on a manifold is defined by
cupping their Poincaré duals.
Proposition 18. The Poincaré dual in X of the Euler class e “ i˚puq P Hk

pXq
corresopnds to the self intersection of X in E under the isomorphism i˚.

Proof: Using the properties in [Bre97, Thm. VI.5.2.] and their relative versions
we have

i˚rXs ‚ i˚rXs “ puY uq X rEs “ uX puX rEsq “ uX i˚rXs “ i˚peX rXsq

This gives a nice geometric interpretation of the Euler class. The homology cycle
that we are self intersecting is the image of the zero section. But any other section
s : X Ñ E yields a homologous cycle, because both sections induce isomorphisms in
homology with the same inverse, namely π˚. The intersection product of two cycles
corresponds geometrically to intersecting two representatives which are in general
position. So in our case, to compute the Euler class as in proposition 18 we can
intersect two sections that meet transversally at each point. We can take one of
them to be the zero section and the other one to be any section transversal to the
zero section, which we will simply call a transversal section. Computing such an
intersection corresponds therefore to computing the zero locus of our section. Hence
we get the following:
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Corollary 19. The Euler class e P Hk
pXq is the Poincaré dual of the zero locus of

a transversal section.

Proof: A more rigurous proof of this fact can be found in [BT82, Prop. 12.8.].

Remark 20. As we will see later, Chern classes are uniquely determined by their
formal properties and by the Euler classes of line bundles. Compare corollary 19
with [Har77, Prop. II.7.7.] and [Har77, A.3.C1]. This provides a link between the
topological category and the algebraic category.

1.3 The cohomology ring of projective bundles
Let π : E Ñ X be a rank k vector bundle over C. Define its projectivization PpEq
to be the quotient E0{Cˆ. This has a natural structure of fibre bundle with typical
fibre Pk´1 given by

p : PpEq ÝÑ X

rvs ÞÝÑ πpvq

To see this, let pU,ϕUq be a chart for π : E Ñ X. Since Cˆ acts on E0 fibrewise,
the action induces an action on π´1pUq. Since ϕU is C-linear on each fibre, it is a
Cˆ-equivariant homeomorphism (with Cˆ-equivariant inverse). Quotienting out by
the scalar action we get a homeomorphism

p´1pUq U ˆ Pk´1

U

p

«

œ
prU

This construction is functorial on injective vector bundle morphisms. Indeed,
if f : E1 Ñ E2 we obtain a Pk´1 fibre bundle morphism Ppfq : PpE1q Ñ PpE2q,
because vector bundle morphisms are linear on the fibres, and Ppfq is well defined
by injectivity.

The space PpEq in turn comes equipped with a tautological line bundle, namely

LE Ñ PpEq

where LE “ tpl, eq P PpEq ˆ E | e P lu and the projection is given by pl, eq ÞÑ l.
Let αE P H2

pPpEqq be the Euler class associated to this line bundle. We will use
the Leray-Hirsch theorem to express the cohomology ring of PpEq in terms of the
cohomology ring of X and the Euler class αE.
Example 21. We may regard Pn as the projectivization of the trivial vector bundle
Cn`1 Ñ t˚u over a point. Then L is the usual tautological line bundle on Pn and
the Euler class α P H2

pPnq generates the cohomology ring:

H˚pPnq – Zrαs{pαn`1
q

10



Indeed, in this case L0 » S2n`1, so we have Hl
pS2n`1q “ 0 for all l P t1, . . . , 2nu, so

by the Gysin sequence multiplication with α yields isomorphisms

Z – H0
pPnq – H2

pPnq – ¨ ¨ ¨ – H2n
pPnq

For odd l we know by cellular cohomology that Hl
pPnq “ 0.

Consider now
P8 “ lim

ÝÑ
n

Pn

with the direct limit taken over the inclusions Pn ãÑ Pn`1 given by the usual CW
structure, or in coordinates given by rpv1, . . . , vnqs ÞÑ rpv1, . . . , vn, 0qs. Since the
cohomology ring functor commutes with direct limits of topological spaces, we get

H˚pP8q “ lim
ÐÝ
n

Zrαs{pαn`1
q “ Zrαs

where the restrictions to each skeleton i˚n : H˚pP8q� H˚pPnq are the maps induced
by the inverse limit. Let q : L8 Ñ P8 be the tautological line bundle on P8. Since
i˚nL8 – q´1pPnq – Ln is the tautological line bundle on Pn, we have i˚npepEqq “
epi˚nEq “ α by example 21. But α P H2

pP8q is by definition the (only) element in
the inverse limit such that i˚nα “ α for all n P N. Hence epEq “ α.
Remark 22. The generator α found in example 21 is not the usual generator,
which is the Poincaré dual of the linear subspace rPn´1s P H2n´2pPnq given by
the usual CW complex. We can see this in two different ways. Algebraically, the
tautological bundle corresopnds to Op´1q, and hence its first Chern class is given
by ´H. Topologically, we will see in example 30 that epTPnq “ p´1qnpn ` 1qαn.
We can compute the Euler characteristic of Pn as the evaluation of the Euler class
epTPnq P H2n

pPnq at the ground class rPns P H0pPnq, which is then

epTPnqprPnsq “ p´1qnpn` 1qαprPnsq “ epPnq “ n` 1

We need therefore αprPnsq “ p´1qn. So α is p´1qn times the usual generator of the
cohomology ring of projective space.

Now for the general case:
Proposition 23 (Projective bundle formula). In the situation above, there is an
H˚pXq-module isomorphism

pH˚pXqrαsq{pαkq ÝÑ H˚pPpEqq

given by αl ÞÑ αlE, i.e. βαl ÞÑ p˚pβq Y αlE.

Proof: Consider p : PpEq Ñ X as above, with typical fibre Pk´1. We have a
pullback square

q´1pPk´1q “ L LE

Pk´1 PpEq

q

i

11



So by lemma 12 we have that i˚pαEq “ α is the Euler class of example 21.
But we have seen in example 21 that

H˚pPk´1
q – Zrαs{pαkq

Hence each power αl is a free generator of the corresponding cohomology of
the fibre H2l

pPk´1q. And in the odd degrees we have zero cohomology groups.
We are thus in the hypothesis of the (absolute) Leray-Hirsch theorem for the
fibration

Pk´1 i
ÝÑ PpEq p

ÝÑ X

And we obtain therefore

H˚pXq b H˚pPk´1
q
–
ÝÑ H˚pPpEqq

via β b i˚pαlEq “ β b αl ÞÑ p˚pβq Y αlE. By example 21 again, we have that
the left hand side is

H˚pXq bZ H˚pPk´1
q – H˚pXq bZ Zrαs{pαkq – pH˚pXqrαsq{pαkq

2 Chern classes

2.1 Definition and first properties
Let π : E Ñ X be a rank k complex vector bundle and let αE P H2

pPpEqq be its Euler
class. From proposition 23 we know that H˚pPpEqq is a free H˚pXq-module with basis
1, αE, . . . , αk´1

E . The scalar multiplication on H˚pPpEqq is given by β ¨γ :“ p˚pβqYγ.
So writing αkE P H2k

pPpEqq as a linear combination of these basis elements (modulo
signs) we can find unique classes ci “ cipEq P H2i

pXq for i P N such that c0 “ 1,
ci “ 0 for all i ą k and

k
ÿ

i“0
p´1qip˚pciq Y αk´iE “ 0 P H2k

pPpEqq

Definition 24. The classes cipEq P H2i
pXq are called the Chern classes of the

vector bundle π : E Ñ X. The total Chern class is defined as their sum

cpEq “ 1` c1pEq ` c2pEq ` ¨ ¨ ¨ ` ckpEq P H˚pXq

The Stiefel-Whitney classes of a real vector bundle π : E Ñ X, denoted wipEq P
Hi
pX,F2q, and the total Stiefel-Whitney class of the vector bundle, denoted wpEq P

H˚pX,F2q, are defined in the exact same way.
Theorem 25. The Chern classes cipEq only depend on E up to isomorphism. More-
over, they satisfy the following three properties:

1. Functoriality: if f : Y Ñ X is a continuous map, then

cpf˚Eq “ f˚pcpEqq

12



2. Normalization: for any line bundle π : LÑ X, we have

cpLq “ 1` epLq

3. Additivity: for every pair of complex vector bundles E1, E2 P VecpXq we have

cpE1 ‘ E2q “ cpE1q Y cpE2q

In other words, cipE1 ‘ E2q “
ř

l`m“i clpE1q Y cmpE2q P H2i
pXq.

Proof: Let f : E1
–
ÝÑ E2 be an isomorphism of vector spaces over X. By

functoriality of PpEq we get an isomorphism Ppfq : PpE1q
–
ÝÑ PpE2q of Pk´1

fibre bundles over X with Ppfq˚pL2q – L1, because f induces a vector bundle
morphism L1 Ñ Ppfq˚pL2q which is an isomorphism on every fibre. Hence we
have Ppfq˚pα2q “ α1, and so

řk
i“0p´1qip˚2pcipE2qq Y α

k´i
2 “ 0 implies that

Ppfq˚
˜

k
ÿ

i“0
p´1qip˚2pcipE2qq Y α

k´i
2

¸

“

k
ÿ

i“0
p´1qip˚1pcipE2qq Y α

k´i
1 “ 0

This shows that the Chern classes cipE2q are also a solution to the defining
equation of the Chern classes cipE1q. By uniqueness of the solutions, we must
have cipE1q “ cipE2q for all i, so Chern classes are invariant under isomorphism
of vector bundles.

For the functoriality, consider the pullback square

EY E

Y X

g

πY π

f

Since g is an isomorphism on the fibres we get a commutative square

PpEY q PpEq

Y X

Ppgq

pY p

f

and as before g induces an isomorphism LY – Ppgq˚pLEq. Thus αY “

Ppgq˚pαEq, so arguing as before we get from the equality

Ppgq˚
˜

k
ÿ

i“0
p´1qip˚pcipEqq Y αk´iE

¸

“

k
ÿ

i“0
p´1qip˚Y f˚pcipEqq Y αk´iY

that cipEY q “ f˚pcipEqq.
To see that the normalization property also holds, note that PpLq “ X and

LL Ñ PpLq is again LÑ X. So we have αL “ epLq. The defining equation of
c1pLq is then

epLq ´ p˚pc1pLqq “ 0

13



But p : PpLq “ X Ñ X is the identity, so the equation is just

epLq “ c1pLq

It remains to show additivity. Let π1 : E1 Ñ X and π2 : E2 Ñ X be two
vector bundles of ranks k1 and k2 on X. We need to show that

cipE1 ‘ E2q “
ÿ

l`m“i

clpE1q Y cmpE2q

for all i P N. Denote q : E1‘E2 � PpE1‘E2q the quotient map and p : PpE1‘

E2q Ñ X the projection. The total spaces E1 and E2 are closed subsets in
E1‘E2. Identify PpE1q with the subspace trpe1, 0qsu Ď PpE1‘E2q and similarly
for PpE2q. Then E1 “ q´1pPpE1qq and E2 “ q´1pPpE2qq, so by definition of
the quotient topology we have that PpE1q and PpE2q are closed subspaces of
PpE1 ‘ E2q. Moreover, since E1 X E2 “ s0pXq Ď E1 ‘ E2, we have PpE1q X

PpE2q “ ∅ inside PpE1 ‘ E2q. So these two closed subspaces are disjoint. If
we define open sets U1 “ PpE1 ‘ E2qzPpE1q and U2 “ PpE1 ‘ E2qzPpE2q, we
get an open cover

PpE1 ‘ E2q “ U1 Y U2

The subspace PpE1q “ trpe1, e2qs P PpE1 ‘ E2q | e2 “ 0u is a deformation
retract of U2 “ trpe1, e2qs P PpE1 ‘ E2q | e1 ‰ 0u via

prpe1, e2qs, tq ÞÝÑ rpe1, p1´ tqe2qs

Denote by j1 : E1 Ñ E1 ‘ E2 the inclusion and let Ppj1q : PpE1q Ñ PpE1 ‘

E2q be the induced inclusion on projectivizations. Under the previous iden-
tification PpE1q “ trpe1, 0qsu Ď PpE1 ‘ E2q we can also identify LE1 “

tprpe1, 0qs, pλe1, 0qqu Ď LE1‘E2 . Under this identification, LE1 is the restric-
tion of LE1‘E2 to the subspace PpE1q, so by lemma 12 we get that αE1 “

Ppj1q
˚pαE1‘E2q. This implies that the class

γ1 “

k1
ÿ

l“0
p´1qlp˚pclpE1qq Y α

k1´l
E1‘E2 P H2k1pPpE1 ‘ E2qq

restricts to 0 over the subspace PpE1q. But because PpE1q is a deformation
retract of U2, the class γ1 must also restrict to 0 over U2. Similarly, the class

γ2 “

k2
ÿ

m“0
p´1qmp˚pcmpE2qq Y α

k2´m
E1‘E2 P H2k2pPpE1 ‘ E2qq

restricts to 0 over U1. Since U1 and U2 form an open cover of PpE1 ‘ E2q the
cup product γ1 Y γ2 P H2pk1`k2qpPpE1 ‘ E2q is zero. Since the cup product is
Z-bilinear we get

0 “ γ1 Y γ2 “

k1`k2
ÿ

i“0
p´1qip˚

˜

ÿ

l`m“i

clpE1q Y cmpE2q

¸

Y αk1`k2´i
E1‘E2

14



By uniqueness of the solutions as before we deduce finally that

cipE1 ‘ E2q “
ÿ

l`m“i

clpE1q Y cmpE2q

Example 26. The trivial vector bundle X ˆCk Ñ X, denoted Ck, is the pullback
of the trivial vector bundle t˚u ˆ Ck Ñ t˚u along the unique map X Ñ t˚u. So its
Chern classes are the pullback of the Chern classes of the trivial vector bundle over
a point. Since a point has no cohomology on degree i ą 0, we get

cpCk
q “ 1

Example 27. Let E Ñ X and E 1 Ñ X 1 be two complex vector bundles. For all
i P N we have

cipE ˆ E
1
q “

ÿ

l`m“i

clpEq ˆ cmpE
1
q

To see this, write EˆE 1 as pp˚Eq‘pp1˚E 1q, where p : XˆX 1 Ñ X and p1 : XˆX 1 Ñ

X 1 are the respective projections. Then by additivity we have

cipE ˆ E
1
q “

ÿ

l`m“i

clpp
˚Eqcmpp

1˚E 1q

And by naturality this is equal to
ÿ

l`m“i

p˚pclpEqqp
1˚
pcmpE

1
qq “

ÿ

l`m“i

clpEq ˆ cmpE
1
q

2.2 Stability of Chern classes
An immediate consequence of example 26 together with the additivity from theo-
rem 25 is that taking the direct sum of a vector bundle with a trivial vector bundle
does not affect its Chern classes. This easy observation turns out to be very useful
in many situations.
Example 28. The sphere Sn embedded in Rn`1 has a rank 1 normal vector bunlde
which is trivial, because taking the outward pointing unitary vector at each point
gives a nowhere vanishing section. We have

TSn ‘ R – Rn`1

Hence wpTSnq “ wpTSn ‘ Rq “ wpRn`1
q “ 1 and in particular

wipTS
n
q “ 0

for all i ą 0.
Example 29. (See [MS74, Lemma 4.4.]) The real projective n-space PnR is the
quotient of Sn by the antipodal map. The differential of this map sends the tan-
gent vector v P TxS

n and the tangent vector ´v P T´xS
n to the same tangent
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vector in TPnR, so we can identify the tangent bundle TPnR with the set of pairs
ttpx, vq, p´x,´vqu | x P Sn, v P TxS

nu. So an elmenet in TrxsPnR yields a linear map
Lrxs ÝÑ LKrxs

x ÞÝÑ v

where Lrxs is by definition the fibre of the tautological line bundle L Ñ PnR over
the point rxs. Moreover, any such linear morphism determines a unique elmenet
in TrxsPnR, because if we started with the point ´x P Sn we would only get the
same morphism by picking ´v instead of v. This construction gives a canonical
isomorphism

TPnR – HompL,Eq
where E has the property that E‘L – Rn`1. The line bundle HompL,Lq is trivial,
because the identity gives a non vanishing global section. Hence

TPnR ‘ R – HompL,Eq ‘ HompL,Lq
The canonical isomorphisms from linear algebra yield globally defined morphisms of
vector bundles (they glue because they are canonical) which are also isomorphisms
(because this can be checked on the fibres). Hence the last bundle is isomorphic to

HompL,E ‘ Lq – HompL,Rn`1
q – L‘n`1

By normalization in the analogous of theorem 25 for Stiefel-Whitney classes, the Eu-
ler class epLq is the generator α P H1

pPRP
n,F2q such that H˚pPnR,F2q – F2rαs{pα

n`1q.
By additivity wpL‘n`1q “ p1`αqn`1. Since wpTPnR‘Rq “ wpTPnRq we deduce finally

wpTPnRq “ p1` αqn`1
P H˚pPnR,F2q

Example 30. (See [MS74, Theorem 14.10.]) Let now Pn be the complex projective
n-space. Let L : Pn be the tautological line bundle and let E Ñ Pn be its orthogonal
complement inside the trivial bundle Cn`1

Ñ Pn. Define a vector bundle morphism
ϕ : HompL,Eq Ñ TPn as follows. For rxs P Pn with we are given a linear map
f : Lrxs Ñ LKrxs on the fibres. Together with the identity on Lrxs, this map yields a
linear map into the direct sum

Lrxs
id\f
ÝÝÝÑ Lrxs ‘ L

K
rxs – Cn`1

The image of this linear map is again a line Lf , which is closer to Lrxs the closer
fpxq is to zero. If t P R, then tf : Lrxs Ñ LKrxs is a new linear map, and we get
a path t ÞÑ Ltf passing through Lrxs when t “ 0. Therefore we get an element
ϕpfq P TrxsPn, and the resulting vector bundle morphisms is an isomorphism on
each fibre. Now add HompL,Lq – C as before to obtain

TPn ‘ C – HompL,E ‘ Lq – HompL,Cq‘n`1

In proposition 44 we will see that c1pHompL,Cqq “ ´c1pLq, so we get
cpTPnq “ p1´ αqn`1

P H˚pPnq
where α is the Euler class from example 21.
Remark 31. In algebraic geometry, example 30 corresponds to the Euler sequence

0 Ñ OX Ñ OXp1q‘n`1
Ñ TX Ñ 0

of sheaves on Pn (dual of the short exact sequence in [Har77, Theorem II.8.13.]).
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2.3 The splitting principle
This principle will help us to reduce questions about arbitrary vector bundles to the
case of sum of line bundles, which is much easier to handle thanks to the normal-
ization and additivity properties in theorem 25.
Proposition 32. Let π : E Ñ X be a complex vector bundle over a paracompact
base X. Then there is a space F pEq and a map f : F pEq Ñ X such that the map
f˚ : H˚pXq Ñ H˚pF pEqq is injective and the vector bundle f˚E is a direct sum of
complex line bundles.

Proof: By induction on the rank of E it is enough to find a space F pEq and
a map f : F pEq Ñ X such that f˚ is injective and f˚E – E 1 ‘ L for some
complex line bundle L, because composition of injective maps is injective, pull-
backs of line bundles are line bundles and pullbacks commute with direct sums
of vector bundles. The last statement holds because the vector bundle mor-
phism f˚pE1‘E2q Ñ f˚pE1q ‘ f

˚pE2q given by py, pe1, e2qq ÞÑ ppy, e1q, py, e2qq

is an isomorphism on each fibre.
Consider F pEq “ PpEq and f “ p : PpEq Ñ X. Consider the injective

bundle morphism

ϕ : LE ÝÑ p˚pEq

pres, λeq ÞÝÑ pres, λeq

Since X is paracompact, we may choose an Hermitian inner product on E
(see [Hat13, Prop. 1.2.]). But this induces one on p˚E, so we can take E 1 “
ϕpLEq

K Ď p˚E. Then we have

p˚E – E 1 ‘ L

By proposition 23 the map p˚ : H˚pXq Ñ H˚pPpEqq is injective, because it is
the inclusion of the subring of polynomials of degree 0 in α.

Corollary 33. Let π : E Ñ X be a rank k complex vector bundle over a paracom-
pact base X. Then ckpEq “ epEq P H2k

pXq.

Proof: Let f : F pEq Ñ X be the map from proposition 32, so that f˚E –

L1 ‘ ¨ ¨ ¨ ‘ Lk is a direct sum of complex vector bundles. Then by theorem 25
we have

f˚pcpEqq “ cpL1 ‘ ¨ ¨ ¨ ‘ Lkq “ p1` epL1qq Y ¨ ¨ ¨ Y p1` epLkqq

In particular we have

f˚pckpEqq “ epL1q Y ¨ ¨ ¨ Y epLkq

But on the other hand by lemma 12 and lemma 15 we have

f˚pepEqq “ epf˚Eq “ epL1 ‘ ¨ ¨ ¨ ‘ Lkq “ epL1q Y ¨ ¨ ¨ Y epLkq

The corollary follows then from injectivity of f˚.
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Corollary 34. LetX be a paracompact space. The Chern classes onX are uniquely
determined by the properties in theorem 25. More precisely, every sequence of
functions tc1iuiPN assigning to each complex vector bundle E Ñ X a class c1ipEq P
H2i
pXq which depends on E only up to isomorphism and which verifies the properties

1 to 3 coincides with the Chern classes tciuiPN.

Proof: The normalization property determines the Chern classes of all complex
line bundles on X. The additivity property determines the Chern classes of
all sums of line bundles on X. Let E Ñ X be any rank k vector bundle
and let f : F pEq Ñ X be the map given by proposition 32. Then the Chern
classes of f˚E are already determined, because it is isomorphic to a sum of
line bundles and they are isomorphism invariant. But since f˚ is injective,
the Chern classes of E are also determined as the only classes whose pullback
under f are the Chern classes of f˚E.

Remark 35. The previous result also holds for arbitrary base spaces X, because
we can always find CW approximations (see [Hat02, Prop. 4.13.]) and because every
CW complex is paracompact (see [Hat13, Prop. 1.20.]). But the paracompactness
assumption is very mild in any case: compact Hausdorf spaces, CW complexes and
metric spaces are all paracompact spaces.

3 Computation of Chern classes
In this section we will deduce some formulas to compute Chern classes. From now
on we will omit the Y symbol when multiplying cohomology classes.

As we briefly mentioned in example 29, canonical morphisms of vector spaces
such as those induced by a universal property yield well defined vector bundle mor-
phisms. Once we have globally defined vector bundle morphisms we can check if
they are an isomorphism on the fibres. So canonical isomorphisms of vector spaces
give canonical isomorphisms of vector bundles. For example, we have the usual
tensor-hom adjunction

E b p´q % HompE,´q

3.1 The Picard group and the first Chern class
Tensor product of line bundles corresponds to multiplication of transition functions
and product of sections corresponds to a section of the tensor product. Isomorphism
classes of complex line bundles over X form an abelian group with respect to the
tensor product. The neutral element is the trivial line bundle C and the inverse of
a line bundle L is given by its dual L_ “ HompL,Cq, because the canonial map

Lb L_ Ñ C

is the corresonding canonical isomorphism of complex vector spaces over each fibre.
We call this group the Picard group of X, denoted PicpXq.
Lemma 36. Let L1 Ñ X and L2 Ñ X be two line bundles. Then we have

epL1 b L2q “ epL1q ` epL2q
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Proof: Let us first show the universal case. Consider

P8 ˆ P8

P8 P8

p1 p2

Let L Ñ P8 be the tautological line bundle and let L1 “ p˚1L and L2 “ p˚2L.
Consider the tensor product L1 b L2 Ñ P8 ˆ P8.

We know that epLq “ α is a generator of H2
pP8q and that H˚pP8q – Zrαs

(see example 21). Let α1 “ p˚1α “ epL1q and α2 “ p˚2α “ epL2q. Then
H˚pP8 ˆ P8q “ Zrα1, α2s by the Künneth theorem. The inclusion P8 _ P8 Ă
P8ˆP8 induces an isomorphism on the second cohomology group (which can
be seen geometrically via cellular cohomology). So we can compute epL1bL2q

by restricting this line bundle over the wedge sum. Over each copy of P8, one
of the two factors becomes trivial, so the tensor product is isomorphic to the
remaining factor, which is isomorphic to the tautological line bundle over P8.
This means that epL1 b L2q restricts to α1 over the corresponding copy of P8
and to α2 over the other one. Hence epL1 b L2q and α1 ` α2 have the same
restrictions, but since the inclusion induces an isomorphism they must be the
same. Therefore

epL1 b L2q “ epL1q ` epL2q

The general case follows now by naturality of the Euler class. The two
line bundles on X are the pullback of the tautological line bundle L Ñ P8
under some maps X Ñ P8. Take the product of these maps to obtain a map
f : X Ñ P8 ˆ P8 so that the two line bundles on X are the pullbacks of the
line bundles L1 and L2 respectively. Then use that pullbacks commute with
tensor products to conclude:

epf˚L1 b f
˚L2q “ epf˚pL1 b L2qq “ f˚pepL1q ` epL2qq “ epf˚L1q ` epf

˚L2q

Corollary 37. The first Chern class induces a group homomorphism

c1 : PicpXq Ñ H2
pXq

Proof: We have already seen in example 26 that the trivial line bundle has
zero first Chern class. lemma 36 shows that the first Chern class of the tensor
product of line bundles is the sum of their first Chern classes. Hence c1 is
indeed a group homomorphism.

Remark 38. Let X be smooth projective variety over C. Consider the analytic
exponential sequence on Xh (see [Har77, Appendix B])

0 Ñ ZÑ OXh Ñ O˚Xh Ñ 0
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On the level of global sections, the map CÑ C˚ is given by the exponential function,
hence is surjective. So we get a long exact sequence

0 Ñ H1
pXh,Zq Ñ H1

pXh,OXhq Ñ H1
pXh,O˚Xhq Ñ

Ñ H2
pXh,Zq Ñ H2

pXh,OXhq Ñ ¨ ¨ ¨

Using Čech cohomology one sees that PicpXhq – H1
pXh,O˚Xhq. Since Xh is a closed

orientable manifold, singular cohomology with integer coefficients agrees with sheaf
cohomology of the constant sheaf of integers (see [Spa66]). So the boundary map of
the exponential sequence yields a group homomorphism

PicpXhq Ñ H2
pXh,Zq

which coincides with the first Chern class homomorphism. If we apply the GAGA
theorems we can recover algebraic information from this analytic information, be-
cause H1

pX,OXq – H1
pXh,OXhq, H2

pX,OXq – H2
pXh,OXhq and PicpXq – PicpXhq.

3.2 The Chern character
The formulas for the Chern classes of the tensor product of vector bundles of higher
rank get a bit uglier. The Chern character will allow us to express the information
given by the Chern classes in a more convenient way and get nicer formulas. To
define the Chern character of a vector bundle we will work with coefficients in Q (see
remark 6). Let E Ñ X be a vector bundle. We are looking for a class in H˚pX,Qq,
so by the splitting principle it suffices to define Chern characters for direct sums of
line bundles.
Definition 39. Let L Ñ X be a line bundle and let a “ c1pLq P H2

pX,Qq be its
first Chern class. Define

chpLq “ ea “ 1` a` a2

2 `
a3

6 ` ¨ ¨ ¨ “
ÿ

nPN

an

n! P H˚pX,Qq

Let now E “ L1 ‘ ¨ ¨ ¨ ‘ Lk Ñ X be a direct sum of line bundles and ai “ epLiq P
H2
pX,Qq be their first Chern classes. Define

chpEq “
k
ÿ

i“1
eai

Let now E Ñ X be an arbitrary vector bundle on X. Pick a map f : F pEq Ñ X as
in proposition 32. We would like to define chpEq to be the unique class in H˚pX,Qq
such that f˚pchpEqq “ chpF pEqq, but this is not well defined a priori. So we need
to do some work. If E “ L1 ‘ ¨ ¨ ¨ ‘ Lk is a sum of line bundles, we can recover its
Chern class as

cpEq “
k
ź

i“1
p1` aiq

20



By the Cardano-Vieta formulas, the Chern classes clpEq are the elementary degree
l symmetric polynomials in the variables a1, . . . , ak. On the other hand, we can
expand the Chern character as follows

chpEq “ k ` pa1 ` ¨ ¨ ¨ ` akq `
a2

1 ` a
2
2 ` ¨ ¨ ¨ ` a

2
k

2 ` ¨ ¨ ¨ `
an1 ` ¨ ¨ ¨ ` a

n
k

n! ` ¨ ¨ ¨

By the fundamental theorem on symmetric polynomials, every degree l symmetric
polynomial can be expressed as a unique polynomial in the elementary symmetric
polynomials with degrees less or equal to l. In particular, al1` ¨ ¨ ¨ alk can be written
as a unique polynomial slpc1pEq, c2pEq, . . . , clpEqq (which is called the lth Newton
polynomial). Hence

chpEq “ k ` s1pc1pEqq `
s2pc1pEq, c2pEqq

2 ` ¨ ¨ ¨ “ k `
ÿ

lą0

slpc1pEq, . . . , clpEqq

l!

This shows that the definition does not depend on f : F pEq Ñ X and provides an
explicit formula for the Chern character in terms of the Chern classes. The first
terms of the Chern character of a rank k vector bundle E Ñ X are

chpEq “ k`c1`
1
2pc

2
1´2c2q`

1
6pc

3
1´3c1c3`3c3q`

1
24pc

4
1´4c2

1c2`4c1c3`2c2
2´4c4q`¨ ¨ ¨

Remark 40. We will usually work with spaces X that do not have cohomology
in arbitrarily high degrees, e.g. manifolds. In those cases, the sum in the previous
definition is actually a finite sum.

3.3 Formulas to compute Chern classes
We are ready now to start going through the usual constructions with vector bundles.
Proposition 41 (Pullback). Let f : Y Ñ X be a continuous map and E Ñ X a
vector bundle. Then

chpf˚Eq “ f˚ chpEq

Proof: Follows from functoriality in theorem 25 and from the fact that the
pullback is Q-linear.

Proposition 42 (Direct sum). Let E Ñ X and E 1 Ñ X be two vector bundles.
Then

chpE ‘ E 1q “ chpEq ` chpE 1q

Proof: It suffices to check this for direct sums of line bundles, because we can
pullback along a first map f turning f˚E into a direct sum of line bundles and
then along a second map g turning g˚pf˚E 1q into a direct sum of line bundles
(direct sums commute with pullbacks). But

pL1 ‘ ¨ ¨ ¨ ‘ Lkq ‘ pL
1
1 ‘ ¨ ¨ ¨ ‘ L

1
k1q “ L1 ‘ ¨ ¨ ¨ ‘ Lk ‘ L

1
1 ‘ ¨ ¨ ¨ ‘ L

1
k1

and so the Chern character of the direct sum is the sum of the Chern characters
by definition.
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Proposition 43 (Tensor product). Let E Ñ X and E 1 Ñ X be two vector bundles.
Then

chpE b E 1q “ chpEq chpE 1q

Proof: Tensor products also commute with pullbacks, so it suffices again to
show the result for direct sums of line bundles. By lemma 36 we know al-
ready the result for the tensor product of line bundles, because ec1pLbL1q “

ec1pLq`c1pL1q “ ec1pLqec1pL1q. For higher ranks we use proposition 42 to obtain

chpp‘iLiq b p‘jL1jqq “ chp‘i,jLi b L1jq “
ÿ

i,j

chpLi b L1jq

And if we expand this expression we get
ÿ

i,j

chpLiq chpL1jq “ p
ÿ

i

chpLiqqp
ÿ

j

chpL1jqq “ chp‘iLiq chp‘jL1jq

Proposition 44 (Dual). Let E Ñ X be a vector bundle and E_ Ñ X be its dual.
Then

cipE
_
q “ p´1qicipEq

Proof: As usual it suffices to show this for a direct sum of line bundles. If LÑ
X is a single line bundle, c1pLq “ ´c1pL

_q follows from L_ being the inverse
of L in PicpXq and c1 : PicpXq Ñ H2

pXq being a group homomorphism. For
a sum of line E “ L1 ‘ ¨ ¨ ¨Lk, note that E_ “ L_1 ‘ ¨ ¨ ¨ ‘ L

_
k , so that

cpE_q “
ź

i

p1´ c1pLqq

And therefore cipE_q “ p´1qicipEq.

Combining these basic results and the splitting principle one can deduce formulas
for more involved constructions.
Example 45 (Hom). For the hom bundle one can combine proposition 43 and
proposition 44 with the canonical isomorphism

E_ b E 1 – HompE,E 1q

Example 46 (Determinant). The determinant of a rank k vector bundle E is de-
fined as the line bundle

Źk E Ñ X. If E “ L1‘¨ ¨ ¨‘Lk, we get
Źk E “ L1b¨ ¨ ¨bLk,

hence
c1pdetEq “

ÿ

i

c1pLiq “ c1pEq

Example 47 (Symmetric squares). Let E “ L1 ‘ L2 be a rank 2 vector bundle.
Then

S2
pEq “ Lb2

1 ‘ pL1 b L2q ‘ L
b2
2
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and thus if we define α1 “ c1pL1q and α2 “ c1pL2q we get

cpS2
pEqq “ p1` 2α1qp1` α1 ` α2qp1` 2α2q

which can be rewritten as

1` 2pα1 ` α2q ` p2α2
1 ` 8α1α2 ` 2α2

2q ` 4α1α2pα1α2q

Since c1pEq “ α1 ` α2 and c2pEq “ α1α2 we can rewrite this as

1` 2c1pEq ` p2c1pEq
2
` 4c2pEqq ` 4c1pEqc2pEq

By the splitting principle, this formula for cpS2pEqq is valid for any rank 2 vector
bundle.

And similarly we can compute other symmetric powers and exterior powers.

4 Applications

4.1 Nonimmersions of projective spaces
Following the ideas in example 28, we will see that the stability of Chern and Stiefel-
Whitney classes allow us to determine in some cases the non existence of an immer-
sion of a smooth manifold in some euclidean space.
Definition 48. Let f : M Ñ N be a smooth map between smooth manifolds. We
say that f is an immersion if the induced map on tangent spaces is injective at each
point, i.e. if for all x PM we have

pDfqx : TxM ãÑ TfpxqN

We denote an immersion by f : M í N .
Being an immersion is not directly related to injectivity, as the following two

examples show.
Example 49. The map f : RÑ R sending t ÞÑ t3 is a smooth injective map which
is not an immersion, because the derivative vanishes at 0.
Example 50. A map i : S1 í R2 with image a shape 8 and with constant speed
is an immersion which is not injective. The Boy surface is an immersion of P2

R in R3

which is not injective.
Let M be a smooth manifold of dimension n. We want to know if we can find

an immersion i : M í RN for some N ě n. So suppose we have such an immersion,
giving hence an injective map of vector bundles

Di : TM Ñ RN

Then we can look at the normal bundle NM Ñ M which has the property that
TM ‘NM – RN . This implies the Whitney duality theorem:

wpTMqwpNMq “ 1

Since the rank of NM is k “ N ´ n, we know that wjpNMq “ 0 for all j ą k.
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Example 51. As a particular example, we can use example 29 to discard the pos-
sibility of existence of immersions

PnR í RN

for different values of n and N . We know from example 21 that the cohomology
ring of PnR with coefficients in F2 is

H˚pPnR,F2q “ F2rαs{pα
n`1
q

We have also computed the Stiefel-Whitney class of the tangent space

wpTPnRq “ p1` αqn`1

The Stiefel-Whitney class of the normal bundle in an immersion PnR í RN is by the
previous discussion equal to

1
p1` αqn`1 “ a0 ` a1α ` a2α

2
` ¨ ¨ ¨ ` akα

k

where k “ N ´ n and ai P F2.
For example, for n “ 2 we have p1 ` αq4 “ p1 ` α2q2 “ 1 ` α4 “ 1, so 1 ` α is

the inverse of wpTPnRq. For N “ 2 we get k “ 0, so in order to have an immersion
we need this inverse to be a polynomial of degree 0. But it has degree 1, so no such
immersion is possible, i.e.

E P2
R í R2

4.2 Real division algebras
We have seen in example 29 that

wpTPnRq “ p1` αqn`1
P F2rαs{pα

n`1
q

Recall that a manifold is called parallelizable if its tangent bundle is trivial. In
particular, if PnR is parallelizable, then wpTPnRq “ 1, that is

p1` αqn`1
“ 1 “ 1` αn`1

For this to happen, n ` 1 must be a power of two. Indeed, if n ` 1 “ 2km with m
odd, we have

p1` αq2km “ p1` α2k
q
m
“ 1`mα2k

`

ˆ

m

2

˙

α2k`2k
` ¨ ¨ ¨ “ 1` α2k

` ¨ ¨ ¨

And if m ą 1 then α2k ‰ 0 and this is the only term in degree 2k in the sum.
Corollary 52. If PnR is paralellizable, then n` 1 is a power of 2.
Definition 53. A not necessarily associative algebra over R is called a real division
algebra if every equation of the form ax “ b and xa “ b with a ‰ 0 has a unique
solution.
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Note that a finite dimensional real division algebra has no zero divisors, be-
cause multiplication with an element yields an endomorphism which is by definition
surjective (and hence by dimension argument it is also injective).
Corollary 54. If a real division algebra of dimension n exits, then n is a power of
2.

Proof: Up to isomorphism, our real division algebra looks like pRn,`q equipped
with an R-bilinear product p : Rn ˆ Rn Ñ Rn without zero divisors. Let ei
be the ith vector of the standard basis on Rn. The map pp´, eiq is then an
automorphism, so we can define

vi “ pp´, eiq ˝ pp´, e1q
´1

We have v1 “ idRn and for any x P Rnzt0u, the collection

tx, v2pxq, . . . , vnpxqu

is linearly independent over R. Indeed,
ř

i λivipxq “ 0 means that p
ř

i λipp´, eiqq˝
pp´, e1q

´1pxq “ 0, which by injectivity and R-bilinearity implies

ppx,
ÿ

i

λieiq “ 0

But x ‰ 0 is not a zero divisor, so we get
ř

i λiei “ 0, hence all λi are zero.
Recall now from example 29 that we had an isomorphism TPn´1

R – HompL,Eq,
where LÑ Pn´1

R is the tautological line bundle and E is such that E‘L – Rn,
with the fibre of E over a point rxs P Pn´1

R being the orthogonal complement
of the line Lrxs in Rn.

Let Lrxs be a line through the origin and through 0 ‰ x P Rn. Each vi
defines a linear map

v̄i : Lrxs ÝÑ LKrxs

by sending y P Lrxs to the orthogonal projection of vipyq onto LKrxs. Since
v1pyq “ y, we have v̄1 “ 0. But since v1, v2, . . . , vn are everywhere linearly
independent and v̄1 “ 0, none of the other v̄i is in the line Lrxs and so their
projections v̄2, . . . , v̄n remain linearly independent. This holds for every point
x P Rnzt0u, and since everything is linear, everything is also continuous. We
get n´ 1 linearly independent continuous sections of HompL,Eq – TPn´1

R , so
Pn´1
R is parallelizable. By corollary 52, n must be a power of 2.

This restricts already a lot the candidates for real division algebras. But in fact
we know that the only possibilities are n P t2, 4, 8u.

4.3 How many lines are there on a cubic surface?
This question concerns algebraic objects: a line is meant to be an actual straight line
in (projective) space, not just some curve homeomorphic to a line. The topological
category is therefore too flexible for our purposes, and we need more rigid morphisms.
We will thus work on the algebraic category. The objects involved are algebraic
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objects, given locally by the zero locus of a family of polynomials in some affine
space Cn. The morphisms between these objects are continuous maps which locally
look like quotients of polynomials.

We will work in complex projective space P3 with homogeneous coordinates
x0, x1, x2, x3. A line will mean a linear subspace of P3 of dimension 1. A cubic
surface is a subspace S Ď P3 which is described as the zero locus of a degree 3
homogeneous polynomial in Crx0, x1, x2, x3s. For example we could consider the
Fermat cubic

S “ tx3
0 ` x

3
1 ` x

3
2 ` x

3
3 “ 0u Ď P3

The zero locus of a homogeneous polynomial f P Crx0, x1, x2, x3s will be denoted by
Zpfq, and depending on the context we regard this as a locus in P3 or as a vector
subspace in C4.

Such a surface is said to be smooth if the partial derivatives of the polynomial
defining it do not vanish all at once in any of the points of the surface.

In the algebraic category, vector bundles are better understood in terms of their
sheaves of sections, which are locally free sheaves of finite rank over the structure
sheaf O. These sheaves are objects in the larger category of sheaves of abelian
groups, which is an abelian category. So we have exact sequences, derived functors,
etc.
Remark 55. In the topological category, every short exact sequence of vector bun-
dles splits, because we can always put an Hermitian inner product in the middle
term and the right term is then the orthogonal complement of the left term. But
in the algebraic category this is not true anymore, because we cannot always find a
holomorphic metric on a holomorphic vector bundle (complex analytic and algebraic
categories are equivalent by GAGA).
Definition 56. The line bundle Op1q on P3 is the line bundle with sections which
are locally degree 1 quotients of polynomials in Crx0, x1, x2, x3s. Over the open
set Ui “ txi ‰ 0u this line bundle is trivial, with a non-zero section given by
rpx0, x1, x2, x3qs ÞÑ xi. The transition functions from Ui to Uj are given by multipli-
cation with xi

xj
.

We can again form the group of isomorphism classes of line bundles with the
tensor product. The product of sections of two line bundles corresponds to a section
of their tensor product. The transition functions of the tensor product are the
product of the transition functions. We denote by Opnq the line bundle which is the
n-fold tensor product of Op1q.

If X Ď P3 is a subspace, we denote by OXpnq the restriction of Opnq to X.
The global sections of a vector bundle E on a space X are denoted by H0

pX, Eq.
Example 57. The tautological line bundle on P3 is Op´1q. To see this, one can
write down explicit equations for the transition functions of the tautological line
bundle and check that they agree with the transition functions of Op´1q.

Back to our question, how many lines are there on a given cubic surface S?
To answer this question, we first need to study the cohomology ring of the

Grassmannian Gp2, 4q, which parametrizes lines in P3.
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Lemma 58. Let G “ Gp2, 4q be the Grassmannian of lines in P3. Fix a complete
flag tp0u Ď L0 Ď H0 Ď P3, which may be assumed to be given by H0 “ tx3 “ 0u,
L0 “ tx3 “ x2 “ 0u and p0 “ tx1 “ x2 “ x3 “ 0u. Define the Schubert cycles as
follows

•
ř

0 “
ř

0,0 “ G,

•
ř

1 “
ř

1,0 “ tL P G | LX L0 ‰ ∅u,

•
ř

2 “
ř

2,0 “ tL P G | p0 P Lu,

•
ř

1,1 “ tL P G | L Ď H0u,

•
ř

2,1 “ tL P G | p0 P L Ď H0u,

•
ř

2,2 “ tL0u.

We have inclusions
ř

2

tL0u
ř

2,1
ř

1 G

ř

1,1

The lines contained in each Schubert cycle and not contained in the previous ones
form euclidean disks of dimensions 0, 2, 4, 6 and 8 respectively (from left to right).
These constitute the cells of a CW structure on G, each of them freely generating
the corresponding homology group by dimension arguments. Define the Schubert
classes σi,j P H2pi`jq

pGq to be the Poincaré dual of the corresponding homology
class. Then we have relations

• σ2
1 “ σ1,1 ` σ2,

• σ1σ1,1 “ σ1σ2 “ σ2,1,

• σ1σ2,1 “ σ2,2,

• σ2
1,1 “ σ2

2 “ σ2,2,

• σ1,1σ2 “ 0.

It follows that σ3
1 “ 2σ2,1, σ4

1 “ 2σ2,2 and σ2
1σ1,1 “ σ2

1σ2 “ σ2,2, and by dimension
arguments any product with degree more than 8 vanishes. We get

H˚pGq “ Zrσ1, σ2s{pσ
3
1 ´ 2σ1σ2, σ

2
1σ2 ´ σ

2
2q

Proof: See [EH16, Thm. 3.10.] for a proof. To compute cup products, use
Poincaré duality and compute intersection products of the corresponding ho-
mology cycles, which correspond to intersections of linear spaces.
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Theorem 59. Every smooth cubic surface S Ď P3 contains exactly 27 distinct lines.

Proof: (Sketch)
Let F P Crx0, x1, x2, x3s be the polynomial defining S. Note that this

polynomial F corresopnds to a global section of Op3q.
The Grassmannian G “ Gp2, 4q parametrizes lines in P3. Let L P G.

What does it mean for L to be contained in S? The surface S is given by
the cubic form F . A line L is contained in S if this cubic form restricts to
the zero cubic form on L. But cubic forms on L – P1 are a vector space
H0
pL,OLp3qq of dimension 4, and as L varies in G this 4 dimensional vector

space varies forming a vector bundle E of rank 4 over G. The cubic form
F P H0

pP,Op3qq gives then a global section sF whose zero locus is the set of
lines L Ď S. As pointed out in corollary 19, this corresponds then to (the
Poincaré dual of) the Euler class epEq, which by corollary 33 corresponds to
c4pEq P H8

pGq “ Zrσ1, σ2s{pσ
3
1 ´ 2σ1σ2, σ

2
1σ2 ´ σ2

2q, where σ1 P H2
pGq and

σ2 P H4
pGq are the Schubert classes of lemma 58.

To compute c4pEq we want to understand E in terms of a simpler bundle.
This will be the dual of the tautological bundle S Ñ G. The fibre of S over
a point L P G is the 2-dimensional vector space V Ă C4 such that L “ PpV q.
Its dual S_ is then a rank 2 bundle whose fibre over each line L P G is the
vector space of linear forms on the plane V Ď C4 such that PpV q “ L. This is
precisely the vector space of global sections H0

pL,OLp1qq – H0
pP1,Op1qq. By

the discussion in the previous paragraph, the bundle E is given over each fibre
by H0

pL,OLp3qq, so we have
E – S3

pS˚q

Now we need to compute the Chern class of S˚. Let f be a linear form
on C4. Then f restricts to a linear form on each plane V representing a line
L P G, giving a global section of S˚. By example 46 we know that c1pS˚q
is the Poincaré dual of the locus over which two generic global sections f1, f2
become linearly dependent, which is precisely the set of lines L “ PpV q P G
such that

V X Zpf1q X Zpf2q Ľ t0u

because this means that there is a whole line in V along which f1 and f2 are
zero, thus a non trivial linear combination of f1 and f2 over V which is zero.
But V XZpf1qXZpf2q containing a line means that PpV qXPpZpf1qXZpf2qq ‰

∅, so this zero locus is given by the Schubert cycle
ř

1. We get

c1pS˚q “ σ1

For c2pS˚q we need to compute the zero locus of a section f . This is now
the set of lines L “ PpV q P G such that f |L “ 0, i.e. L Ď Zpfq which is a
hyperplane. So we get

c2pS˚q “ σ1,1

And therefore
cpS˚q “ 1` σ1 ` σ1,1
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The claim now is that c4pEq “ c4pS
3pS˚qq “ 27σ2,2. To prove this formula

we may assume by proposition 32 that S˚ splits as the sum of two line bundles
L‘M. Let α “ c1pLq and β “ c1pMq. Then

cpS˚q “ 1` σ1 ` σ1,1 “ p1` αqp1` βq

and therefore α ` β “ σ1 and αβ “ σ1,1. Now

S3
pS˚q “ L3

‘ pL2
bMq ‘ pLbM2

q ‘M3

We get from lemma 36 that

cpS3
pS˚qq “ p1` 3αqp1` 2α ` βqp1` α ` 2βqp1` 3βq

We are only interested in the top degree of this polynomial expression. This
is given by

3αp2α ` βqpα ` 2βq3β “ 9αβp2α2
` 5αβ ` 2β2

q “ 9αβp2pα ` βq2 ` αβq

Using the relations obtained from the splitting, we can express this again
in terms of Chern classes of S˚ as 9σ1,1p2σ2

1 ` σ1,1q. Using the relations in
lemma 58 we get 9σ1,1p2σ1,1 ` 2σ2 ` σ1,1q “ 27σ2

1,1 “ 27σ2,2. Therefore

c4pEq “ c4pS
3
pS˚qq “ 27σ2,2

This corresponds in homology to 27 copies of the ground class rGs P H0pGq,
each of them being a point (line in P3). So there are exactly 27 lines contained
in a smooth cubic surface.
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