
HILBERT SCHEMES OF POINTS ON SURFACES

PEDRO NÚÑEZ

Abstract. Notes for the 7-th talk of the seminar on Heisenberg
algebras and Hilbert schemes of points on surfaces organized by
Mara Ungureanu during the Summer Term 2021 at the University
of Freiburg.

Contents

0. Conventions and notation 1
1. Introduction 1
2. Symmetric products and their strati�cation 2
3. Hilbert�Chow morphism 8
4. Symmetric products of curves 10
5. Hilbert�Chow morphism on surfaces 11
Appendix A. Quotients of varieties by �nite groups 13
References 24

0. Conventions and notation

We always work over C. By a variety we mean an integral separated
scheme of �nite type over C as in [Har77]. Similarly, curves and surfaces
are always implicitly assumed to be irreducible. The main reference for
the talk is [Nak99, �1].
Let n > 0 be a natural number and let X be a quasi-projective

scheme. Then we denote by Sn the symmetric group of order n, by
X×n the n-fold product of X with itself and by X [n] the Hilbert scheme
of n-points on X.
Let us �x the natural number n > 0 from now on.

1. Introduction

We would like to parametrize unordered tuples of n-points on a
smooth projective surface X. A natural candidate for parameter space
would be the quotient SnX of the product X×n by the Sn-action per-
muting the factors. But SnX has singularities, so instead we look at
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the Hilbert scheme of points X [n]. We will see that there is a mor-
phism π : X [n] → SnX, called the Hilbert�Chow morphism, which is a
resolution of singularities.

2. Symmetric products and their stratification

De�nition 2.1 (Symmetric products). Let X be a quasi-projective
variety. We de�ne the n-th symmetric product of X, denoted SnX, to
be the quotient of X×n by the action of Sn which permutes the factors.

Remark 2.2. Quotients of quasi-projective varieties by algebraic ac-
tions of �nite groups are discussed in Appendix A. It is shown in The-
orem A.18 that the quotient SnX exists as a scheme and is in fact
a quasi-projective variety. The �bers of the quotient morphism over
closed points are precisely the orbits of closed points in X, and the
quotient space carries the quotient topology induced by the quotient
morphism. Moreover, let P be any of the following properties:

• a�ne,
• projective,
• normal.

If X is P, then SnX is P. In particular, SnX is a normal projective
variety if X was a smooth projective variety.

Example 2.3. Sn(A1) ∼= An.

Proof. Indeed, it follows from Corollary A.14 that

Sn(A1) = Spec
(
C[x1, . . . , xn]Sn

)
,

so the claim follows from the fundamental theorem of symmetric poly-
nomials. �

In order to show later that the yet-to-be-de�ned Hilbert�Chow mor-
phism π : X [n] → SnX is a resolution of singularities in the case of
surfaces, it will be convenient to consider the following strati�cation of
SnX. Let k ∈ N>0 such that k ≤ n. Consider a tuple ν = (ν1, . . . , νk)
with ν1 ≥ ν2 ≥ . . . ≥ νk > 0 such that n = ν1 + . . . + νk. Call this a
partition of n of length l(ν) := k. Then, for each partition ν of n, we
de�ne

SnνX :=


l(ν)∑
i=1

νi[xi] ∈ SnX

∣∣∣∣∣∣ xi 6= xj for i 6= j

 .

Lemma 2.4. Denote by P (n) the set of partitions of n as de�ned above
and let X be a quasi-projective variety. Then:

(i) The collection {SnνX}ν∈P (n) is a strati�cation of SnX.
(ii) For all ν ∈ P (n) we have dim(SnνX) = l(ν) dim(X).
(iii) The stratum Sn(1,...,1)X is open.
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Proof. Let ν ∈ P (n) be a partition of length k. We have only de�ned
SnνX as a subset of closed points in SnX, so let us �rst check that it is in
fact an irreducible and locally closed subset of the set of closed points in
SnX. By de�nition there are natural numbers ν1 ≥ ν2 ≥ . . . ≥ νk > 0
such that n = ν1 + . . .+νk and ν = (ν1, . . . , νk). Consider the C-scheme
morphism

f : X×k −→ X×n

(x1, . . . , xk) 7−→ (x1, . . . , x1, . . . , xk, . . . , xk)

in which xi appears νi times on the right hand side for each i ∈
{1, . . . , k}. We may then compose this with the quotient morphism
q : X×n → SnX to obtain a C-scheme morphism h : X×k → SnX. Let
U ⊆ X×k be the dense open subset of tuples (x1, . . . , xk) such that
xi 6= xj whenever i 6= j. Then we have SnνX = h(U), and this is
what we want to show to be an irreducible locally closed subset. Irre-
ducibility follows from U being irreducible, which in turn follows from
U being a dense open subset of the irreducible space X×k. To show
that it is locally closed, we note �rst that f(X×k) is a closed subset
in X×n. And the quotient morphism q is �nite, in particular closed,
so h(X×k) is also a closed subset of SnX. Next we look at the dense
open subset V ⊆ X×n of n-tuples of points in which there are at least
k distinct points, so that f(U) = V ∩ f(X×k). This is a Sn-invariant
open subset, which in turn has two implications that we are interested
in. First, q(V ) is open, because q−1(q(V )) = V and SnX carries the
quotient topology induced by q. Second, q(V ∩ Z) = q(V ) ∩ q(Z) for
all Z ⊆ X×n, because if q(v) = q(z) for v ∈ V and z ∈ Z, then z ∈ V
as well. Therefore we can write

SnνX = h(U)

= q(f(U))

= q(V ∩ f(X×k))

= q(V ) ∩ q(f(X×k))

= q(V ) ∩ h(X×k),

expressing SnνX as an interseciton of the open subset q(V ) and the
closed subset h(X×k). This proves that SnνX is a locally closed subset of
SnX. Moreover, it also shows that dim(SnνX) = l(ν) dim(X), because
h has �nite �bers over closed points. So we get (ii). If k = n, i.e. if
SnνX = Sn(1,...,1)X, then f = idX×n and U is the Sn-invariant dense

open subset of X×n consisting of tuples without any repetitions. Since
it is Sn-invariant, q(U) = h(U) is a dense open subset as well, which
proves (iii).
Now we check that these irreducible, locally closed subsets form a

strati�cation of SnX. As sets, looking only at the closed points as
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usual, we can write

SnX =
⊔

ν∈P (n)

SnνX.

It remains to show that if Snν′X intersects the closure of SnνX in SnX,
then Snν′X is contained in this closure. First we compute the closure of
SnνX in SnX. The claim is that

SnνX =

{
k∑
i=1

νi[xi] ∈ SnX

}
,

where k = l(ν). So we may have more repetitions than the ones orig-
inally prescribed by the partition ν. Since q is surjective, closed and
continuous, we have

SnνX = q(q−1(SnνX)).

The preimage q−1(SnνX) consists of tuples (x1, . . . , xn) in which there
are exactly as many repetitions as prescribed by ν, meaning that for
each i ∈ {1, . . . , k} there exists some xi ∈ X such that xi appears ex-
actly νi times in (x1, . . . , xn). The analytic topology is �ner than the
Zariski topology, so the Zariski closure of q−1(SnνX) contains the clo-
sure of q−1(SnνX) in the analytic topology. The closure in the analytic
topology can be computed using limits of sequences, and we see that
it consists of tuples (x1, . . . , xn) in which there are at least as many
repetitions as prescribed by ν, i.e. meaning precisely that after taking
the quotient by the Sn-action we do get the claimed description. So
we would like to check that this is also the Zariski closure, for which it
su�ces to show that this is a Zariski closed subset. This set is cut out
by requiring a �nite list of equalities between pairs of coordinates in
the tuples of X×n, hence it is indeed Zariski closed. This proves that

the closure is described as we claimed above. Now if
∑l(ν′)

i=1 ν
′
i[xi] is an

element in Snν′X which belongs also to SnνX, then ν ′ prescribes at least
as many repetitions as ν does in the sense made precise earlier. There-
fore Snν′X ⊆ SnνX, which is what we needed to show and concludes the
proof of (i). �

Lemma 2.5. In the situation of Lemma 2.4, if we assume moreover
that X is smooth, then Sn(1,...,1)X is smooth as well.

Proof. Let U ⊆ X×n denote the dense and Sn-invariant open subset
of tuples without any repetitions. Then the �nite group Sn acts freely
on U . This implies that the quotient morphism q is locally free over
Sn(1,...,1)X, see Theorem (4.16) in https://www.math.ru.nl/~bmoonen/

BookAV/Quotients.pdf. Since each �ber over Sn(1,...,1)X consists of ex-

actly deg(q) points, q is also unrami�ed over Sn(1,...,1)X. Flat and un-

rami�ed implies étale [Har77, Exercise III.10.3], so the morphism q is
also smooth over Sn(1,...,1)X. We may now apply [Sta21, Tag 02K5] to

https://www.math.ru.nl/~bmoonen/BookAV/Quotients.pdf
https://www.math.ru.nl/~bmoonen/BookAV/Quotients.pdf
https://stacks.math.columbia.edu/tag/02K5
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conclude that Sn(1,...,1)X → Spec(C) is smooth as well, i.e. Sn(1,...,1)X is
smooth.
One could also argue analytic locally using the fact that free ac-

tions of �nite groups on Hausdor� spaces are properly discontinuous,
cf. [Bre97, Exercise III.7.1]. �

Example 2.6. Let us look at the case of X = A2 and n = 2. We want
to study the singularities of S2A2. By Lemma 2.5 we only need to study
the points outside of S2

(1,1)A2. Consider for example the point 2[(0, 0)].

We know that S2A2 has dimension 4, because it is the quotient of the
4-dimensional variety A2 × A2 by the action of a �nite group. More
precisely, if we identify (A2)×2 with A4 and S2 with Z/2Z, the action
of 1 + 2Z ∈ Z/2Z on the coordinate ring A := C[x1, y1, x2, y2] is given
by the C-algebra morphism uniquely determined by

x1 7→ x2,

y1 7→ y2,

x2 7→ x1,

y2 7→ y1.

The coordinate ring of S2A2 is then the subring of Z/2Z-invariants.
For example, the following polynomials are invariant under this action:

x1 + x2,

y1 + y2,

x1x2,

y1y2.

These all belong to the ideal m of the point 2[(0, 0)], because this
point is the image of (0, 0, 0, 0) ∈ A4 and the quotient morphism is
obtained by intersecting each prime ideal with the subring of Z/2Z-
invariants. But the polynomial x1y1 + x2y2 is also in m, and we claim
that these 5 polynomials are κ(m)-linearly independent in m/m2. Since
m is maximal, we can write κ(m) = (AZ/2Z)/m. So suppose we have
polynomials f1, . . . , f4 ∈ AZ/2Z such that there exists some polynomial
g ∈ m2 such that

x1y1 + x2y2 + f1(x1 + x2) + f2(y1 + y2) + f3x1x2 + f4y1y2 = g.

Since polynomials in m have zero constant term, any non-zero mono-
mial appearing as a term of g has total degree at least 2. We claim
�rst that the total degree 2 part of g has to be non-zero. Indeed, we
can argue by contradiction looking at the total degree 2 part of the
previous equation. The only homogeneous polynomials of total degree
1 in m are the C-linear combinations of x1+x2 and y1+y2. So assuming
that the total degree 2 part of g is zero, we may write the total degree
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2 part of the previous equation as

x1y1 + x2y2 + (λ1x1 + µ1y1 + λ1x2 + µ1y2)(x1 + x2)

+(λ2x1 + µ2y1 + λ2x2 + µ2y2)(y1 + y2) + λx1x2 + µy1y2 = 0

for some λ, µ, λ1, λ2, µ1, µ2 ∈ C. Writing out the product we see that
the coe�cient of x2

1 is λ1, which must therefore be zero. And simi-
larly, the coe�cient of y2

1 is µ2, which must then be zero. Grouping
coe�cients we obtain the system of equations

λ = 0

µ = 0

µ1 + λ2 = 0

1 + µ1 + λ2 = 0

The system does not have any solution, so we reach the desired
contradiction. Therefore g must have a non-zero homogeneous to-
tal degree 2 part. As explained above, this has to be the product
of two C-linear combinations of x1 + x2 and y1 + y2, say, the prod-
uct of α1(x1 + x2) + β1(y1 + y2) and α2(x1 + x2) + β2(y1 + y2) with
α1, β1, α2, β2 ∈ C. With the same notation as above for the left hand
side of the equation we would obtain the system of equations

1 + µ1 + λ2 − α1β2 − α2β1 = 0

λ1 − α1α2 = 0

λ+ 2λ1 − 2α1α2 = 0

µ2 − β1β2 = 0

µ+ 2µ2 − 2β1β2 = 0

µ1 + λ2 − α1β2 − α2β1 = 0

The system still does not have any solution, so we have a contradiction
in any case. Therefore the 5 polynomials are κ(m)-linearly independent
in m/m2, which shows that 2[(0, 0)] is a singular point in S2A2.
More generally, the same arguments show that SnA2 is singular at

n[(0, . . . , 0)] for any n ≥ 2, cf. [Rot16, Example 3.5]. But for n = 2
we can still say a bit more about the geometry of the singularities, so
let us do that following [Rot16, Example 3.6]. We consider the basis
(1, 0, 1, 0), (0, 1, 0, 1), (1, 0,−1, 0) and (0, 1, 0,−1) on A4, so that the
action of Z/2Z on the new coordinate ring R := C[x, y, u, v] is given
by

x 7→ x,

y 7→ y,

u 7→ −u,
v 7→ −v.
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We can think now of this action on A4 ∼= A2 × A2 as acting only on
the second factor, which is the one corresponding to the coordinates
u and v. We check �rst what the quotient is in this case. A Z/2Z-
invariant polynomial in C[u, v] can have only monomials of even total
degree. Indeed, the monomials u2, uv and v2 are all in C[u, v]Z/2Z, so
all the monomials of even total degree are in this subalgebra as well,
i.e. C[u2, uv, v2] ⊆ C[u, v]Z/2Z. If f(u, v) is a Z/2Z-invariant polyno-
mial, we may substract from it all its even total degree monomials.
The result will be a Z/2Z-invariant polynomial h with the property
that h(−u,−v) = −h(u, v) for all (u, v) ∈ A2. It follows from Z/2Z-
invariance that we must have h(u, v) = 0 for all (u, v) ∈ A2, hence
h = 0 and f ∈ C[u2, uv, v2]. This shows that the coordinate ring of the
quotient of A2 by this Z/2Z-action is C[u2, uv, v2]. We have a surjective
C-algebra morphism

φ : C[a, b, c] −→ C[u2, uv, v2]

a 7−→ u2,

b 7−→ uv,

c 7−→ v2.

So we may rewrite the coordinate ring of the quotient as
C[a, b, c]/ ker(φ). We have (b2−ac) ⊆ ker(φ), so V (ker(φ)) ⊆ V (b2−ac)
in A3. But both of them are irreducible closed subsets of A3 of the same
dimension, so they must be equal. Since both (b2 − ac) and ker(φ) are
prime ideals, this implies that they are equal. So the coordinate ring
of the quotient is C[a, b, c]/(b2−ac) and we see that the quotient is the
cone over the smooth conic {[a : b : c] ∈ P2 | b2 − ac} [Har77, Exercise
I.2.10].
Let us denote G := Z/2Z. Coming back to the G-action on A2 ×

A2, we consider the G-invariant morphism A2 × A2 → A2 × (A2/G),
which is given by the universal property of the product applied to the
projection p1 : A2 × A2 → A2 and the composition of the projection
p2 : A2 × A2 → A2 and the quotient q2 : A2 → A2/G, where this last
quotient morphisms corresponds to the action that we were discussing
earlier, i.e. A2/G is the cone over the conic above. This morphism is
indeed G-invariant, because G acts trivially on the �rst factor. So we
obtain a C-scheme morphism

ψ : A4/G→ A2 × (A2/G).

We claim that it is an isomorphism. Indeed, it follows from the ex-
plicit description of closed points in the quotient by the action of a
�nite group that ψ is bijective on closed points. Moreover, the right
hand side is normal, because it is the product of two normal varieties,
cf. https://mathover�ow.net/a/2058/99436. This already implies that

https://mathoverflow.net/a/2058/99436
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ψ is an isomorphism; see https://mathover�ow.net/a/264216 for a de-
tailed argument combining various versions of Zariski's Main Theorem.
Putting all the discussion above together, we see that the quotient

of A4 by the Z/2Z-action is the product of the a�ne plane and the
cone over a smooth conic, hence giving a more explicit description of
the singularities of the quotient.

3. Hilbert�Chow morphism

Proposition 3.1. Let X be a quasi-projective surface. Then the for-
mula

π : X [n] −→ SnX

[Z] 7−→
∑
x∈X

dimC(OZ,x)[x]

de�nes a C-scheme morphism called the Hilbert�Chow morphism.

Proof. We sketch the construction of the corresponding morphism fol-
lowing [Leh00, �3.2]. A similar but slightly di�erent construction of
the same morphism can be found in [Ber08, p. 41]; the core of the ar-
gument seems to be essentially the same but the reduction steps are
not exactly the same. The idea in any case is to de�ne π at the level
of representable functors and then obtain the morphism at the level of
varieties by Yoneda. Let HilbnX be the functor represented by X [n] and
let hSnX be the functor represented by SnX. We want a natural trans-
formation η : HilbnX → SnX. To de�ne such a natural transformation
we construct for each C-scheme S and each �at family Z ∈ HilbnX(S)
a canonical C-scheme morphism S → SnX. Since we are going to con-
struct something canonical, it su�ces to construct it locally on S; then
the resulting canonical morphisms will agree on the intersections and
will glue to yield the desired morphism.
We want to reduce to the case in which X and S are a�ne. Let then

s0 ∈ S be a closed point. The corresponding closed subscheme Zs0 ⊆ X
consists of �nitely many points, perhaps with some multiplicity. By
Lemma A.17 we may �nd an a�ne open subset U = Spec(A) ⊆ X such
that Zs0 ⊆ U . Let p : Z → S denote the restriction of the projection
S ×X → S, which is a �at �nite morphism of degree n. Consider the
closed subset (S × (X \ U)) ∩ Z ⊆ Z. Since p is closed, the image of
this closed subset is closed in S as well. Let V ′ be its complement and
let s ∈ V ′ be a closed point. Then Zs ⊆ U , because

p−1(S \ p((S × (X \ U)) ∩ Z)) ⊆ Z \ ((S × (X \ U)) ∩ Z) ⊆ S × U.
Take now V = Spec(B) an a�ne open neighborhood of s0 inside V

′ and
consider ZV := Z ∩ (V ×U) = p−1(V ). Since p is �nite, ZV = Spec(C)
is a�ne; this also follows from ZV being a closed subscheme of the
a�ne scheme V × U = Spec(A⊗C B), which exhibits C as a quotient
ring (A ⊗C B)/I for some ideal I ⊆ A ⊗C B. Since p is �at and �nite

https://mathoverflow.net/a/264216
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of degree n, it is �nite locally free of rank n [Sta21, Tag 02KB]; so up
to making V a bit smaller we may assume that C is a free B-module
of rank n. Given a ∈ A, we may look at the B-linear endomorphism of
C given by multiplication with a modulo I. This gives us a canonical
ring morphism f : A → EndB(C), which in turn induces a canonical
ring morphism

A⊗Cn → EndB(C⊗Bn).

The subring of invariants (A⊗Cn)Sn acts on the submodule of antisym-
metric tensors in C⊗Bn, which is a free B-module of rank 1. This gives
us for every Sn-invariant tensor in A

⊗Cn a B-linear endomorphism of
this free B-module of rank 1, hence an element in b. That is, we have
a canonical ring morphism

ϕ : (A⊗Cn)Sn → B,

as we wanted. The element b ∈ B that we obtain from a tensor a1 ⊗
. . .⊗ an ∈ A⊗Cn is given by

1

n!
coeff(t1 · · · tn, det(t1f(a1) + · · ·+ tnf(an))),

see also [Ber08, Proposition 2.17].
Some manipulation with antisymmetric tensors and symmetric prod-

ucts of direct products of rings shows that this construction yields the
desired result over closed points, see [Leh00, p. 9]. �

Example 3.2. Let us look at the case of X = A2 and n = 2. In the
last talk we saw how to describe (A2)[2] in terms of endomorphisms of
C2 [Nak99, Theorem 1.9]. Namely, a closed point in (A2)[2] corresponds
to the equivalence class of a triple (A,B, v) in which A and B are 2×2
matrices with complex coe�cients, v ∈ C2 is a vector, and the following
conditions hold:

(1) The matrices commute, i.e. AB = BA.
(2) (�Stability�) There is no proper subspace W ⊆ C2 such that

v ∈ W , AW ⊆ W and BW ⊆ W .

Two such triples (A,B, v) and (A′, B′, v′) are equivalent if and only if
there exists P ∈ GL2(C) such that

(A′, B′, v′) = (PAP−1, PBP−1, Pv).

Since A and B commute, we can triangulize them simultaneously,
i.e. we may �nd a representative of [(A,B, v)] in which both matri-
ces are upper triangular. Indeed, it su�ces to show that A and B
have a common eigenvector. For any eigenvalue λ of A, the subspace
ker(A− λI2×2) is B-invariant, because if Au = λu, then

ABu = BAu = Bλu = λBu.

Since we are working over an algebraically closed �eld, the non-zero B-
invariant subspace ker(A−λI2×2) contains an eigenvector of B. This is

https://stacks.math.columbia.edu/tag/02KB


10 PEDRO NÚÑEZ

then an eigenvector of A and of B at the same time, and after changing
basis on C2 and setting this eigenvector as the �rst element of the new
basis we obtain the desired simultaneous triangulizations of A and B.
So assume from now on that

A =

(
λ1 a
0 λ2

)
and B =

(
µ1 b
0 µ2

)
.

We can then recover the corresponding ideal I ⊆ C[x, y] as the kernel
of

φ : C[x, y] −→ C2

f(x, y) 7−→ f(A,B)v.

The stability condition implies that φ is surjective, so I is indeed an
ideal of colength 2. A direct computation shows that φ((x − λ1)(y −
µ2)) = 0. Since A and B commute, their roles are interchangeable, so
we also have φ((x− λ2)(y− µ1)) = 0, which can also be seen by direct
computation using the fact that commutativity of A and B translates
into λ1b+µ2a = µ1a+λ2b. The Cayley�Hamilton theorem implies that

φ((x− λ1)(x− λ2)) = φ((y − µ1)(y − µ2)) = 0.

Therefore I = (x− λ1, y − µ1)(x− λ2, y − µ2) and hence

π([(A,B, v)]) = [(λ1, µ1)] + [(λ2, µ2)].

Suppose that (λ1, µ1) 6= (λ2, µ2). Assume without loss of generality
that λ1 6= λ2. Then A is diagonalizable, so we may �nd a representative
of [(A,B, v)] in which a = 0. Call it (A,B, v) again. Now B may
not be triangular anymore a priori, but since B commutes with the
diagonal matrix A and the eigenvalues of A are all distinct, B is in
fact diagonal as well, as a direct computation shows. So in this case
[(A,B, v)] is uniquely determined by [(λ1, µ1)] + [(λ2, µ2)]. This shows
that π is injective over the smooth dense open subset V := S2

(1,1)A2.

Since it is also surjective and S2
(1,1) is smooth, it is an isomorphism by

a combination of various versions of Zariski's Main Theorem, cf. https:
//mathover�ow.net/a/264216. Using that we already know (A2)[2] to
be smooth from [MS05, Theorem 18.7] or from [Nak99, Theorem 1.9],
we can also argue analytically to obtain the same conclusion, namely,
that π is an isomorphism over the smooth dense open subset S2

(1,1)A2 ⊆
S2A2.
The same holds for n > 2. This can be checked with the same argu-

ments as above, only that the notation and the computations become
a little less explicit, cf. [Nak99, Example 1.12.(4)].

4. Symmetric products of curves

We have seen in Example 2.3 that SnA1 ∼= An. We also have:

Example 4.1. Sn(P1) ∼= Pn.

https://mathoverflow.net/a/264216
https://mathoverflow.net/a/264216
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Proof. This proof is taken from [Rot16, Example 3.4]. Consider a point

n∑
i=1

[[ui : vi]] ∈ Sn(P1).

Then we consider the homogeneous polynomial
n∏
i=1

(uiy − vix) = anx
n + a1x

n−1y + . . .+ any
n.

The coe�cients give us a point [a0 : . . . : an] ∈ Pn. This formula de�nes
a C-scheme morphism (P1)×n → Pn, because ai is a homogeneous poly-
nomial in the variables u1, . . . , un, v1, . . . , vn for all i ∈ {1, . . . , n}. It is
moreover a symmetric polynomial by Cardano�Vieta's formulas, so the
universal property gives us the desired induced morphism Sn(P1)→ Pn.
And the point [a0 : . . . : an] determines uniquely the original unordered
tuple as the set of roots of the corresponding homogeneous polyno-
mial, so it is an isomorphism because it is bijective, Pn is smooth and
charC = 0, cf. https://mathover�ow.net/a/264216 again. �

In particular, both A1 and P1 have smooth symmetric products.
More generally:

Proposition 4.2 ([Rot16, Proposition 3.1]). Let X be a smooth curve.
Then SnX is smooth.

Proof. We have seen this already in the case of A1 in Example 2.3.
The idea is to reduce to this case arguing locally analytically, because
in the analytic topology we have X ∼= A1 locally. The completion of the
algebraic local ring at a closed point is isomorphic to the completion
of the analytic local ring at the corresponding point of the associated
complex analytic space [Ser56, Proposition 3]. A noetherian local ring
is regular if and only if its completion is regular [Sta21, Tag 07NY].
Finally, taking subrings of invariants commutes with completions of
local rings, because it commutes more generally with �at base change,
cf. https://math.stackexchange.com/a/2706992. �

5. Hilbert�Chow morphism on surfaces

The goal in this section is to prove the following:

Theorem 5.1. Let X be a smooth projective surface. Then the Hilbert�
Chow morphism π : X [n] → SnX is a resolution of singularities.

In particular, we would like to ensure that X [n] is smooth. So if
we also knew that X [n] is connected, then it would be necessarily ir-
reducible, as the intersection of two distinct irreducible components
would contradict smoothness. The following Lemma 5.2 shows that
π is an isomorphism over the smooth dense open subset Sn(1,...,1)X, so

https://mathoverflow.net/a/264216
https://stacks.math.columbia.edu/tag/07NY
https://math.stackexchange.com/a/2706992
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that π−1(Sn(1,...,1)X) is a dense open subset of the irreducible space X [n].
Hence π would be birational and we would have proven Theorem 5.1.

Lemma 5.2. In the situation of Theorem 5.1, the Hilbert�Chow mor-
phism π is an isomorphism over the smooth open stratum Sn(1,...,1)X.

Proof. We use again https://mathover�ow.net/a/264216 to reduce the
problem to checking bijectivity on closed points over the smooth open
stratum. Connectedness of X [n] is going to be proven in Lemma 5.3,
so bijectivity is indeed all there is left to show. A closed subscheme
Z ⊆ X over a point in this open smooth stratum is suppoerted at n
points and has length n. So there is no choice but to put over each
point the corresponding structure sheaf, i.e.

OZ =
n⊕
i=1

κ(xi),

where on the right hand side we mean the corresponding skyscraper
sheaves. Thus π is bijective on closed points over Sn(1,...,1)X. �

Let us discuss then the connectedness part:

Lemma 5.3. In the situation of Theorem 5.1, X [n] is connected.

Proof. We sketch the proofs in [HL97, Example 4.5.10] and in [Leh00,
Lemma 3.7], which use the methods from [ESm98]. We refer to these
references for further details.
The idea is to proceed by induction on n using the �incidence variety�

X [n,n+1] := {(Z1, Z2) | Z1 ⊆ Z2} ⊆ X [n] ×X [n+1].

Consider the morphism

φ : X [n,n+1] −→ X [n]

(Z1, Z2) 7−→ Z1,

the morphism

ψ : X [n,n+1] −→ X [n+1]

(Z1, Z2) 7−→ Z2,

and the morphism ρ : X [n,n+1] → X which sends a pair (Z1, Z2) to the
point of X by which the subschemes Z1 and Z2 di�er. Let X [n] ×X ⊇
X [n] → X [n] be the universal family, which has the subscheme Z ⊆ X
as the �ber over a point Z ∈ X [n], i.e.

X [n] = {(Z, x) | x ∈ Z} ⊆ X [n] ×X.
The �ber of Φ := φ × ρ : X [n,n+1] → X [n] ×X over a point (Z, x), not
necessarily with x ∈ Z, is given by the pairs (Z,Z ′) such that Z ′ is
obtained from Z by �adding� the point x. If IZ denotes the ideal sheaf
of Z in X, then this procedure of adding the point x can be translated
into giving a surjection λ : IZ(x) = (IZ)x/mx(IZ)x → κ(x) = C; the

https://mathoverflow.net/a/264216
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subscheme Z ′ would then be given by the kernel of the composition
IZ → IZ(x) → κ(x). Conversely, the ideal sheaf IZ determines
the surjection λ uniquely up to non-zero scalar. Indeed, the quotient
IZ/IZ′ is isomorphic to the structure sheaf of the reduced point x ∈ X
by which Z and Z ′ di�er. Since x is a closed point, we may identify
this structure sheaf with the residue �eld κ(x), because the �eld of
fractions of the integral domain A/p is isomorpic to Ap/pAp for any
ring A and any prime ideal p ⊆ A. The desired surjection corresponds
to a choice of such an isomorphism, and the choices are precisely the
non-zero scalars. Therefore the �bers of Φ are projective spaces, and
in particular connected.
If n = 1, then X [1] = X is connected by assumption. Assum-

ing by induction that X [n] is connected for n ≥ 1, we see now that
Φ: X [n,n+1] → X [n]×X is a surjective morphism with connected �bers
onto a connected space. This implies that X [n,n+1] is itself connected,
and since ψ : X [n,n+1] → X [n+1] is surjective and continuous, X [n+1] is
connected as well. �

Now that we know that our Hilbert scheme is connected, it remains
to show only that it is smooth:

Lemma 5.4. In the situation of Theorem 5.1, X [n] is smooth.

Proof. We argue analytic locally as in Proposition 4.2. If π(Z) =∑k
i=1 νi[xi] with xi 6= xj for i 6= j, then analytic locally we may �nd

disjoint open neighborhoods Ui of the xi in X, so we obtain an iso-

morphism X [n] ∼=
∏k

i=1 U
[νi]
i around the point Z. Therefore it su�ces

to show smoothness around a point Z such that π(Z) = n[x] for some
x ∈ X, and this allows us to replace X by A2, because in the analytic
topology there is an open neighborhood of x ∈ X which is isomorphic
to A2. Smoothness follows then from explicit descriptions of (A2)[n]

seen in previous talks, see [Nak99, Theorem 1.9] or [MS05, Theorem
18.7]. �

As explained above, combining Lemma 5.3 and Lemma 5.4 we obtain
Theorem 5.1.

Remark 5.5. One can also prove smoothness of X [n] with a direct com-
putation of the dimension of

TZX
[n] ∼= Hom(IZ ,OX),

see [HL97, Example 4.5.10].

Appendix A. Quotients of varieties by finite groups

We will mostly follow the notes in [Mus11, Appendix A] in this ap-
pendix.
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Remark A.1. Let G be a �nite group and let X = SpecA be an a�ne
variety. An action of G on A by C-algebra morphisms from the left
is the same as an aciton of G on X by C-scheme morphisms from the
right. The two things are more explicitly related as follows:

(g · f)(x) = f(x · g).

From now on, by an action of a �nite group G on a C-scheme
(resp. on a C-algebra) we will always mean a right action via C-scheme
morphisms (resp. a left action via C-algebra morphisms).
There are various notions of quotients in algebraic geometry,

cf. [MFK94, �0.1]. Fortunately, in the case of �nite groups, the various
notions agree.

De�nition A.2 (Categorical quotient). Let σ : X × G → X be an
action of a �nite group G on a C-scheme X. A categorical quotient of
X by G is a pair (Y, q) consisting of a C-scheme Y and a C-scheme
morphism q : X → Y with the following properties:

i) The morphism q is G-invariant, i.e. we have q◦σ = q◦p1, where
p1 : X ×G→ X is the projection.

ii) The morphism q is universal with respect to the property in i),
i.e. for every pair (Z, ψ) consisting of a C-scheme Z and a G-
invariant C-scheme morphism ψ : X → Z, there exists a unique
C-scheme morphism ψ̄ : Y → Z such that ψ̄ ◦ q = ψ.

Lemma A.3. Let σ : X ×G→ X be an action of a �nite group G on
a C-scheme X. If a categorical quotient (Y, q) exists, it is unique up to
unique isomorphism. That is, if (Y ′, q′) is another categorical quotient,
then there exists a unique C-scheme isomorphism q̄′ : Y → Y ′ such that
q′ = q̄′ ◦ q.
Proof. Since the pair (Y ′, q′) satis�es the property i) above, the uni-
versal property of (Y, q) ensures the existence of a C-scheme morphism
q̄′ : Y → Y ′ such that q′ = q̄′ ◦ q. It remains to show that this is
an isomorphism. The roles of (Y, q) and (Y ′, q′) are symmetric, so we
can also �nd a C-scheme morphism q̄ : Y ′ → Y making the following
diagram commute:

X

Y ′ Y Y ′ Y

q′

q q′

q

q̄ q̄′ q̄

The uniqueness part of the universal property in ii) above ensures
that q̄ ◦ q̄′ = idY and q̄′ ◦ q̄ = idY ′ , so q̄

′ is indeed a C-scheme isomor-
phism.

�

Remark A.4. In view of the uniqueness given by Lemma A.3, we will
sometimes denote a categorical quotient by (X/G, q).
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De�nition A.5 (Geometric quotient). Let σ : X×G→ X be an action
of a �nite group G on a �nite type1 C-scheme X. A geometric quotient
of X by G is a pair (Y, q) consisting of a C-scheme Y and a C-scheme
morphism q : X → Y with the following properties:

(1) The morphism q is G-invariant, i.e. property i) above holds.
(2) The morphism q is surjective and the �bers of q over closed

points of Y are precisely the orbits of the closed points of X.
(3) The scheme Y carries the quotient topology induced by q, i.e. a

subset V ⊆ Y is open if and only if q−1(V ) ⊆ X is open.
(4) The structure sheaf OY is the subsheaf of q∗OX consisting of

G-invariant functions, i.e. if f ∈ Γ(V, q∗OX) = Γ(q−1(V ),OX),
then f ∈ Γ(V,OY ) if and only if

q−1(V )×G q−1(V )

q−1(V ) A1

σ

p1 f

f

commutes, where we regard the regular functionf as a C-scheme
morphism f : q−1(V )→ A1.

Remark A.6. Being a geometric quotient is local on the target in the
sense of [GW10, Appendix C].

Proposition A.7. Let σ : X × G → X be an action of a �nite group
G on a �nite type C-scheme X and let (Y, q) be a geometric quotient
of X by G. Then (Y, q) is also a categorical quotient.

Proof. We follow the proof given in [MFK94, Proposition 0.1]. Suppose
we are given another pair (Z, ψ) with the property i) above, i.e. such
that ψ : X → Z is a G-invariant C-scheme morphism. Recall from
[Har77, Exercise II.2.4] that if Z = Spec(B) was a�ne, then C-scheme
morphisms Y → Z would correspond bijectively to C-algebra mor-
phisms B → Γ(Y,OY ). The idea is to use this combined with our
understanding of Γ(Y,OY ) given by property (4) above.
So let {Wi}i∈I be an a�ne open cover of Z, say Wi = Spec(Bi) for

each i ∈ I. Since ψ is G-invariant, each Ui := ψ−1(Wi) is a G-invariant
open subset in X. Therefore q−1(q(ψ−1(Wi))) = ψ−1(Wi). Let us call
Vi := q(ψ−1(Wi)) for each i ∈ I. Since Y carries the quotient topology
induced by q and q−1(Vi) = ψ−1(Wi) is open in X, we deduce that Vi
is also open in Y for each i ∈ I. Surjectivity of q ensures that {Vi}i∈I
is an open cover of Y .
As usual with existence and uniqueness statements, it will be conve-

nient to start by arguing the uniqueness, which will then likely give us

1This assumption makes condition (2) below less cumbersome to formulate,
cf. [MFK94, De�nition 0.6].
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some hints as to how to show the existence. Suppose that the desired
factorization ψ̄ : Y → Z existed. Then, since ψ = ψ̄ ◦ q, we have

ψ̄(Vi) = ψ̄(q(ψ−1(Wi))) = ψ(ψ−1(Wi)) ⊆ Wi

for each i ∈ I. So for each i ∈ I, our factorization ψ̄ : Y → Z would
yield a morphism ψ̄i : Vi → Wi such that ψi = ψ̄i◦qi, where qi : Ui → Vi
and ψi : Ui → Wi are the morphisms induced by q and ψ respectively.
Since the target Wi = Spec(Bi) of ψ̄i is a�ne, [Har77, Exercise II.2.4]
tells us that ψ̄i is uniquely determined by the correspdonding morphism
of C-algberas hi : Bi → Γ(Vi,OY ). Commutativity of the triangle of C-
schemes

Ui Wi

Vi

ψi

qi
ψ̄i

translates into commutativity of the triangle of C-algebras

Γ(Ui,OX) Bi

Γ(Vi,OY )

ψ∗i

hi
q∗i

But property (4) above tells us that q∗i is the inclusion of the G-
invariant regular functions on Ui, in particular an injective C-algebra
morphism. So each hi is uniquely determined by ψ, hence so is each ψ̄i
and hence so is ψ̄ itself.
Now to show existence the plan is �rst to show existence of the

hi de�ned as above, and then check that the corresponding ψ̄i glue
together into a C-scheme morphism Y → Z. So let i ∈ I and let us
show that hi exists, i.e. let us show that the image of ψ∗i consists of G-
invariant regular functions on Ui. Let then b ∈ Bi be a regular function
on Wi, which we regard as a C-scheme morphism b : Wi → A1. The G-
invariance assumption on ψ translates into saying that ψi(x ·g) = ψi(x)
for each closed point x ∈ Ui and each g ∈ G. We want to show that
g · ψ∗i (b) = ψ∗i (b) for each g ∈ G, so let g ∈ G be arbitrary. We regard
again regular functions as C-scheme morphisms into A1 and check the
equality on closed points of Ui:

(g · ψ∗i (b))(x) = ψ∗i (b)(x · g)

= b(ψi(x · g))

= b(ψi(x))

= (ψ∗i (b))(x).
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Hence the image of ψ∗i lies in the subalgebra of G-invariant regular
functions on Ui, and thus we can �nd the desired factorization hi.
The previous argument gives us a factorization ψ̄i : Vi → Wi for

each i ∈ I, and it remains to show that these glue together into a
morphism ψ̄ : Y → Z. Given i, j ∈ I, both ψ̄i|Vi∩Vj : Vi ∩ Vj → Wi and

ψ̄j|Vi∩Vj : Vi ∩ Vj → Wi are uniquely determined by the correpsonding
C-algebra morphisms hij, hji : Bi → Γ(Vi ∩ Vj,OY ). The arguments
above show that we must have hij = hji, so the two morphisms agree
on the intersections and we can glue them together as we wanted.

�

Lemma A.8. Let G be a �nite group acting on a C-algebra A of �nite
type over C. Then the set of invariant elements AG is a C-subalgebra
of A which is of �nite type over C. In particular, X := Spec(A) and
Y := Spec(AG) are �nite type C-schemes. We denote by q : X → Y
the C-scheme morphism induced by the inclusion AG ⊆ A.

Proof. Let ρ : G→ AutC(A) be the given left action. Let us �rst quickly
ensure that

AG :=
⋂
g∈G

{a ∈ A | ρ(g)(a) = a}

is a C-subalgebra of A.

• The subset AG ⊆ A is a subgroup. Indeed, since ρ(g) is a
ring morphism for every g ∈ G, we have 0 ∈ AG. And if
a1, a2 ∈ AG and g ∈ G, then it follows again from ρ(g) being a
ring morphism that

ρ(g)(a1 + a2) = ρ(g)(a1) + ρ(g)(a2) = a1 + a2.

• The subset AG ⊆ A is a subring. We have seen already that it
is a subgroup. Since ρ(g) is a ring morphism for every g ∈ G,
we also have 1 ∈ AG, so it remains only to show that AG is
closed under products. If a1, a2 ∈ AG and g ∈ G, then using
once again that ρ(g) is a ring morphism we see that

ρ(g)(a1a2) = ρ(g)(a1)ρ(g)(a2) = a1a2.

• The subset AG ⊆ A is a C-vector subspace. We have seen
already that it is a subgroup, so it remains only to show that
AG is closed under scalar product. If a ∈ AG, λ ∈ C and g ∈ G,
then we use the assumption that ρ(g) is C-linear to deduce that

ρ(g)(λa) = λρ(g)(a) = λa.

The other assertion in the lemma is that AG is a �nite type C-
algebra. The idea is to write AG as a �nite B-module for some suitable
�nite type C-algebra B. Then it would follow that AG is a �nite type
C-algebra as well. Indeed, let β1, . . . , βm ∈ B be generators of B as
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an algebra over C, and let e1, . . . , el ∈ AG be generators of AG as a
B-module. Then we can write any a ∈ AG as a B-linear combination

a =
l∑

i=1

biei,

and in turn each bi as an algebraic combination

bi = fi(β1, . . . , βm)

for some fi ∈ C[β1, . . . , βm]. It follows that we can write a as an
algebraic combination in the variables β1, . . . , βm, e1, . . . , el, so these
elements would form a system of generators of AG as a C-algebra.
In order to construct such B, we �rst note that the inclusion AG ⊆ A

is an integral ring extension. Indeed, every a ∈ A is a root of the monic
polynomial

Pa(t) :=
∏
g∈G

(t− ρ(g)(a)),

whose coe�cients are in AG by the Cardano�Vieta formulas. Let
α1, . . . , αm ∈ A be generators of A as an algebra over C. Let
{ci,j}dij=0 be the coe�cients of Pαi

for each i ∈ {1, . . . ,m}. Then de-
�ne B to be the C-subalgebra of A generated by all these coe�cients
{c1,0, . . . , c1,d1 , c2,0, . . . , cm,dm}. Since each of its generators is contained
in AG, we see that B is also a C-subalgebra of AG. Moreover, by con-
struction B ⊆ A is an integral ring extension. The elements α1, . . . , αm
still generate A as a B-algebra, so A is a �nitely generated B-module
[AM69, Corollary 5.2]. But B is noetherian, because it is a �nitely gen-
erated C-algebra, so every B-submodule of A must also be �nitely gen-
erated as a B-module. Therefore AG is a �nitely generated B-module,
which as explained earlier concludes the proof. �

Lemma A.9. In the situation of Lemma A.8, the C-scheme morphism
q : X → Y is �nite and surjective.

Proof. It follows from the proof of Lemma A.8 that A is �nitely gener-
ated as an AG-module, so the induced morphism q is �nite by de�nition
[Har77, p. 84]. Surjectivity follows from the going-up theorem, or more
precisely from one of the steps in its proof [AM69, Theorem 5.10]. �

Remark A.10. It follows from Lemma A.9 that Spec(AG) is irreducible
if Spec(A) was irreducible. But the converse is not true, e.g. consider
Z/2Z acting non-trivially on two points.

Lemma A.11. In the situation of Lemma A.8, the �bers of q over
closed points of Y are precisely the orbits of the closed points of X
under the action of G. In particular, q is G-invariant.

Proof. Let x ∈ X be a closed point. Let us check �rst that the orbit
x · G is contained in the �ber q−1(q(x)). Let m ⊆ A be the maximal
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ideal corresponding to x, i.e.

m = {f ∈ A | f(x) = 0}.

Let g ∈ G. Our goal is to show that q(x) = q(x ·g). The maximal ideal
corresponding to the point x · g is given by

{f ∈ A | f(x·g) = 0} = {f ∈ A | (g·f)(x) = 0} = {g·f | f ∈ m} = g·m.

So we need to show that

m ∩ AG = (g ·m) ∩ AG.

But we have

(g ·m) ∩ AG = {(g · f) ∈ AG | f ∈ m}
= {g−1 · (g · f) ∈ AG | f ∈ m}
= {f ∈ AG | f ∈ m}
= m ∩ AG.

Hence x ·G ⊆ q−1(q(x)).
Conversely, let x1, x2 ∈ q−1(q(x1)) be closed points with correspond-

ing maximal ideals m1 and m2 respectively. The assumption that x1

and x2 are in the same �ber translates into the equality

m1 ∩ AG = m2 ∩ AG.

We use this equality to show that

m1 ⊆
⋃
g∈G

(g ·m2).

Indeed, given any f ∈ m1, we can produce a G-invariant element in the
maximal ideal by looking at the (�nite) product∏

g∈G

(g · f) ∈ m1 ∩ AG = m2 ∩ AG ⊆ m2.

Since m2 is a prime ideal, there exists some g ∈ G such that g · f ∈ m2.
Hence m1 ⊆ ∪g∈G(g ·m2) as claimed. Since G acts by ring morphisms,
each ideal g · m2 is again a prime ideal. So we may apply the prime
avoidance lemma to conclude that there exists some g1 ∈ G such that
m1 ⊆ g1 ·m2. By symmetry of x1 and x2 there exists some g2 ∈ G such
that m2 ⊆ g2 ·m1. So

m1 ⊆ g1 ·m2 ⊆ g1g2 ·m1.

Since G acts by ring automorphisms, m1 and g1g2 ·m1 are prime ideals
of the same height. Therefore m1 = g1g2 · m1. From this we �nally
deduce that

g1 ·m2 ⊆ g1g2 ·m1 = m1 ⊆ g1 ·m2,

so that m1 = g1 ·m2 and x1 ∈ x2 ·G. �
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Lemma A.12. In the situation of Lemma A.8, the topology on Y is
the quotient topology induced by q : X → Y .

Proof. We need to show that a subset U ⊆ Spec(AG) is open as
soon as q−1(U) is open. So let U ⊆ Spec(AG) be a subset such
that q−1(U) is open in Spec(A). Let Z := Spec(AG) \ U . Then
q−1(Z) = Spec(A) \ q−1(U), which by assumption is a closed sub-
set in Spec(A). By Lemma A.9 the morphism q is surjective, so
Z ⊆ q(q−1(Z)). And q(q−1(Z)) ⊆ Z is always true, so we deduce
that q(q−1(Z)) = Z. But again from Lemma A.9 we know that q is a
�nite morphism, hence a closed morphism of topological spaces. So Z
is a closed subset and U is open, as we wanted to show. �

Lemma A.13. In the situation of Lemma A.8, the structure sheaf
OY is the subsheaf of q∗OX consisting of invariant functions, i.e. if
f ∈ Γ(V, q∗OX) = Γ(q−1(V ),OX), then f ∈ Γ(V,OY ) if and only if the
following diagram commutes:

q−1(V )×G q−1(V )

q−1(V ) A1.

σ

p1 f

f

Proof. This follows from the de�nition of the structure sheaf on the
spectrum of a ring combined with the compatibility of localization with
taking subrings of invariants [AM69, Exercise 5.12]. �

Corollary A.14. In the situation of Lemma A.8, the pair (Y, q) is a
geometric quotient of X by G.

Proof. Each of the necessary properties was already proven in the lem-
mas above:

(1) G-invariance follows from Lemma A.11.
(2) Surjectivity follows from Lemma A.9, and the �bers over closed

points being precisely the orbits of closed points follows from
Lemma A.11.

(3) We have seen that Y carries the quotient topology induced by
q in Lemma A.12.

(4) That the structure sheaf of Y agrees with the subsheaf of G-
invariant functions of q∗OX was checked in Lemma A.13.

So q is indeed a geometric quotient. �

Remark A.15. Recall from Remark A.6 that being a geometric quotient
is local on the target, so in the situation of Corollary A.14 we can
moreover say that q|q−1(V ) : q−1(V )→ V is a geometric quotient of the
G-invariant open q−1(V ) by G for every open subset V ⊆ Y .

Lemma A.16. Let σ : X × G → X be an action of a �nite group on
a �nite type C-scheme X. Suppose there exists an a�ne open cover
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{Ui}i∈I of X such that Ui is G-invariant for every i ∈ I. Then the
geometric quotient of X by G exists.

Proof. For each i ∈ I we get an action of G on the a�ne scheme Ui,
which is of �nite type over C. By Corollary A.14 we may form the
geometric quotient qi : Ui → Ui/G for each i ∈ I. For i, j ∈ I let us
denote by Ui,j the intersection Ui∩Uj. Since Ui and Uj are G-invariant,
so is Ui,j. Thus we have q−1

i (qi(Ui,j)) = Ui,j. And Ui/G carries by
de�nition the quotient topology induced by qi, so qi(Ui,j) is open in
Ui/G. We denote by qi,j : q−1

i (qi(Ui,j)) → qi(Ui,j) the corresponding
corestriction for all i, j ∈ I. Since geometric quotients are local on the
target, both qi,j and qj,i are geometric quotients of Ui,j by G. We have
seen that geometric quotients are categorical quotients, hence unique
up to unique isomorphism, so this ensures the existence of uniquely
determined isomorphisms

ϕi,j : qi(Ui,j) ∼= qj(Ui,j)

for each i, j ∈ I. Uniqueness ensures that ϕ−1
i,j = ϕj,i, so in order to

glue it remains to show the cocycle condition. Let i, j, k ∈ I. We
need to show that ϕi,j(qi(Ui,j) ∩ qi(Ui,k)) = qj(Ui,j) ∩ qj(Uj,k) and that
ϕi,k = ϕj,k ◦ ϕi,j on qi(Ui,j) ∩ qi(Ui,k). Let Ui,j,k denote Ui ∩ Uj ∩ Uk.
Then qj(Ui,j)∩qj(Uj,k) = qj(Ui,j,k), because qj(Ui,j,k) ( qj(Ui,j)∩qj(Uj,k)
would mean that we can �nd x ∈ Ui,j\Ui,j,k and y ∈ Uj,k\Ui,j,k such that
qj(x) = qj(y); since qj is a geometric quotient, its �bers are precisely
the G-orbits of points in Uj, and this would contradict G-invariance of
Ui as the following picture shows:

So in this case we do have qj(Ui,j)∩qj(Uj,k) = qj(Ui,j,k). And similarly
qi(Ui,j) ∩ qi(Ui,k) = qi(Ui,j,k), so we need to show that ϕi,j(qi(Ui,j,k)) =
qj(Ui,j,k). But by construction we have ϕi,j ◦ qi,j = qj,i, and this implies
the desired equality. Hence ϕi,k|qi(Ui,j,k) and ϕj,k◦ϕi,j|qi(Ui,j,k) are two iso-
morphisms between qi(Ui,j,k) and qk(Ui,k)∩qk(Ui,j) = qk(Ui,j,k). But the
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corestriction of each qi to qi(Ui,j,k) is also a geometric quotient of Ui,j,k
by G, so there exist unique isomorphisms ψi,k : qi(Ui,j,k) ∼= qk(Ui,j,k) un-
der Ui,j,k. In particular, since ϕi,k|qi(Ui,j,k) and ϕj,k ◦ϕi,j|qi(Ui,j,k) are two
such isomorphisms, they must be equal, as we wanted to show. Hence
the cocycle condition is satis�ed and we may glue the qi together to
obtain a C-scheme morphism q : X → Z for some C-scheme Z obtained
by glueing the Ui/G together [Har77, Exercise II.2.12]. Finally, since
being a geometric quotient is local on the target, it su�ces to show
that this resulting morphism q : X → Z is a geometric quotient on an
open cover of Z. But by construction Z has an open cover {Vi}i∈I
in which each Vi is identi�ed with Ui/G in such a way that the cor-
responding corestriction q|q−1(Vi) : q−1(Vi) → Vi is identi�ed with the
geometric quotient qi : Ui → Ui/G, so we are done. �

Lemma A.17. Let X be a quasi-projective C-scheme and let
x1, . . . , xm ∈ X be �nitely many closed points. Then there exists an
a�ne open subset U ⊆ X such that xi ∈ U for all i ∈ {1, . . . ,m}.

Proof. We reproduce here the argument given in [Mus11, Appendix A].
We regard X as a locally closed subset of some Pn. Then we look at
its Zariski closure X̄. If we �nd a hypersurface H ⊆ Pn which contains
X̄ \X but not x1, . . . , xm, then we are done, because Pn \H is a�ne2

and U := X \H = X̄ \H is closed inside an a�ne, hence a�ne itself.
The main ingredient to �nd the hypersurface H is the graded prime

avoidance lemma [Sta21, Tag 00JS]. Let C[z0, . . . , zn] be the homoge-
neous coordinate ring of Pn. If X̄ = X, we take I to be (z0, . . . , zn).
Otherwise we take I to be the homogeneous ideal of X̄ \X. We take
pi to be the maximal ideal corresponding to the point xi for each
i ∈ {1, . . . ,m}. Let i ∈ {1, . . . ,m}. We have (z0, . . . , zn) 6⊂ pi, be-
cause the maximal ideal (z0, . . . , zn) does not correspond to any point
in Pn. And xi 6∈ X̄ \ X, because xi ∈ X by assumption. So in any
case we have I 6⊂ pi. Hence we may apply graded prime avoidance to
deduce the existence of a homogeneous polynomial of positive degree
f ∈ I which is not in any of the pi, i.e. such that xi is not in the
hypersurface de�ned by f for any i ∈ {1, . . . ,m}. And since f ∈ I, we
have (f) ⊆ I, thus X̄ \X ⊆ V (I) ⊆ V (f). �

Theorem A.18. Let σ : X×G→ X be an action of a �nite group on a
quasi-projective C-scheme. Then the geometric quotient q : X → X/G
of X by G exists. The resulting C-scheme X/G is separated and of
�nite type3 over C. Moreover, let P be any of the following properties:

2If H is a hyperplane, then Pn \H ∼= An. If H is a hypersurface of degree d, then
we may regard it as the intersection of a hyperplane with the image of Pn under
the corresponding Veronese embedding, so the image of Pn \H would be a closed
subset inside the a�ne space given by the complement of this hyperplane, hence
a�ne itself.

3In fact it is again quasi-projective, cf. [Knu71, Proposition IV.1.5].

https://stacks.math.columbia.edu/tag/00JS
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(a) irreducible,
(b) reduced,
(c) integral,
(d) normal,
(e) a�ne,
(f) projective.

If X has P, then X/G has P. In particular, if X is a (projective)
variety, then X/G is a (projective) variety.

Proof. We start by checking the existence of the geometric quotient
with Lemma A.16. Since X is quasi-projective over C, it is also of
�nite type over C, so it remains to �nd a G-invariant a�ne open cover
of X. The orbit of every closed point x ∈ X is contained in some a�ne
open subset Ux by Lemma A.17. It may be the case that Ux is not yet
G-invariant, but in any case the open neighborhood ∩g∈GUx · g of x is
G-invariant. Since X is quasi-projective over C, it is also separated, so
the intersection of �nitely many a�ne open subsets is again an a�ne
open subset. Therefore we are able to �nd a G-invariant a�ne open
neighborhood around each closed point of X, and by Lemma A.16 the
geometric quotient q : X → X/G of X by G exists.
We show next separatedness of X/G over C. Note that q : X → X/G

is �nite and surjective, because we may check these properties on an
open cover of the target and by construction of X/G we may then
assume that we are in the situation of Lemma A.9. We can then apply
[Sta21, Tag 09MQ] to deduce separatedness of X/G over C.
The construction of X/G combined with Lemma A.8 shows that

X/G is locally of �nite type over C, and since X is quasi-compact and
q is surjective, so is X/G. Hence X/G is of �nite type over C.
About the remaining properties P in the statement:

(a) Since q is surjective, X/G is irreducible as soon as X is.
(b) Reducedness can be checked locally on X/G, so by construction

of X/G we may assume that we are in the situation of Corol-
lary A.14. But the corresponding ring morphism AG → A is
just the inclusion, so AG is reduced as soon as A is reduced.

(c) The same argument as for reducedness applies for integrality,
or one can also argue using that being integral is equivalent to
being reduced and irreducible, see [Har77, Proposition II.3.1].

(d) Normality can again be checked locally on X/G, so we may
assume that we are in the situation of Corollary A.14. We
need to show that AG is an integrally closed domain if A is an
integrally closed domain. For this we use compatibility of taking
G-invariant subrings with localization [AM69, Exercise 5.12].
Let f ∈ (AG)(0) = (A(0))

G be a G-invariant element in the �eld
of fractions of AG, which is the sub�eld of G-invariant elements
of the �eld of fractions of A. Suppose that f is integral over

https://stacks.math.columbia.edu/tag/09MQ
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AG, i.e. supposet that f is the root of some monic polynomial
with coe�cients in AG. We regard this monic polynomial as
a monic polynomial with coe�cients in A, which shows that
f is an element of A(0) which is integral over A. Since A is
integrally closed, this element of A(0) must already be in A.
And it is G-invariant as well, so f ∈ AG.

(e) If X is a�ne, then we may apply Corollary A.14 directly to
conclude that X/G is a�ne as well.

(f) Properness of X/G over C follows from the things that we have
shown already, since the image of a proper scheme in a separated
scheme of �nite type is proper [Sta21, Tag 03GN]. An argument
for the projectivity, which in fact shows that X/G is quasi-
projective as soon as X is, can be found in [Knu71, Proposition
IV.1.5]. Projectivity would also follow from the more general
GIT machinery.

�
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