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1. Introduction

Let𝑘 be a dierential eld of characteristic zerowith algebraically closed
subeld of constants𝐶 , 𝑛 ∈ N and 𝐴 ∈ M𝑛 (𝑘) an 𝑛 ×𝑛 matrix with entries
in 𝑘 . We consider a matrix dierential equation over 𝑘 of dimension 𝑛 of
the form ©«

𝑦′1
...

𝑦′𝑛

ª®®¬ =
©«
𝑎11 · · · 𝑎1𝑛
...

...

𝑎𝑛1 · · · 𝑎𝑛𝑛

ª®®¬
©«
𝑦1
...

𝑦𝑛

ª®®¬ , (1)

which we will also write as 𝑦′ = 𝐴𝑦 using the convention that the deriv-
ation acts entry-wise. We would like to nd 𝑛 solution vectors linearly
independent over 𝐶 , but this may not be possible in 𝑘𝑛 . This motivates
passing to a Picard-Vessiot extension 𝑘 ⊆ 𝐿, in which some 𝐹 ∈ GL𝑛 (𝐿)
such that 𝐹 ′ = 𝐴𝐹 exists. Fixing such a fundamental matrix 𝐹 we obtain
an embedding of the group Gal(𝐿/𝑘) of dierential 𝑘-automorphisms of
𝐿 into GL𝑛 (𝐶) which expresses Gal(𝐿/𝑘) as a linear algebraic algebraic
group, i.e., a Zariski-closed subgroup of GL𝑛 (𝐶). Our goal is to prove the
Galois correspondence in this context:
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Theorem 1. In the setting above, there is an inclusion reversing bijection
between closed subgroups of Gal(𝐿/𝑘) and intermediate dierential elds of
𝑘 ⊆ 𝐿 given by sending a subgroup 𝐻 to the xed eld 𝐿𝐻 and a subeld 𝑀
to the Galois group Gal(𝐿/𝑀).

2. Recollections from previous talks

Most of the necessary results have already been discussed in earlier
talks, so today’s talk is more about putting the various ingredients to-
gether. In particular, it is a good opportunity to recall the things that we
have seen so far. So let us recall all the objects involved in the statement
through a couple of concrete examples.

2.1. The dierential eld. We are working over a dierential eld 𝑘 of
characteristic zero. This means that 𝑘 is a eld of characteristic zero to-
gether with a derivation on 𝑘 , i.e., a function (−)′ : 𝑘 → 𝑘 such that

(𝑎 + 𝑏)′ = 𝑎′ + 𝑏′ and (𝑎𝑏)′ = 𝑎′𝑏 + 𝑎𝑏′

for all 𝑎, 𝑏 ∈ 𝑘 . Inside 𝑘 we have the subset of constants

𝐶 := {𝑎 ∈ 𝑘 | 𝑎′ = 0},
which is a subeld of 𝑘 [PS03, Exercises 1.5.2]. Wework under the assump-
tion that𝐶 is an algebraically closed eld. We will consider the elds C(𝑡)
and C(𝑒3𝑡 ) with the usual derivation. In both cases the eld of constants
is C.

2.2. The dierential equation. Throughout the recollection we will fo-
cus on the 1-dimensional equation 𝑦′ = 𝑦. In this case, a fundamental mat-
rix over some extension of dierential rings 𝑘 ⊆ 𝑅 consists of an invertible
element 𝑢 ∈ 𝑅× such that 𝑢′ = 𝑢. Neither in 𝑘 = C(𝑡) nor in 𝑘 = C(𝑒3𝑡 ) we
have such an element 𝑢, so in both cases we need to consider non-trivial
extensions to nd non-zero solutions to the equation.

2.3. The Picard-Vessiot ring. The Picard-Vessiot ring of Equation (1)
over 𝑘 is dened as a dierential ring 𝑅 over 𝑘 satisfying the following
properties:

(1) The dierential ring 𝑅 is a simple dierential ring, i.e., its only dif-
ferential ideals are 0 and 𝑅.

(2) There exists a fundamental matrix 𝐹 ∈ GL𝑛 (𝑅), i.e., a matrix 𝐹 ∈
GL𝑛 (𝑅) such that 𝐹 ′ = 𝐴𝐹 .

(3) The 𝑘-algebra 𝑅 is generated by the entries of a fundamental matrix
𝐹 and the inverse of the determinant of 𝐹 .

As we pointed out earlier, the Picard-Vessiot ring for 𝑦′ = 𝑦 over 𝑘 will
be a non-trivial extension both in the case of 𝑘 = C(𝑡) and in the case of
𝑘 = C(𝑒3𝑡 ). In order to write it down explicitly we start by adding a formal
solution, i.e., we consider 𝑘 [𝑋,𝑋−1] with the derivation extending the one
on 𝑘 such that 𝑋 ′ = 𝑋 , cf. [PS03, Exercises 1.5.1]. In this ring we have now
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a fundamental matrix given by 𝑋 itself, because 𝑋 is a unit and 𝑋 ′ = 𝑋 .
So conditions (2) and (3) in the denition of the Picard-Vessiot ring are
satised. But we still need to study condition (1).

Let us rst deal with the case 𝑘 = C(𝑡). In this case the claim is that
𝑅 = 𝑘 [𝑋,𝑋−1] is already a simple dierential ring, hence a Picard-Vessiot
ring for the equation𝑦′ = 𝑦 over𝑘 . Indeed, let (𝑃) be a non-zero dierential
ideal for some 𝑃 = 𝑋𝑚+· · ·+𝑎1𝑋+𝑎0. Multiplying by the appropriate power
of 𝑋−1 we may assume that 𝑎0 ≠ 0, and our goal is to show that 𝑚 = 0,
i.e., that 𝑃 = 𝑎0 is a unit and thus (𝑃) = 𝑅. Assume that𝑚 > 0. Since (𝑃)
is a dierential ideal, 𝑃 ′ = 𝑚𝑋𝑚 + · · · + 𝑎1𝑋 ∈ (𝑃), so 𝑃 ′ −𝑚𝑃 ∈ (𝑃) and
from degree comparison we deduce that 𝑃 ′ = 𝑚𝑃 . But this would imply
that 𝑎0 = 0, a contradiction. Hence𝑚 = 0 and (𝑃) = 𝑅.

Let us now consider the case 𝑘 = C(𝑒3𝑡 ). In the previous case we
needed the full transcendental extension 𝑘 [𝑋,𝑋−1], but in this case it will
suce to nd a third root of 𝑒3𝑡 , so we should expect to nd some max-
imal dierential ideal such that the quotient gives the desired algebraic
extension of 𝑘 . We look at the ideal 𝐼 = (𝑋 3 − 𝑒3𝑡 ) in 𝑘 [𝑋,𝑋−1]. Since
(𝑋 3 − 𝑒3𝑡 )′ = 3(𝑋 3 − 𝑒3𝑡 ) ∈ 𝐼 , this is a non-zero dierential ideal. We let
𝑅 = 𝑘 [𝑋,𝑋−1]/𝐼 be the quotient, which is then a dierential ring [PS03,
Exercises 1.5.1]. We can also regard 𝑅 as the localization of 𝑘 [𝑋 ]/(𝑋 3−𝑒3𝑡 )
at the set of powers of the image of 𝑋 , because localization is exact. But
𝑋 3 − 𝑒3𝑡 is irreducible in 𝑘 [𝑋 ], because it is of degree 3 and has no root, so
𝑘 [𝑋 ]/(𝑋 3 − 𝑒3𝑡 ) is a eld already and therefore so is 𝑅. This shows that 𝑅
is a Picard-Vessiot ring in this case.

2.4. ThePicard-Vessiot eld. APicard-Vessiot ring for Equation (1) over
𝑘 always exists, and any two Picard-Vessiot rings for this equation are iso-
morphic [PS03, Proposition 1.20]. Moreover, Picard-Vessiot rings are in-
tegral domains [PS03, Lemma 1.17] and their quotient elds still have𝐶 as
eld of constants [PS03, Proposition 1.20]. The quotient eld of a Picard-
Vessiot ring for Equation (1) is called a Picard-Vessiot eld for this equation,
and by [PS03, Proposition 1.22] it can also be characterized as an extension
of dierential elds 𝐿 ⊇ 𝑘 such that the following properties hold:

(1) The eld of constants of 𝐿 is 𝐶 .
(2) There exists a fundamental matrix 𝐹 ∈ GL𝑛 (𝐿).
(3) The eld 𝐿 is generated by the entries of 𝐹 over 𝑘 .
A Picard-Vessiot eld for 𝑦′ = 𝑦 over 𝑘 = C(𝑡) is then the quotient

eld of 𝑘 [𝑋,𝑋−1], i.e., the ring 𝑘 (𝑋 ) = C(𝑡, 𝑋 ). On the other hand, the
Picard-Vessiot ring for 𝑦′ = 𝑦 over 𝑘 = C(𝑒3𝑡 ) discussed above is already a
Picard-Vessiot eld for 𝑦′ = 𝑦 over C(𝑒3𝑡 ), because it is a eld and hence
isomorphic to its quotient eld.

2.5. The dierential Galois group. Given an equation 𝑦′ = 𝐴𝑦 over 𝑘
of dimension 𝑛, we are looking for its dierential Galois group. By deni-
tion this is the group Gal(𝑅/𝑘) of dierential 𝑘-algebra automorphisms of
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a Picard-Vessiot ring 𝑅 for the equation, i.e., the group of 𝑘-algebra auto-
morphisms 𝜎 : 𝑅 → 𝑅 such that 𝜎 (𝑓 ′) = 𝜎 (𝑓 )′ for all 𝑓 ∈ 𝑅.
We start by computing the dierential Galois group of 𝑦′ = 𝑦 over C(𝑡).

In this case we have 𝑅 = C(𝑡) [𝑋,𝑋−1] with 𝑋 ′ = 𝑋 , and a C(𝑡)-algebra
automorphism 𝜎 : 𝑅 → 𝑅 is uniquely determined by 𝜎 (𝑋 ). Since 𝜎 (𝑋 )′ =
𝜎 (𝑋 ′) = 𝜎 (𝑋 ), 𝜎 (𝑋 ) has to be a solution of 𝑦′ = 𝑦 in 𝑅, hence of the form
𝑐𝜎𝑋 for some 𝑐𝜎 ∈ C×. This shows that Gal(𝑅/C(𝑡)) � (C×, ·).

We compute now the Galois group of the same equation 𝑦′ = 𝑦 over
C(𝑒3𝑡 ). In this case 𝑅 = 𝐿 � C(𝑒3𝑡 ) [𝑋 ]/(𝑋 3−𝑒3𝑡 ) is an algebraic extension
obtained by taking the 3-rd root of an element in C(𝑒3𝑡 ), and this eld
already contains all 3-rd roots of unity, so this is a Kummer extension with
Galois group Z/3Z [Bos18, §4.9]. Explicitly, writing 𝐿 = 𝑘 (𝛼) for an 𝛼 ∈
𝐿 such that 𝛼3 = 𝑒3𝑡 and 𝛼′ = 𝛼 and 𝜁3 ∈ C(𝑒3𝑡 ) for a primitive 3-rd
root of unity, we have automorphisms 𝜎𝑖 : 𝛼 ↦→ 𝜁 𝑖3𝛼 for 𝑖 ∈ {0, 1, 2}. The
isomorphism is given by 𝜎𝑖 ↦→ 𝑖 + 3Z for each 𝑖 ∈ {0, 1, 2}. We check that
each of these 𝜎𝑖 is a dierential automorphism, i.e., that it commutes with
the derivation on 𝐿. By construction we have 𝛼′ = 𝛼 , hence

(𝜎𝑖 (𝛼))′ = 𝜁 𝑖3𝛼′ = 𝜁 𝑖3𝛼 = 𝜎𝑖 (𝛼) = 𝜎𝑖 (𝛼′)

for all 𝑖 ∈ {0, 1, 2} and Gal(𝐿/C(𝑒3𝑡 )) � Z/3Z.
Let us also recall some useful results concerning dierential Galois

groups from previous talks:

Lemma 2 ([PS03, p. 19]). If we x a fundamental matrix 𝐹 ∈ M𝑛 (𝑅),
then we may regard Gal(𝑅/𝑘) as a subgroup of GL𝑛 (𝐶) by sending an
automorphism 𝜎 to the uniquely determined constant matrix 𝐶𝜎 such that
𝜎 (𝐹 ) = 𝐹𝐶𝜎 . This gives us a faithful representation 𝜌 : Gal(𝑅/𝑘) → GL(𝑉 ),
where𝑉 := {𝑣 ∈ 𝑅𝑛 | 𝑣′ = 𝐴𝑣} is the solution space of our equation, which is
an 𝑛-dimensional 𝐶-vector space.

Proof. Suppose such a matrix 𝐶𝜎 existed. Then we would have 𝐶𝜎 =

𝐹−1𝜎 (𝐹 ) ∈ GL𝑛 (𝑅), so it is uniquely determined by 𝐹 and 𝜎 . To show
the existence we need to check that 𝐶′

𝜎 = 0. For this we rst observe that
𝜎 (𝐹 )′ = 𝐴𝜎 (𝐹 ), because 𝜎 is the identity on 𝑘 and thus 𝜎 (𝐴) = 𝐴. There-
fore we have

𝐴𝐹𝐶𝜎 = 𝐴𝜎 (𝐹 ) = 𝜎 (𝐹 )′ = (𝐹𝐶𝜎 )′ = 𝐹 ′𝐶𝜎 + 𝐹𝐶′
𝜎 = 𝐴𝐹𝐶𝜎 + 𝐹𝐶′

𝜎 ,

hence 𝐹𝐶′
𝜎 = 0 and 𝐶′

𝜎 = 0 because 𝐹 is invertible. Thus we have a well-
dened function Gal(𝑅/𝑘) → GL𝑛 (𝐶).

We check next that this is a group homomorphism. By the formula above
we have

𝐶𝜎1◦𝜎2 = 𝐹
−1𝜎1𝜎2(𝐹 ) = 𝐹−1𝜎1(𝐹𝐹−1𝜎2(𝐹 )) = 𝐹−1𝜎1(𝐹𝐶𝜎2) = 𝐹−1𝜎1(𝐹 )𝐶𝜎2,

where in the last inequality we have used that 𝜎1(𝐶𝜎2) = 𝐶𝜎2 because 𝜎1 is
the identity on 𝑘 . But we also have 𝐹−1𝜎1(𝐹 ) = 𝐶𝜎1 , hence 𝐶𝜎1◦𝜎2 = 𝐶𝜎1𝐶𝜎2
as claimed. This shows that we have a group homomorphism.
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We check next that this is an injective group homomorphism. Suppose
𝐹−1𝜎 (𝐹 ) = 1𝑛 is the identitiy matrix. Then 𝜎 (𝐹 ) = 𝐹 . Since the entries and
the inverse of the determinant of 𝐹 generate 𝑅 as a 𝑘-algebra, this implies
that 𝜎 (𝑓 ) = 𝑓 for all 𝑓 ∈ 𝑅, hence 𝜎 = id𝑅 and the group homomorphism
is injective.

For the last statement, note that the columns of 𝐹 form a 𝐶-basis of 𝑉 .
This xes an isomorphism GL𝑛 (𝐶) � GL(𝑉 ). Hence this injective group
homomorphism translates into a faithful representation 𝜌 : Gal(𝑅/𝑘) →
GL(𝑉 ). �

Lemma 3 ([PS03, p. 19]). Let 𝐿 denote the quotient eld of 𝑅, which is then
by denition a Picard-Vessiot eld for the equation. Let Gal(𝐿/𝑘) denote the
group of 𝑘-linear automorphisms of 𝐿 which commute with the derivation on
𝐿. Then there is a group isomorphism Gal(𝑅/𝑘) → Gal(𝐿/𝑘).
Proof. Let 𝜎 : 𝑅 → 𝑅 be an automorphism in Gal(𝑅/𝑘). Since 𝜎 is bijective
it extends to a 𝑘-linear automorphism �̃� : 𝐿 → 𝐿 given by

�̃�

(
𝑓

𝑔

)
=
𝜎 (𝑓 )
𝜎 (𝑔) .

We check that �̃� commutes with the derivation on 𝐿:

�̃�

((
𝑓

𝑔

)′)
=
𝜎 (𝑓 ′𝑔 − 𝑓 𝑔′)

𝜎 (𝑔2) =
𝜎 (𝑓 )′𝜎 (𝑔) − 𝜎 (𝑓 )𝜎 (𝑔)′

𝜎 (𝑔)2 =

(
𝜎 (𝑓 )
𝜎 (𝑔)

)′
.

Hence �̃� ∈ Gal(𝐿/𝑘). Moreover, the above formula for �̃� shows that
˜𝜎1 ◦ 𝜎2 = 𝜎1 ◦ 𝜎2, so 𝜎 ↦→ �̃� is a group homomorphism. Since 𝜎 is de-

termined by �̃� , this group homomorphism is injective. Let us show that it
is also surjective.

Let 𝜏 ∈ Gal(𝐿/𝑘). We want to show that the restriction of 𝜏 to 𝑅 has
image equal to 𝑅, i.e., that 𝜏 (𝑅) = 𝑅 when we identify 𝑅 with a subring of
𝐿 as usual. Let 𝐹 ∈ M𝑛 (𝑅) be a fundamental matrix for our equation, so
that the columns of 𝐹 form a 𝐶-basis of the solution space 𝑉 = {𝑣 ∈ 𝑅𝑛 |
𝑣′ = 𝐴𝑣}. We regard 𝐹 as a matrix with coecients in 𝐿, and the same
arguments as in the proof of Lemma 2 show that we can write 𝜏 (𝐹 ) = 𝐹𝐶𝜏
for some 𝐶𝜏 ∈ GL𝑛 (𝐶). Since the entries of 𝐹 are all in 𝑅 and 𝐶 ⊆ 𝑘 , the
entries of 𝐹𝐶𝜏 = 𝜏 (𝐹 ) are in 𝑅 as well. Moreover, since

1
det(𝜏 (𝐹 )) =

1
det(𝐹 ) det𝐶𝜏

and the right hand side is in 𝑅, so is the left hand side, which implies that
𝜏 (𝑅) ∈ GL𝑛 (𝑅). Since the 𝑘-algebra 𝑅 is generated by the entries and the
inverse of the determinant of 𝐹 and 𝜏 is a 𝑘-algebra isomorphism, the 𝑘-
algebra 𝜏 (𝑅) is generated by the entries and the inverse of the determinant
of 𝜏 (𝐹 ), hence 𝜏 (𝑅) ⊆ 𝑅. Applying the same arguments to 𝜏−1 ∈ Gal(𝐿/𝑘)
we deduce that 𝜏−1(𝑅) ⊆ 𝑅, hence 𝑅 ⊆ 𝜏 (𝑅) as well and 𝜏 (𝑅) = 𝑅. �

Let us denote 𝐺 := Gal(𝐿/𝑘). We have seen in previous talks that 𝐺 is
an algebraic subgroup of GL𝑛 (𝐶), that the Lie algebra of 𝐺 coincides with
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the Lie algebra of the derivations of 𝐿/𝑘 that commute with the derivation
on 𝐿 and that the eld 𝐿𝐺 of𝐺-invariant elements of 𝐿 is equal to 𝑘 [PS03,
Theorem 1.27].

Moreover, we have also talked about torsors and seen that 𝑍 := Spec(𝑅)
is a 𝐺-torsor over 𝑘 , i.e., there is a right 𝐺-action of 𝐺 on 𝑍 such that for
any 𝑣,𝑤 ∈ 𝑍 (𝑘) there exists a unique 𝑔 ∈ 𝐺 (𝑘) such that 𝑣 = 𝑤𝑔. Recall
that a𝐺-torsor was called trivial if there is a 𝑘-scheme isomorphism𝑍 � 𝐺
which identies 𝑍 ×𝐺 → 𝐺 with the multiplication morphism. A𝐺-torsor
is trivial if and only if it has a 𝑘-rational point. One can think of torsors
as principal 𝐺-bundles over a point, and this last statement corresponds
to the topological statement that a principal𝐺-bundle is trivial if and only
if it admits a section. Intuitively, the dierence between a 𝐺-torsor and 𝐺
itself is that on a 𝐺-torsor we don’t have a distinguished neutral element.
A rational point or a seciton denes a notion of neutral element and this
allows us to nd the desired isomorphism. See [PS03, Appendix A.2.3] for
more details.

3. Proof of the correspondence

We consider an equation 𝑦′ = 𝐴𝑦 over 𝑘 of dimension 𝑛 and we let 𝑅
be a Picard-Vessiot ring, 𝐿 the quotient eld of 𝑅, which is then a Picard-
Vessiot eld, and𝐺 := Gal(𝐿/𝑘) the dierential Galois group, which is then
isomorphic via restriction to the dierential Galois group Gal(𝑅/𝑘). We
denote byS the set of closed subgroups of𝐺 and byL the set of dierential
subelds of 𝐿 containing 𝑘 . The reference throughout this section is [PS03,
Proposition 1.34]. We will use the following result from Christoph’s talk:

Theorem 4 ([PS03, Theorem 1.27]). Let 𝑦′ = 𝐴𝑦 be a dierential equation
of degree 𝑛 over 𝑘 , having Picard-Vessiot eld 𝐿 ⊇ 𝑘 and dierential Galois
group 𝐺 = Gal(𝐿/𝑘). Then

(1) The group 𝐺 , considered as a subgroup of GL𝑛 (𝐶), is an algebraic
group.

(2) The Lie algebra of𝐺 coincides with the Lie algebra of the derivations
of 𝐿/𝑘 that commute with the derivation on 𝐿.

(3) The eld 𝐿𝐺 of 𝐺-invariant elements of 𝐿 is equal to 𝑘 .

We will also use the following result from Johan’s talk:

Corollary 5 ([PS03, Corollary 1.30]). Let 𝑅 be a Picard-Vessiot ring for the
equation𝑦′ = 𝐴𝑦 over 𝑘 . Let 𝐿 be the eld of fractions of 𝑅. Put 𝑍 = Spec(𝑅).
Let𝐺 denote the dierential Galois group and𝐶 [𝐺] the coordinate ring of𝐺
and let 𝔤 denote the Lie algebra of 𝐺 . Then:

(1) There is a nite extension �̃� ⊇ 𝑘 such that 𝑍
�̃�
� 𝐺

�̃�
.

(2) The scheme 𝑍 is smooth and connected.
(3) The transcendence degree of 𝐿/𝑘 is equal to the dimension of 𝐺 .
(4) Let 𝐻 be a subgroup of𝐺 with Zariski closure 𝐻 . Then 𝐿𝐻 = 𝑘 if and

only if 𝐻 = 𝐺 .
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Particularly relevant will be the last statements of both results, i.e., that
𝐿𝐺 = 𝑘 and that 𝐿𝐻 = 𝑘 implies that 𝐻 = 𝐺 for subgroups 𝐻 ⊆ 𝐺 .
Lemma 6. If 𝐻 is a closed subgroup of 𝐺 , then 𝐿𝐻 is a dierential subeld
of 𝐿 containing 𝑘 . Hence we have a well-dened map 𝛼 : S → L given by
𝛼 (𝐻 ) = 𝐿𝐻 .
Proof. Since every 𝜎 ∈ 𝐺 restricts to the identity on 𝑘 , 𝑘 ⊆ 𝐿𝐻 is a subeld.
And a direct computation shows that 𝐿𝐻 ⊆ 𝐿 is a subeld as well. Hence
it suces to show that 𝐿𝐻 is a dierential subeld of 𝐿. So let 𝑎 ∈ 𝐿𝐻 and
let 𝜎 ∈ 𝐻 ⊆ 𝐺 . Then 𝜎 (𝑎′) = 𝜎 (𝑎)′ = 𝑎′. Hence 𝑎′ ∈ 𝐿𝐻 as well and 𝐿𝐻 is a
dierential subeld. �

Lemma 7. If 𝑀 is a dierential subeld of 𝐿 containing 𝑘 , then the set of
𝑀-linear dierential automorphisms Gal(𝐿/𝑀) is a closed subgroup of 𝐺 .
Hence we have a well-dened map 𝛽 : L → S given by 𝛽 (𝑀) = Gal(𝐿/𝑀).
Proof. Since Gal(𝐿/𝑀) ⊆ 𝐺 is the subset of elements that restrict to the
identity on 𝑀 , it is a subgroup of 𝐺 . Let 𝐹 ∈ GL𝑛 (𝐿) be a fundamental
matrix for the equation 𝑦′ = 𝐴𝑦 over 𝑘 . Since 𝐿 is a Picard-Vessiot eld of
this equation, the eld of constants of 𝐿 is 𝐶 and 𝐿 is generated as a eld
extension over 𝑘 by the entries of 𝐹 . In particular, 𝐿 is generated as a eld
extension over 𝑀 by the entries of 𝐹 , and 𝐴 ∈ M𝑛 (𝑀) as well under the
inclusion 𝑘 ⊆ 𝑀 . Hence 𝐿 is a Picard-Vessiot eld for the equation 𝑦′ = 𝐴𝑦
over 𝑀 by [PS03, Proposition 1.22] and Gal(𝐿/𝑀) is a closed subgroup of
GL𝑛 (𝐶) by [PS03, Theorem 1.27]. This implies thatGal(𝐿/𝑀) ⊆ 𝐺 is closed
as well. �

Lemma 8. The maps 𝛼 : S → L and 𝛽 : L → S from Lemma 6 and
Lemma 7 are mutually inverse.

Proof. Let 𝑀 ∈ L be an intermediate dierential eld. Then 𝛼𝛽 (𝑀) =

𝐿Gal(𝐿/𝑀) . We regard𝑦′ = 𝐴𝑦 as an equation over𝑀 again and apply [PS03,
Theorem 1.27] regarding 𝐿 as the Picard-Vessiot eld of 𝑦′ = 𝐴𝑦 over𝑀 to
deduce that 𝛼𝛽 (𝑀) = 𝑀 .

Let 𝐻 ∈ S be a closed subgroup. Then we have 𝐻 ⊆ 𝛽𝛼 (𝐻 ), because
every 𝜎 ∈ 𝐻 has the property that 𝜎 (𝑎) = 𝑎 for all 𝑎 ∈ 𝛽 (𝐻 ) = 𝐿𝐻 , hence
𝜎 ∈ Gal(𝐿/𝐿𝐻 ). We now regard 𝑦′ = 𝐴𝑦 as an equation over 𝐿𝐻 and apply
[PS03, Corollary 1.30] to deduce that the closed subgroup 𝐻 ⊆ Gal(𝐿/𝐿𝐻 )
is in fact the whole Galois group Gal(𝐿/𝐿𝐻 ). �

Example 9. Let 𝑛 ∈ N>1 and let 𝐿 = C(𝑡) (𝑋 ) be the Picard-Vessiot eld
of 𝑦′ = 𝑦 over C(𝑡). We’ve seen earlier that its dierentail Galois group
is Gal(𝐿/𝑘) � C×, and the group 𝜇𝑛 of 𝑛-th roots of unity is a closed sub-
group of C×. The corresponding inermediate dierential eld is C(𝑡) (𝑋𝑛).
Indeed, this is a dierential eld as well, because (𝑋𝑛)′ = 𝑛𝑋𝑛 ∈ C(𝑡) (𝑋𝑛).
On the other hand, there are no intermediate dierential elds for the
equation 𝑦′ = 𝑦 over C(𝑒3𝑡 ), because in this case the Picard-Vessiot eld
extension has degree 3 and the Galois group is of order 3.
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Lemma 10. Let 𝐻 ∈ S be a closed subgroup of 𝐺 . If 𝜎 (𝐿𝐻 ) = 𝐿𝐻 for all
𝜎 ∈ 𝐺 , then the restriction morphism 𝐺 → Gal(𝐿𝐻/𝑘) is surjective and has
kernel 𝐻 . In particular, 𝐻 is a normal subgroup of 𝐺 in this case.

Proof. If the assumption is true, then the restriction morphism is a well-
dened group homomorphism. The kernel is by denition 𝛽𝛼 (𝐻 ) = 𝐻 , so
it remains to show the surjectivity assertion.

Let 𝜎 ∈ Gal(𝐿𝐻/𝑘) be a dierential automorphism of 𝐿𝐻 over 𝑘 ,
which we can regard as a 𝑘-linear homomorphism of dierential elds
𝜎 : 𝐿𝐻 → 𝐿. Our goal is to extend this to a 𝑘-linear dierential isomorph-
ism 𝜎 : 𝐿 → 𝐿. Since 𝐿 is a Picard-Vessiot eld for the equation 𝑦′ = 𝐴𝑦

over 𝑘 , its subeld of constants is𝐶 and there exists a fundamental matrix
𝐹 ∈ GL𝑛 (𝐿) whose entries generate 𝐿 as a eld extension over 𝑘 , hence
also as a eld extension over 𝐿𝐻 . This implies that 𝐿 is a Picard-Vessiot
eld for the equation 𝑦′ = 𝐴𝑦 over 𝐿𝐻 [PS03, Proposition 1.22]. Let us de-
note by 𝜄 : 𝐿𝐻 → 𝐿 the inclusion. The matrix 𝐹 is still a fundamental matrix
for 𝑦′ = 𝜎 (𝐴)𝑦 = 𝐴𝑦, and its entries generate 𝐿 as a eld extension over
𝜎 (𝐿𝐻 ) because they already generate 𝐿 as a eld extension over 𝑘 . Hence
𝜎 : 𝐿𝐻 → 𝐿 is also a Picard-Vessiot eld for the equation 𝑦′ = 𝐴𝑦 over 𝐿𝐻
and we have the following situation:

𝐿 𝐿

𝐿𝐻

�

𝜄
𝜎

The uniqueness of the Picard-Vessiot eld implies that we can nd the
dashed isomorphism 𝐿 � 𝐿 extending 𝜎 : 𝐿𝐻 → 𝐿. �

Lemma 11. The converse of Lemma 10 holds as well, i.e., if 𝐻 ∈ S is a
normal subgroup of 𝐺 , then 𝜎 (𝐿𝐻 ) = 𝐿𝐻 for all 𝜎 ∈ 𝐺 and the restriction
morphism 𝐺 → Gal(𝐿𝐻/𝑘) is surjective with kernel 𝐻 .

Proof. The second part of the statement follows as in Lemma 10, so let us
show that 𝜎 (𝐿𝐻 ) = 𝐿𝐻 for all 𝜎 ∈ 𝐺 . Let 𝜎 ∈ 𝐺 be an arbitrary element
and let 𝑎 ∈ 𝐿𝐻 . We want to show that 𝜎 (𝑎) ∈ 𝐿𝐻 , so let also 𝜏 ∈ 𝐻 . The
equation 𝜏𝜎 (𝑎) = 𝜎 (𝑎) is equivalent to 𝜎−1𝜏𝜎 (𝑎) = 𝑎. Since 𝐻 is a normal
subgroup of 𝐺 , 𝜎−1𝜏𝜎 ∈ 𝐻 again, so 𝜎−1𝜏𝜎 (𝑎) = 𝑎 as we wanted to show.
Hence 𝜎 (𝐿𝐻 ) ⊆ 𝐿𝐻 for all 𝜎 ∈ 𝐺 . Conversely, applying what we have just
proven to 𝜎−1 ∈ 𝐺 we deduce that 𝜎−1(𝐿𝐻 ) ⊆ 𝐿𝐻 . Therefore

𝐿𝐻 = 𝜎𝜎−1(𝐿𝐻 ) ⊆ 𝜎 (𝐿𝐻 ) ⊆ 𝐿𝐻

and the desired equality follows. �

Combining Lemma 6, Lemma 7, Lemma 8, Lemma 10 and Lemma 11 we
obtain the dierential analogue of the usual Galois corresopndence [Bos18,
Theorem 4.1/6]. One can also show using some theory of linear algebraic
groups that if𝐻 ∈ S is a normal subgroup of𝐺 , then 𝐿𝐻 is a Picard-Vessiot
eld for some linear dierential equation over 𝑘 [PS03, Corollary 1.40].
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Let us also mention the following:

Lemma 12. Let 𝐺0 denote the identity component of 𝐺 . Then 𝐿𝐺
0 ⊃ 𝑘 is a

nite Galois extension with Galois group 𝐺/𝐺0. Moreover, it is the algebraic
closure of 𝑘 in 𝐿.

Proof. Since 𝐺 has only nitely many irreducible components, 𝐺/𝐺0 is a
nite group. We have (𝐿𝐺0)𝐺/𝐺0

= 𝑘 , because 𝐿𝐺 = 𝑘 . Hence 𝑘 ⊆ 𝐿𝐺
0 is a

nite Galois extension with Galois group𝐺/𝐺0 [Bos18, Proposition 4.1/4].
To show that 𝐿𝐺0 is the algebraic closure of 𝑘 in 𝐿, let 𝛼 ∈ 𝐿 be algebraic

over 𝑘 . We want to show that 𝑘 (𝛼) ⊆ 𝐿𝐺
0 . An element 𝜎 ∈ 𝐺 will only

send 𝛼 to some other root of its minimal polynomial, so the 𝐺-orbit of 𝛼
is nite. Therefore Aut(𝐿/𝑘 (𝛼)) = {𝜎 ∈ 𝐺 | 𝜎 (𝛼) = 𝛼} is an algebraic
subgroup of𝐺 of nite index and𝐺0 ⊆ Aut(𝐿/𝑘 (𝛼)), so 𝑘 (𝛼) ⊆ 𝐿𝐺

0 as we
wanted to show. �

4. Another example

We consider now the equation 𝑦′ = 8 instead, still working over the two
elds C(𝑡) and C(𝑒3𝑡 ). We can reduce this equation to the matrix equation(

𝑦′1
𝑦′2

)
=

(
0 8
0 0

) (
𝑦1
𝑦2

)
,

so that 𝑦2 = 𝜆 ∈ C is forced to be a constant and 𝑦′1 = 8𝜆. If 𝐹 ∈ GL2(𝑅) is
a fundamental matrix in some dierential ring extension 𝑅, then we have(

𝐹 ′11 𝐹 ′12
𝐹 ′21 𝐹 ′22

)
=

(
0 8
0 0

) (
𝐹11 𝐹12
𝐹21 𝐹22

)
=

(
8𝐹21 8𝐹22
0 0

)
.

Therefore 𝐹21, 𝐹22 ∈ C are constants. But they cannot both be zero, because
we want the matrix to be invertible. So let’s say 𝐹21 = 0 and 𝐹22 = 1. Then
we need 𝐹 ′11 = 0 and 𝐹 ′12 = 8. But 𝐹11 cannot be zero, because we want
the matrix to be invertible, so we take 𝐹11 = 1 and the fundamental matrix
becomes

𝐹 =

(
1 𝐹12
0 1

)
with 𝐹12 a solution of our original equation 𝑦′ = 8. If we are working over
C(𝑡), then a solution already exists in the base eld, namely 𝐹12 = 8𝑡 . So in
this case C(𝑡) is its own Picard-Vessiot eld extension and the dierential
Galois group is trivial. On the other hand, there is no solution in C(𝑒3𝑡 ),
so in this case we need to pass to a non-trivial extension. We add a formal
solution by considering the polynomial ring 𝑅 := C(𝑒3𝑡 ) [𝑋 ] with 𝑋 ′ = 8.
A fundamental matrix 𝐹 ∈ GL2(𝑅) is given by

𝐹 =

(
1 𝑋

0 1

)
,

so 𝑅 is generated as a C(𝑒3𝑡 )-algebra by the entries of the fundamental
matrix and the inverse of its determinant. It remains to show that 𝑅 is a
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simple dierential ring in order to conclude that it is the Picard-Vessiot
ring of the equation 𝑦′ = 8 over C(𝑒3𝑡 ). Let 𝐼 = (𝑃) be a dierential ideal
of C(𝑒3𝑡 ) with 𝑃 = 𝑋𝑚 + 𝑎𝑚−1𝑋𝑚−1 + · · · + 𝑎0 ∈ 𝑅. If𝑚 = 0, then 𝐼 = (0) or
𝐼 = 𝑅. So assume𝑚 > 0. Then 𝑃 ′ = (8𝑚 + 𝑎′𝑚−1)𝑋𝑚−1 + · · · ∈ (𝑃), hence
𝑃 ′ = 0 for degree reasons. In particular we have 8𝑚 + 𝑎′𝑚−1 = 0, i.e.,(

−1
𝑚
𝑎𝑚−1

)′
= 8.

This would imply that −1
𝑚
𝑎𝑚−1 ∈ C(𝑒3𝑡 ) was already a non-zero solution

of the equation in C(𝑒3𝑡 ). But no such solution exists, so𝑚 = 0 and 𝑅 is a
simple dierential ring. Let now 𝜎 ∈ Gal(𝑅/C(𝑒3𝑡 )) be an automorphism
in the dierential Galois group. Then 𝜎 is uniquely determined by 𝜎 (𝑋 ),
and we need

𝜎 (𝑋 )′ = 𝜎 (𝑋 ′) = 𝜎 (8) = 8,
hence 𝜎 (𝑋 ) is another solution of the equation 𝑦′ = 8 over C(𝑒3𝑡 ). If we
write 𝜎 (𝑋 ) = 𝑎𝑚𝑋

𝑚 + · · · + 𝑎0 ∈ 𝑅, then 𝜎 (𝑋 )′ = 8𝑚𝑎𝑚𝑋𝑚−1 + · · · + 8𝑎1,
so for degree reasons we must have 𝜎 (𝑋 ) = 𝑋 + 𝑎𝜎 for some 𝑎𝜎 ∈ C(𝑒3𝑡 )
which depends on 𝜎 . We have then another fundamental matrix ggiven by

𝐹 =

(
1 𝑋 + 𝑎𝜎
0 1

)
.

We compute 𝐹−1𝐹 in order to nd the matrix 𝐶𝜎 ∈ GL2(C) corresponding
to 𝜎 :

𝐶𝜎 =

(
1 −𝑋
0 1

) (
1 𝑋 + 𝑎𝜎
0 1

)
=

(
1 𝑎𝜎
0 1

)
.

Therefore Gal(𝐿/C(𝑒3𝑡 )) � Gal(𝑅/C(𝑒3𝑡 )) � (C, +).

Appendix A. Solutions to exercises

The exercises below are taken from [PS03, Exercises 1.5].

Exercise 1 (Constructions with rings and derivations). Let 𝑅 be any dier-
ential ring with derivation 𝜕.

(a) Let 𝑡, 𝑛 ∈ 𝑅 and assume that 𝑛 is invertible. Prove the formula

𝜕

( 𝑡
𝑛

)
=
𝜕(𝑡)𝑛 − 𝑡 𝜕(𝑛)

𝑛2
.

Solution. Assume rst that 𝑡 = 1. The Leibniz rule implies that
𝜕(1) = 𝜕(1) + 𝜕(1) = 2𝜕(1),

and since Q ⊆ 𝑅 we deduce that 𝜕(1) = 0. So in this case we need
to show that

𝜕(𝑛−1) = −𝜕𝑛
𝑛2
.

Again by the Leibniz rule we have

0 = 𝜕(1) = 𝜕(𝑛𝑛−1) = 𝜕𝑛

𝑛
+ 𝑛𝜕(𝑛−1),
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hence the claim. Now for any 𝑡 ∈ 𝑅 we can apply again the Leibniz
rule to the product 𝑡𝑛−1 to deduce the desired equality. �

(b) Let 𝐼 ⊆ 𝑅 be an ideal. Prove that 𝜕 induces a derivation on 𝑅/𝐼 if
and only if 𝜕(𝐼 ) ⊆ 𝐼 .

Remark 13. It may happen that 𝑅/𝐼 is no longer of characteristic
zero.

Solution. It follows from the Leibniz rule that 𝜕(0) = 0 on any dif-
ferential ring, even if it does not containQ. If 𝜕 induces a derivation
on 𝑅/𝐼 , then 𝜕(0 + 𝐼 ) = 0 + 𝐼 , i.e., 𝜕(𝑎) ∈ 𝐼 for all 𝑎 ∈ 𝐼 . Conversely,
if 𝜕(𝑎) ∈ 𝐼 for all 𝑎 ∈ 𝐼 , then 𝜕 induces a well-dened derivation on
𝑅/𝐼 . Indeed, since 𝜕(0) = 0 and 𝜕(𝑎 + 𝑏) = 𝜕(𝑎) + 𝜕(𝑏), 𝜕 is a group
homomorphism. Therefore

𝑎 − 𝑏 ∈ 𝐼 ⇒ 𝜕(𝑎 − 𝑏) = 𝜕(𝑎) − 𝜕(𝑏) ∈ 𝐼 ,
so 𝜕 : 𝑅/𝐼 → 𝑅/𝐼 is a well-dened function. We have also

𝜕(𝑎 + 𝑏 + 𝐼 ) = 𝜕(𝑎 + 𝑏) + 𝐼 = 𝜕(𝑎) + 𝜕(𝑏) + 𝐼 = 𝜕(𝑎 + 𝐼 ) + 𝜕(𝑏 + 𝐼 ),
so 𝜕 : 𝑅/𝐼 → 𝑅/𝐼 is additive. And nally

𝜕(𝑎𝑏 + 𝐼 ) = 𝜕(𝑎𝑏) + 𝐼 = 𝑎𝜕(𝑏) +𝑏𝜕(𝑎) + 𝐼 = (𝑎 + 𝐼 )𝜕(𝑏 + 𝐼 ) + (𝑏 + 𝐼 )𝜕(𝑎 + 𝐼 ),
so 𝜕 : 𝑅/𝐼 → 𝑅/𝐼 is a derivation. �

(c) Let the ideal 𝐼 ⊆ 𝑅 be generated by {𝑎 𝑗 } 𝑗∈𝐽 . Prove that 𝜕(𝐼 ) ⊆ 𝐼 if
𝜕(𝑎 𝑗 ) ∈ 𝐼 for all 𝑗 ∈ 𝐽 .
Solution. Since 𝜕 is a group homomorphism and 𝐼 is a subgroup, it
suces to show that 𝜕(𝑎𝑎 𝑗 ) ∈ 𝐼 for all 𝑗 ∈ 𝐽 and all 𝑎 ∈ 𝑅. Since
𝑎 𝑗 , 𝜕(𝑎 𝑗 ) ∈ 𝐼 and 𝐼 is an ideal, we have 𝑎𝜕(𝑎 𝑗 ) ∈ 𝐼 and 𝑎 𝑗 𝜕(𝑎) ∈ 𝐼 ,
hence

𝜕(𝑎𝑎 𝑗 ) = 𝑎𝜕(𝑎 𝑗 ) + 𝑎 𝑗 𝜕(𝑎) ∈ 𝐼 .
�

(d) Let 𝑆 ⊆ 𝑅 be amultiplicative subset. Prove that there exists a unique
derivation 𝜕 on 𝑅𝑆−1 such that the canonical map 𝑅 → 𝑅𝑆−1 com-
mutes with 𝜕. Hint: Use the fact that 𝑡𝑟 = 0 implies 𝑡2𝜕(𝑟 ) = 0.
Solution. Suppose such a derivation existed and let 𝑎 ∈ 𝑅 and 𝑠 ∈ 𝑆 .
Since (the equivalence class of) 𝑠 is invertible in 𝑅𝑆−1, part (𝑎) of
this exercise implies that

𝜕

(𝑎
𝑠

)
=
𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)

𝑠2
.

This proves uniqueness. For the existence we need to check that
the previous expression is a well-dened derivation on 𝑅𝑆−1. Let
𝑎, 𝑏 ∈ 𝑅 and 𝑠, 𝑡 ∈ 𝑆 such that 𝑎/𝑠 = 𝑏/𝑡 , i.e., suppose there exists
some 𝑢 ∈ 𝑆 such that 𝑢 (𝑎𝑡 − 𝑏𝑠) = 0. We need to show that there
eixsts some 𝑣 ∈ 𝑆 such that

𝑣 (𝑡2(𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)) − 𝑠2(𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡))) = 0.
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Taking the hint for granted and using that 𝑢𝑎𝑡 = 𝑢𝑏𝑠 we deduce

0 = 𝑠𝑡𝑢2𝜕(𝑎𝑡 − 𝑏𝑠) = 𝑠𝑡𝑢2(𝑡 𝜕(𝑎) + 𝑎𝜕(𝑡) − 𝑠𝜕(𝑏) − 𝑏𝜕(𝑠))
= 𝑢2(𝑠𝑡2𝜕(𝑎) + 𝑠𝑡𝑎𝜕(𝑡) − 𝑠2𝑡 𝜕(𝑏) − 𝑠𝑡𝑏𝜕(𝑠))
= 𝑢2𝑡2𝑠𝜕(𝑎) − 𝑢2𝑠𝑡𝑏𝜕(𝑠) − 𝑢2𝑠2𝑡 𝜕(𝑏) + 𝑢2𝑠𝑡𝑎𝜕(𝑡)
= 𝑢2𝑡2𝑠𝜕(𝑎) − 𝑢2𝑡2𝑎𝜕(𝑠) − 𝑢2𝑠2𝑡 𝜕(𝑏) + 𝑢2𝑠2𝑏𝜕(𝑡)
= 𝑢2(𝑡2(𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)) − 𝑠2(𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡))

So taking 𝑣 = 𝑢2 ∈ 𝑆 works. We prove the hint now. From 𝑡𝑟 = 0
we deduce

𝜕(𝑡𝑟 ) = 0 = 𝑡 𝜕(𝑟 ) + 𝑟 𝜕(𝑡).
Multiplying the equality by 𝑡 and using again that 𝑡𝑟 = 0 we ob-
tain the claim. Therefore the formula above yields a well-dened
function 𝜕 : 𝑅𝑆−1 → 𝑅𝑆−1.

We check nally that it is a derivation. On the one hand we have

𝜕

(
𝑎

𝑠
+ 𝑏
𝑡

)
= 𝜕

(
𝑎𝑡 + 𝑏𝑠
𝑠𝑡

)
=
𝑠𝑡 (𝑎𝜕(𝑡) + 𝑡 𝜕(𝑎) + 𝑏𝜕(𝑠) + 𝑠𝜕(𝑏)) − (𝑎𝑡 + 𝑏𝑠) (𝑡 𝜕(𝑠) + 𝑠𝜕(𝑡))

𝑠2𝑡2

=
𝑡2(𝑠𝜕(𝑎) − 𝑎𝜕(𝑠))

𝑠2𝑡2
+ 𝑠

2(𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡))
𝑠2𝑡2

+ 0

= 𝜕

(𝑎
𝑠

)
+ 𝜕

(
𝑏

𝑡

)
,

so 𝜕 : 𝑅𝑆−1 → 𝑅𝑆−1 is additive. On the other hand we have

𝜕

(
𝑎

𝑠

𝑏

𝑡

)
= 𝜕

(
𝑎𝑏

𝑠𝑡

)
=
𝑠𝑡 𝜕(𝑎𝑏) − 𝑎𝑏𝜕(𝑠𝑡)

𝑠2𝑡2

=
𝑠𝑡𝑎𝜕(𝑏) + 𝑠𝑡𝑏𝜕(𝑎) − 𝑎𝑏𝑠𝜕(𝑡) − 𝑎𝑏𝑡𝜕(𝑠)

𝑠2𝑡2

=
𝑠𝑡𝑎𝜕(𝑏) + 𝑠𝑡𝑏𝜕(𝑎) − 𝑎𝑏𝑠𝜕(𝑡) − 𝑎𝑏𝑡𝜕(𝑠)

𝑠2𝑡2

=
𝑎𝑠

𝑠2

(
𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡)

𝑡2

)
+ 𝑏𝑡
𝑡2

(
𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)

𝑠2

)
=
𝑎

𝑠
𝜕

(
𝑏

𝑡

)
+ 𝑏
𝑡
𝜕

(𝑎
𝑠

)
,

so 𝜕 : 𝑅𝑆−1 → 𝑅𝑆−1 is a derivation. �

(e) Consider the polynomial ring 𝑅 [𝑋1, . . . , 𝑋𝑛] and a multiplicative
subset 𝑆 ⊆ 𝑅 [𝑋1, . . . , 𝑋𝑛]. Let 𝑎1, . . . , 𝑎𝑛 ∈ 𝑅 [𝑋1, . . . , 𝑋𝑛]𝑆−1
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be given. Prove that there exists a unique deriva-
tion 𝜕 on 𝑅 [𝑋1, . . . , 𝑋𝑛]𝑆−1 such that the canonical map
𝑅 → 𝑅 [𝑋1, . . . , 𝑋𝑛]𝑆−1 commutes with 𝜕 and 𝜕(𝑋𝑖) = 𝑎𝑖 for
all 𝑖 .
Solution. Suppose rst that all 𝑎𝑖 are in 𝑅 [𝑋1, . . . , 𝑋𝑛]. In that case,
by part (d) of this exercise, it suces to nd a compatible deriv-
ation on 𝑅 [𝑋1, . . . , 𝑋𝑛]. Suppose that we have such a compatible
derivation 𝜕 on 𝑅 [𝑋1, . . . , 𝑋𝑛]. Induction on𝑚𝑖 shows that

𝜕(𝑋𝑚𝑖

𝑖
) =𝑚𝑖𝑎𝑖𝑋

𝑚𝑖−1
𝑖

for all𝑚𝑖 ≥ 1. With the convention that 𝑋−1
𝑖 = 0, the same formula

holds for𝑚𝑖 = 0 as well. The Leibniz rule implies then that

𝜕(𝑋𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 ) =
𝑛∑︁
𝑖=1

𝑚𝑖𝑎𝑖𝑋
𝑚1
1 · · ·𝑋𝑚𝑖−1

𝑖
· · ·𝑋𝑚𝑛

𝑛

for all such monomials, again with the convention that 𝑋−1
𝑖 = 0.

We keep this convention throughout the rest of the solution. For
an element 𝑏 ∈ 𝑅 we have

𝜕(𝑏𝑋𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 ) = 𝜕(𝑏)𝑋𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 + 𝑏
(
𝑛∑︁
𝑖=1

𝑚𝑖𝑎𝑖𝑋
𝑚1
1 · · ·𝑋𝑚𝑖−1

𝑖
· · ·𝑋𝑚𝑛

𝑛

)
.

(2)
Any polynomial 𝑃 ∈ 𝑅 [𝑋1, . . . , 𝑋𝑛] is a nite sum of such monomi-
als, so such a 𝜕 is already uniquely determined by Equation (2). This
shows uniqueness. For the existence part, it remains to show that 𝜕
determines a well-dened derivation. Additivity holds by construc-
tion and by denition of addition of polynomials. So we only need
to check the Leibniz rule. We check it rst for the product of two
monomials as in Equation (2), say 𝑏𝑋𝑚1

1 · · ·𝑋𝑚𝑛
𝑛 and 𝑐𝑋 𝑙11 · · ·𝑋 𝑙𝑛𝑛 . On

one hand we have

𝜕(𝑏𝑐𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑛+𝑙𝑛

𝑛 ) = (𝑐𝜕(𝑏) + 𝑏𝜕(𝑐))𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑛+𝑙𝑛

𝑛

+ 𝑏𝑐
(
𝑛∑︁
𝑖=1

(𝑚𝑖 + 𝑙𝑖)𝑎𝑖𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑖+𝑙𝑖−1

𝑖
· · ·𝑋𝑚𝑛

𝑛

)
On the other hand we have

𝑐𝑋
𝑙1
1 · · ·𝑋 𝑙𝑛𝑛 𝜕(𝑏𝑋

𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 ) =

𝑐𝜕(𝑏)𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑛+𝑙𝑛

𝑛 + 𝑏𝑐
(
𝑛∑︁
𝑖=1

𝑚𝑖𝑎𝑖𝑋
𝑚1+𝑙1
1 · · ·𝑋𝑚𝑖+𝑙𝑖−1

𝑖
· · ·𝑋𝑚𝑛+𝑙𝑛

𝑛

)
.

Adding the analogous termwe deduce that the Leibniz rule holds in
this case. Let now 𝑀1, 𝑀2 and 𝑀3 be monomials. Since 𝜕(𝑀 𝑗𝑀𝑘) =
𝑀𝑘𝜕(𝑀 𝑗 ) +𝑀 𝑗 𝜕(𝑀𝑘) and 𝜕 is additive, we have
𝜕((𝑀1 +𝑀2)𝑀3) = 𝑀3(𝜕(𝑀1) + 𝜕(𝑀2)) + (𝑀1 +𝑀2)𝜕(𝑀3).
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By induction, the Leibniz rule is satised for the product of an arbit-
rary polynomial with a monomial. And if 𝑀1 and 𝑀2 are monomi-
als and 𝑃 is an arbitrary polynomial, then using additivity and the
Leibniz rule for the product of a polynomial with a monomial we
deduce that

𝜕(𝑃 (𝑀1 +𝑀2)) = (𝑀1 +𝑀2)𝜕(𝑃) + 𝑃𝜕(𝑀1 +𝑀2),
so by induction we conclude that the Leibniz rule holds in general.
This proves the existence and hence nishes the proof when 𝑎𝑖 ∈
𝑅 [𝑋1, . . . , 𝑋𝑛] for all 𝑖 ∈ {1, . . . , 𝑛}.

Now write each 𝑎𝑖 = 𝑃𝑖/𝑄𝑖 , where 𝑃𝑖, 𝑄𝑖 ∈ 𝑅 [𝑋1, . . . , 𝑋𝑛] for
all 𝑖 ∈ {1, . . . , 𝑛}. Consider the ring 𝐴 = 𝑅 [𝑋1, . . . , 𝑋𝑛,𝑇1, . . . ,𝑇𝑛]
and its ideal 𝐼 = (1 − 𝑇1𝑄1, . . . , 1 − 𝑇𝑛𝑄𝑛). In the quotient ring
𝐴/𝐼 we can think of 𝑇𝑖 as 𝑄−1

𝑖 , so we rst extend 𝜕 : 𝑅 → 𝑅 to a
derivation 𝜕 : 𝐴 → 𝐴 such that 𝜕(𝑋𝑖) = 𝑃𝑖𝑇𝑖 and 𝜕(𝑇𝑖) = −𝑇 2

𝑖 𝜕(𝑄𝑖).
For example, if 𝑃1 = 2𝑋1 and 𝑄1 = 3𝑋 2

1 + 2, then we would have
𝜕(𝑋1) = 2𝑋1𝑇1 and

𝜕(𝑇1) = −6𝑇 2
1𝑋1𝜕(𝑋1) = −12𝑇 3

1𝑋
2
1 .

Nowwe check that the (uniquely determined) derivation 𝜕 : 𝐴 → 𝐴

extends to a uniquely determined derivation 𝜕 : 𝐴/𝐼 → 𝐴/𝐼 using
parts (b) and (c) of this exercise. For each 𝑖 ∈ {1, . . . , 𝑛} we have
𝜕(1 −𝑇𝑖𝑄𝑖) = −𝑄𝑖 (−𝑇 2

𝑖 𝜕(𝑄𝑖)) −𝑇𝑖𝜕(𝑄𝑖) = −𝜕(𝑄𝑖)𝑇𝑖 (1 −𝑇𝑖𝑄𝑖),
so we can indeed apply part (b) of this exercise to obtain the
uniquely determined 𝜕 : 𝐴/𝐼 → 𝐴/𝐼 with the specied properties.
The localization of 𝐴/𝐼 at (the image of) 𝑆 is the same as the loc-
alization of 𝑅 [𝑋1, . . . , 𝑋𝑛] at 𝑆 and 𝑎𝑖 is the image of 𝑃𝑖𝑇𝑖 + 𝐼 for
all 𝑖 ∈ {1, . . . , 𝑛}; this follows from the universal property of the
localization. Part (d) of this exercise allows us to conclude the solu-
tion. �

Exercise 2 (Constants). Let 𝑅 be any dierential ring with derivation 𝜕.
(a) Prove that the set of constants 𝐶 of 𝑅 is a subring containing 1.

Solution. We have seen in the previous exercise that 𝜕(1) = 0 as a
consequence ofQ ⊆ 𝑅, so 1 is always a constant. We have also seen
in the previous exercise that 𝜕(0) = 0 in any case, so 0 is a constant
as well. If 𝑐 and 𝑑 are constants, then 𝜕(𝑐 + 𝑑) = 𝜕(𝑐) + 𝜕(𝑑) = 0, so
𝑐 + 𝑑 is a constant as well. And 𝜕(𝑐𝑑) = 𝑐𝜕(𝑑) + 𝑑𝜕(𝑐) = 0, so 𝑐𝑑 is
a constant as well. Therefore 𝐶 is a subring containing 1. �

(b) Prove that 𝐶 is a eld if 𝑅 is a eld.
Solution. After part (𝑎) of this exercise, it remains only to show that
𝑐−1 is a constant for any non-zero constant 𝑐 . But we have seen in
the previous exercise that 𝜕(𝑐−1) = −𝜕(𝑐)𝑐−2, so 𝑐−1 is a constant as
well. �
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Assume that 𝐾 ⊇ 𝑅 is an extension of dierential elds.
(c) Assume that 𝑐 ∈ 𝐾 is algebraic over the constants 𝐶 of 𝑅. Prove

that 𝜕(𝑐) = 0. Hint: Let 𝑃 (𝑋 ) be the minimal monic polynomial of
𝑐 over𝐶 . Dierentiate the expression 𝑃 (𝑐) = 0 and use the fact that
Q ⊆ 𝑅.
Solution. We consider the derivation on 𝑅 [𝑋 ] which is compatible
with the derivation on 𝑅 and such that 𝜕(𝑋 ) = 1, which is unique
and well-dened by the previous exercise. Then we consider the
polynomial 𝜕(𝑃) ∈ 𝑅 [𝑋 ]. If 𝑐 = 0, then 𝜕(𝑐) = 0. So we may
assume that deg(𝑃) ≥ 1. We have deg(𝜕𝑃) = deg(𝑃) − 1, because
Q ⊆ 𝑅. Explicitly, if 𝑃 =

∑𝑚
𝑖=0 𝑎𝑖𝑋

𝑖 , then it follows from the solution
to the previous exercise that

𝜕(𝑃) =
𝑚∑︁
𝑖=0

(𝑖𝑎𝑖𝑋 𝑖−1 + 𝜕(𝑎𝑖)𝑋 𝑖),

with the convention again that 𝑋−1 = 0. Since 𝑎𝑖 ∈ 𝐶 for all 𝑖 , we
have

𝜕(𝑃) =
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝑋
𝑖−1.

Wemay regard 𝑐 like a variable and extend the derivation to 𝑅 [𝑋, 𝑐]
so that 𝜕(𝑋 ) = 1 and 𝜕(𝑐) is the value taht we want to determine.
The solution to the previous exericse shows again that

𝜕(𝑃 (𝑐)) =
(
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝜕(𝑐)𝑐𝑖−1
)
+ 0 = 𝜕(𝑐)

(
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝑐
𝑖−1

)
= 𝜕(𝑐) (𝜕(𝑃) (𝑐)),

where we are using that 𝑃 ∈ 𝐶 [𝑋 ] one more time in the rst equal-
ity above. Since 𝑃 (𝑐) = 0, we have

𝜕(𝑐) (𝜕(𝑃) (𝑐)) = 0.

But 𝑃 is the minimal polynomial of 𝑐 over 𝐶 and deg(𝑃) >

deg(𝜕(𝑃)) ≥ 0, so 𝜕(𝑃) (𝑐) ≠ 0. Since 𝑅 is a eld, we deduce that
𝜕(𝑐) = 0 and 𝑐 is a constant. �

(d) Show that 𝑐 ∈ 𝐾 , 𝜕(𝑐) = 0 and 𝑐 is algebraic over 𝑅, implies that 𝑐
is algebraic over the eld of constants𝐶 of 𝑅. Hint: Let 𝑃 (𝑋 ) be the
minimal monic polynomial of 𝑐 over 𝑅. Dierentiate the expression
𝑃 (𝑐) = 0 and use Q ⊆ 𝑅.
Solution. Let 𝑐 ∈ 𝐾 be such a constant. We may again assume that
𝑐 ≠ 0. We need to nd a non-zero polynomial 𝑄 ∈ 𝐶 [𝑋 ] such that
𝑄 (𝑐) = 0. Let 𝑃 ∈ 𝑅 [𝑋 ] be the minimal monic polynomial of 𝑐 over
𝑅 as in the hint, say 𝑃 =

∑𝑚
𝑖=0 𝑎𝑖𝑋

𝑖 with 𝑎𝑖 ∈ 𝑅. We consider again
the induced derivaton on 𝑅 [𝑋 ] with the property that 𝜕(𝑋 ) = 1.
Using again the formulas in the solution to the previous exercise
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and the assumption that 𝜕(𝑐) = 0 we have

𝜕(𝑃 (𝑐)) = 0 +
(
𝑚∑︁
𝑖=0

𝜕(𝑎𝑖)𝑋 𝑖
)
= 0.

This implies that 𝜕(𝑎𝑖) = 0 for all 𝑖 , so 𝑃 ∈ 𝐶 [𝑋 ]. Since 𝑐 ≠ 0, 𝑃 ≠ 0.
Hence 𝑐 is algebraic over 𝐶 . �

Exercise 3 (Derivations on eld extensions). Let 𝐹 be a eld (of character-
istic 0) and let 𝜕 be a derivation on 𝐹 . Prove the following statements.

(a) Let 𝐹 ⊆ 𝐹 (𝑋 ) be a transcendental extension of 𝐹 . Choose an 𝑎 ∈
𝐹 (𝑋 ). There is a unique derivation 𝜕 of 𝐹 (𝑋 ), extending 𝜕, such
that 𝜕(𝑋 ) = 𝑎.
Solution. By denition, 𝐹 (𝑋 ) is the smallest eld containing 𝐹 and
𝑋 . Therefore 𝐹 (𝑋 ) is also the eld of fractions of the polynomial
ring 𝐹 [𝑋 ]. The claim follows then from part (𝑒) of the rst exercise.

�

(b) Let 𝐹 ⊆ 𝐹 be a nite extension, then 𝜕 has a unique extension to a
derivation of 𝐹 . Hint: 𝐹 = 𝐹 (𝑎), where 𝑎 satises some irreducible
polynomial over 𝐹 . Use the rst exercise and Q ⊆ 𝐹 .
Solution. Let us show uniqueness rst. Since Q ⊆ 𝐹 , the extension
is separable. By the primitive element theorem there exists some
𝑎 ∈ 𝐹 such that 𝐹 = 𝐹 (𝑎) and such that there exists some monic
irreducible polynomial 𝑃 =

∑𝑚
𝑖=0 𝑎𝑖𝑋

𝑖 ∈ 𝐹 [𝑋 ] such that 𝑃 (𝑎) = 0 in
𝐹 . Therefore we must have

0 = 𝜕(𝑃 (𝑎)) = 𝜕(𝑎)
(
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝑎
𝑖−1

)
+

𝑚∑︁
𝑖=0

𝜕(𝑎𝑖)𝑎𝑖,

and since Q ⊆ 𝐹 and 𝑃 is the minimal polynomial of 𝑎 we must
also have

∑𝑚
𝑖=1 𝑖𝑎𝑖𝑎

𝑖−1 ≠ 0. The value of 𝜕(𝑎) is therefore uniquely
determined as

𝜕(𝑎) = −
∑𝑚
𝑖=0 𝜕(𝑎𝑖)𝑎𝑖∑𝑚
𝑖=1 𝑖𝑎𝑖𝑎

𝑖−1 .

This proves the uniqueness.
For the existence, we use part (e) of the rst exercise with

𝑆 ⊆ 𝐹 [𝑋 ] the set of powers of the non-zero polynomial 𝑄 :=∑𝑚
𝑖=1 𝑖𝑎𝑖𝑋

𝑖−1. We can then dene a derivation on 𝑆−1𝐹 [𝑋 ] with the
property that

𝜕(𝑋 ) = −
∑𝑚
𝑖=0 𝜕(𝑎𝑖)𝑋 𝑖

𝑄
.

We have 𝐹 = 𝐹 [𝑋 ]/(𝑃) and the image of𝑄 is invertible in 𝐹 , so we
have

𝑆−1𝐹 [𝑋 ]/𝑆−1(𝑃) = 𝑆−1𝐹 = 𝐹 .
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By parts (b) and (c) of the rst exercise, it suces to show that
𝜕(𝑃) ∈ 𝑆−1(𝑃) in 𝑆−1𝐹 [𝑋 ]. But replacing 𝑎 by 𝑋 in the formula
above shows that 𝜕(𝑃) = 0, thus we have a well-dened derivation
on 𝐹 extending the given derivation on 𝐹 . �

(c) Prove that 𝜕 has a unique extension to any eld 𝐹 that is algebraic
over 𝐹 (and, in particular, to the algebraic closure of 𝐹 ).

Solution. We can write any algebraic extension as the union of all
nite subextensions. The uniqueness in part (b) of this exercise
allows us to extend 𝜕 to each such nite subextension in a way that
glues together to a well-dened 𝜕 on their union. �

(d) Show that (b) and (c) are, in general, false if 𝐹 has characteristic
𝑝 > 0. Hint: Let F𝑝 be the eld with 𝑝 elements and consider the
eld extension F𝑝 (𝑥𝑝) ⊆ F𝑝 (𝑥), where 𝑥 is transcendental over F𝑝 .

Solution. We consdier 𝜕 = 0 on F𝑝 and use part (a) of this exercise
to extend 𝜕 to F𝑝 (𝑥) in two dierent ways: 𝜕0 = 0 and 𝜕1 such that
𝜕1(𝑥) = 1. For all 𝑗 ∈ {1, 2}, all 𝑎 ∈ F𝑝 and all 𝑖 ∈ N>0 we have

𝜕 𝑗 (𝑎𝑥𝑖𝑝) = 𝑝𝑖𝑎𝑥𝑖𝑝−1𝜕 𝑗 (𝑥) = 0,

so both 𝜕0 and 𝜕1 are extensions of 𝜕 = 0 on F𝑝 (𝑥𝑝) to F𝑝 (𝑥). But
𝜕0 ≠ 𝜕1, so the uniqueness in part (b) fails. �

(e) Let 𝐹 be a perfect eld of characteristic 𝑝 > 0 (i.e., 𝐹𝑝 =: {𝑎𝑝 |𝑎 ∈
𝐹 } is equal to 𝐹 ). Show that the only derivation on 𝐹 is the zero
derivation.

Solution. Let 𝜕 be a derivation on 𝐹 and let 𝑎 ∈ 𝐹 . We want to show
that 𝜕(𝑎) = 0. Since Frobenius is surjective, we can write 𝑎 = 𝑏𝑝 for
some 𝑏 ∈ 𝐹 . Then we have

𝜕(𝑎) = 𝜕(𝑏𝑝) = 𝑝𝑏𝑝−1𝜕(𝑏) = 0,

hence 𝜕 = 0. �

(f) Suppose that 𝐹 is a eld of characteristic 𝑝 > 0 such that [𝐹 : 𝐹𝑝] =
𝑝 . Give a construction of all derivations on 𝐹 . Hint: Compare with
the beginning of [PS03, Sect. 13.1].

Solution. Let 𝜕 : 𝐹 → 𝐹 be a derivation. Let 𝑎 = 𝑏𝑝 be an element
in 𝐹𝑝 . Then 𝜕(𝑎) = 𝑝𝑏𝑝−1𝜕(𝑏) = 0. So 𝜕 : 𝐹 → 𝐹 is 𝐹𝑝-linear,
and in particular it is uniquely determined by the values of 𝜕 at
the elements of a basis of 𝐹 over 𝐹𝑝 . Since [𝐹 : 𝐹𝑝] = 𝑝 is prime,
every 𝑥 ∈ 𝐹 \ 𝐹𝑝 generates the eld extension 𝐹𝑝 ⊆ 𝐹 . We consider
the basis 1, 𝑥, . . . , 𝑥𝑝−1 of 𝐹 over 𝐹𝑝 . Since 1 ∈ 𝐹𝑝 , we must have
𝜕(1) = 0. We have

𝜕(𝑥 𝑗 ) = 𝑗𝑥 𝑗−1𝜕(𝑥)
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for all 𝑗 ∈ {1, . . . , 𝑝 − 1}, so 𝜕 is uniquely deterined by the value
𝜕(𝑥) ∈ 𝐹 . So every derivation 𝜕 : 𝐹 → 𝐹 has the form

𝜕

(
𝑝−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

)
= 𝜕(𝑥)

(
𝑝−1∑︁
𝑖=1

𝑖𝑎𝑖𝑥
𝑖−1

)
for some 𝜕(𝑥) ∈ 𝐹 , where 𝑎𝑖 ∈ 𝐹𝑝 for all 𝑖 ∈ {0, . . . , 𝑝 − 1}. Con-
versely, given any 𝑓 ∈ 𝐹 , we can dene an 𝐹𝑝-linear derivation
𝜕 : 𝐹 → 𝐹 by setting 𝜕(𝑥) = 𝑓 . Such a derivation is by denition
additive, so we only need to check that the Leibniz rule holds. We
start by checking the Leibniz rule on temrs of the form 𝑎𝑥 with
𝑎 ∈ 𝐹𝑝 . In that case we have

𝜕(𝑎𝑥𝑏𝑥) = 2𝑎𝑏𝑥𝜕(𝑥) = 𝑏𝑥𝜕(𝑎𝑥) + 𝑎𝑥𝜕(𝑏𝑥).
In general we can use induction on the number of terms and the
additivity of 𝜕 to conclude that the Leibniz rule holds in general as
in part (e) of the rst exercise. �

Exercise 4 (Lie algebras and derivations). A Lie algebra over a eld 𝐶 is a
𝐶-vector space 𝑉 equipped with a 𝐶-bilinear map [ , ] : 𝑉 × 𝑉 → 𝑉 that
satises [𝑢,𝑢] = 0 for all 𝑢 ∈ 𝑉 and satises the Jacobi identity.

(a) Let 𝐹 be any eld and let𝐶 ⊆ 𝐹 be a subeld. Let Der(𝐹/𝐶) denote
the set of all derivations 𝜕 on 𝐹 such that 𝜕 is the zero map on 𝐶 .
Prove that Der(𝐹/𝐶) is a vector space over 𝐹 . Prove that for any
two elements 𝜕1, 𝜕2 ∈ Der(𝐹/𝐶), the map 𝜕1𝜕2 − 𝜕2𝜕1 is again in
Der(𝐹/𝐶). Conclude that Der(𝐹/𝐶) is a Lie algebra over 𝐶 .
Solution. The Leibniz rule and the assumption that Q ⊆ 𝐹 imply
that 𝜕 |𝐶 = 0 if and only if 𝜕 : 𝐹 → 𝐹 is 𝐶-linear. So Der(𝐹/𝐶) is the
set of 𝐶-linear derivations on 𝐹 . The zero derivation is 𝐶-linear, so
this set is non-empty. Let 𝜕1 and 𝜕2 be two𝐶-linear derivations. We
check that 𝜕1 + 𝜕2 is a𝐶-linear derivation. For any 𝑎, 𝑏 ∈ 𝐹 we have

(𝜕1 + 𝜕2) (𝑎 +𝑏) = 𝜕1(𝑎) + 𝜕1(𝑏) + 𝜕2(𝑎) + 𝜕2(𝑏) = (𝜕1 + 𝜕2) (𝑎) + (𝜕1 + 𝜕2) (𝑏),
so 𝜕1 + 𝜕2 is additive. Moreover, we also have

(𝜕1 + 𝜕2) (𝑎𝑏) = 𝜕1(𝑎𝑏) + 𝜕2(𝑎𝑏)
= 𝑏𝜕1(𝑎) + 𝑎𝜕1(𝑏) + 𝑏𝜕2(𝑎) + 𝑎𝜕2(𝑏)
= 𝑏 ((𝜕1 + 𝜕2) (𝑎)) + 𝑎((𝜕1 + 𝜕2) (𝑏)),

so the Leibniz rule is also satised by 𝜕1+ 𝜕2. And for 𝑐 ∈ 𝐶 we have
(𝜕1 + 𝜕2) (𝑐) = 𝜕1(𝑐) + 𝜕2(𝑐) = 0, so 𝜕1 + 𝜕2 is𝐶-linear as well. If 𝜕 is a
𝐶-linear derivation, then so is −𝜕. Pointwise addition of functions
is associative and commutative, so Der(𝐹/𝐶) is an abelian group.
We dene a scalar multiplication pointwise as well, i.e., (𝜆𝜕) (𝑎) :=
𝜆(𝜕(𝑎)) for 𝜕 ∈ Der(𝐹/𝐶), 𝜆, 𝑎 ∈ 𝐹 . This denes again a 𝐶-linear
derivation on 𝐹 and endowsDer(𝐹/𝐶) with the structure of a vector
space over 𝐹 .
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For 𝜕1, 𝜕2 ∈ Der(𝐹/𝐶) we dene
[𝜕1, 𝜕2] := 𝜕1 ◦ 𝜕2 − 𝜕2 ◦ 𝜕1.

We check that [𝜕1, 𝜕2] is again a𝐶-linear derivation on 𝐹 . For 𝑎, 𝑏 ∈
𝐹 we have

[𝜕1, 𝜕2] (𝑎 + 𝑏) = 𝜕1 ◦ 𝜕2(𝑎 + 𝑏) − 𝜕2 ◦ 𝜕1(𝑎 + 𝑏)
= 𝜕1 ◦ 𝜕2(𝑎) + 𝜕1 ◦ 𝜕2(𝑏) − 𝜕2 ◦ 𝜕1(𝑎) − 𝜕2 ◦ 𝜕1(𝑏)
= [𝜕1, 𝜕2] (𝑎) + [𝜕1, 𝜕2] (𝑏)

and also

[𝜕1, 𝜕2] (𝑎𝑏) = 𝜕1 ◦ 𝜕2(𝑎𝑏) − 𝜕2 ◦ 𝜕1(𝑎𝑏)
= 𝜕1(𝑏𝜕2(𝑎) + 𝑎𝜕2(𝑏)) − 𝜕2(𝑏𝜕1(𝑎) + 𝑎𝜕1(𝑏))
= 𝜕2(𝑎)𝜕1(𝑏) + 𝑏 (𝜕1 ◦ 𝜕2(𝑎)) + 𝜕2(𝑏)𝜕1(𝑎) + 𝑎(𝜕1 ◦ 𝜕2(𝑏))
− 𝜕1(𝑎)𝜕2(𝑏) − 𝑏 (𝜕2 ◦ 𝜕1(𝑎)) − 𝜕1(𝑏)𝜕2(𝑎) − 𝑎(𝜕2 ◦ 𝜕1(𝑏))

= 𝑏 (𝜕1 ◦ 𝜕2(𝑎)) + 𝑎(𝜕1 ◦ 𝜕2(𝑏)) − 𝑏 (𝜕2 ◦ 𝜕1(𝑎)) − 𝑎(𝜕2 ◦ 𝜕1(𝑏))
= 𝑏 [𝜕1, 𝜕2] (𝑎) + 𝑎[𝜕1, 𝜕2] (𝑏),

so [𝜕1, 𝜕2] is a derivation. If 𝜕1 and 𝜕2 vanish on 𝐶 , then so does
[𝜕1, 𝜕2], so it is a 𝐶-linear derivation, as we wanted to show. Since
derivations are group homomorphisms, the bracket [−,−] is Z-
bilinear. If 𝜕1, 𝜕2 ∈ Der(𝐹/𝐶), 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐹 , then

[𝑐𝜕1, 𝜕2] (𝑎) = 𝑐 (𝜕1(𝜕2(𝑎))) − 𝜕2(𝑐 (𝜕1(𝑎))) = 𝑐 [𝜕1, 𝜕2] (𝑎) = [𝜕1, 𝑐𝜕2] (𝑎),
so the bracket is in fact 𝐶-bilinear. For any derivation 𝜕 we have
𝜕 ◦ 𝜕 − 𝜕 ◦ 𝜕 = 0, so it is also antisymmetric. It remains to show the
Jacobi identity. So let 𝑥,𝑦, 𝑧 ∈ Der(𝐹/𝐶). We have

[[𝑥𝑦]𝑧] + [[𝑦𝑧]𝑥] + [[𝑧𝑥]𝑦] = (𝑥𝑦 − 𝑦𝑥)𝑧 − 𝑧 (𝑥𝑦 − 𝑦𝑥) + (𝑦𝑧 − 𝑧𝑦)𝑥
− 𝑥 (𝑦𝑧 − 𝑧𝑦) + (𝑧𝑥 − 𝑥𝑧)𝑦 − 𝑦 (𝑧𝑥 − 𝑥𝑧)

= 0,

because composition of group homomorphisms is associative and
Z-bilinear. Therefore Der(𝐹/𝐶) is a Lie algebra over 𝐶 . �

(b) Assume now that the eld 𝐶 has characteristic 0 and that 𝐹/𝐶 is a
nitely generated eld extension. One can show that there is an in-
termediate eld𝑀 = 𝐶 (𝑧1, . . . , 𝑧𝑑) with𝑀/𝐶 purely transcendental
and 𝐹/𝑀 nite. Prove, with the help of the third exercise, that the
dimension of the 𝐹 -vector space Der(𝐹/𝐶) is equal to 𝑑 .
Solution. We argue by induction on 𝑑 . For 𝑑 = 0 we have
Der(𝐹/𝐶) = 0 by the second exercise, because the elements of 𝐶
are constants and nite extensions are algebraic. Suppose the res-
ult is true for some 𝑑 ∈ N and assume 𝐹/𝐶 is such that there ex-
ists an intermediate eld 𝑀 = 𝐶 (𝑧1, . . . , 𝑧𝑑 , 𝑧𝑑+1) with 𝑀/𝐶 purely
transcendental and 𝐹/𝑀 nite. Let 𝑁 := 𝐶 (𝑧1, . . . , 𝑧𝑑), so that
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𝑀 = 𝑁 (𝑧𝑑+1) is a transcendental extension. From the third exer-
cise we know that

dim𝐹 (Der(𝐹/𝐶)) = dim𝑀 (Der(𝑀/𝐶)) .
From the third exercise we also know that

dim𝑀 (Der(𝑀/𝐶)) = dim𝑁 (Der(𝑁 /𝐶)) + 1,
because every derivation on 𝑀 = 𝑁 (𝑧𝑑+1) is uniquely determined
by a derivation on 𝑁 and an element 𝑓 ∈ 𝑀 . By induction hypo-
thesis we have dim𝑁 (Der(𝑁 /𝐶)) = 𝑑 , therefore dim𝐹 (Der(𝐹/𝐶)) =
𝑑 + 1. �
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