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1. INTRODUCTION

Let k be a differential field of characteristic zero with algebraically closed
subfield of constants C, n € N and A € M, (k) an n X n matrix with entries
in k. We consider a matrix differential equation over k of dimension n of
the form

y{ ain - A\ (U1

= : E (1)
Yn An1 " Aun) \Un
which we will also write as ¢y’ = Ay using the convention that the deriv-
ation acts entry-wise. We would like to find n solution vectors linearly
independent over C, but this may not be possible in k". This motivates
passing to a Picard-Vessiot extension k C L, in which some F € GL,(L)
such that F’ = AF exists. Fixing such a fundamental matrix F we obtain
an embedding of the group Gal(L/k) of differential k-automorphisms of
L into GL,(C) which expresses Gal(L/k) as a linear algebraic algebraic
group, i.e., a Zariski-closed subgroup of GL,(C). Our goal is to prove the
Galois correspondence in this context:
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Theorem 1. In the setting above, there is an inclusion reversing bijection
between closed subgroups of Gal(L/k) and intermediate differential fields of
k C L given by sending a subgroup H to the fixed field LF and a subfield M
to the Galois group Gal(L/M).

2. RECOLLECTIONS FROM PREVIOUS TALKS

Most of the necessary results have already been discussed in earlier
talks, so today’s talk is more about putting the various ingredients to-
gether. In particular, it is a good opportunity to recall the things that we
have seen so far. So let us recall all the objects involved in the statement
through a couple of concrete examples.

2.1. The differential field. We are working over a differential field k of
characteristic zero. This means that k is a field of characteristic zero to-
gether with a derivation on k, i.e., a function (-)": k — k such that

(a+b) =d +b"and (ab)’ = a’b +ab’
for all a, b € k. Inside k we have the subset of constants
C:={ack|d =0},

which is a subfield of k [PS03, Exercises 1.5.2]. We work under the assump-
tion that C is an algebraically closed field. We will consider the fields C(t)
and C(e3") with the usual derivation. In both cases the field of constants

is C.

2.2. The differential equation. Throughout the recollection we will fo-
cus on the 1-dimensional equation y’ = y. In this case, a fundamental mat-
rix over some extension of differential rings k C R consists of an invertible
element u € R* such that ' = u. Neither in k = C(¢) nor in k = C(e*') we
have such an element u, so in both cases we need to consider non-trivial
extensions to find non-zero solutions to the equation.

2.3. The Picard-Vessiot ring. The Picard-Vessiot ring of Equation (1)
over k is defined as a differential ring R over k satisfying the following
properties:
(1) The differential ring R is a simple differential ring, i.e., its only dif-
ferential ideals are 0 and R.
(2) There exists a fundamental matrix F € GL,(R), i.e., a matrix F €
GL,(R) such that F’ = AF.
(3) The k-algebra R is generated by the entries of a fundamental matrix
F and the inverse of the determinant of F.

As we pointed out earlier, the Picard-Vessiot ring for y’ = y over k will
be a non-trivial extension both in the case of k = C(t) and in the case of
k = C(e*). In order to write it down explicitly we start by adding a formal
solution, i.e., we consider k[X, X~!] with the derivation extending the one
on k such that X" = X, cf. [PS03, Exercises 1.5.1]. In this ring we have now
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a fundamental matrix given by X itself, because X is a unit and X’ = X.
So conditions (2) and (3) in the definition of the Picard-Vessiot ring are
satisfied. But we still need to study condition (1).

Let us first deal with the case k = C(t). In this case the claim is that
R = k[X,X 1] is already a simple differential ring, hence a Picard-Vessiot
ring for the equation y’ = y over k. Indeed, let (P) be a non-zero differential
ideal for some P = X™+- - -+a; X +a,. Multiplying by the appropriate power
of X~! we may assume that ay # 0, and our goal is to show that m = 0,
i.e, that P = q¢ is a unit and thus (P) = R. Assume that m > 0. Since (P)
is a differential ideal, P’ = mX™ + --- + a;X € (P), so P’ — mP € (P) and
from degree comparison we deduce that P’ = mP. But this would imply
that ay = 0, a contradiction. Hence m = 0 and (P) = R.

Let us now consider the case k = C(e). In the previous case we
needed the full transcendental extension k[X, X~!], but in this case it will
sufice to find a third root of e*, so we should expect to find some max-
imal differential ideal such that the quotient gives the desired algebraic
extension of k. We look at the ideal I = (X® — ¢*) in k[X, X !]. Since
(X3 — e3) = 3(X3 — €3) € I, this is a non-zero differential ideal. We let
R = k[X,X1]/I be the quotient, which is then a differential ring [PS03,
Exercises 1.5.1]. We can also regard R as the localization of k[X]/(X> —e3')
at the set of powers of the image of X, because localization is exact. But
X3 — €3 is irreducible in k[X], because it is of degree 3 and has no root, so
k[X]/(X® — €%) is a field already and therefore so is R. This shows that R
is a Picard-Vessiot ring in this case.

2.4. The Picard-Vessiot field. A Picard-Vessiot ring for Equation (1) over
k always exists, and any two Picard-Vessiot rings for this equation are iso-
morphic [PS03, Proposition 1.20]. Moreover, Picard-Vessiot rings are in-
tegral domains [PS03, Lemma 1.17] and their quotient fields still have C as
field of constants [PS03, Proposition 1.20]. The quotient field of a Picard-
Vessiot ring for Equation (1) is called a Picard-Vessiot field for this equation,
and by [PS03, Proposition 1.22] it can also be characterized as an extension
of differential fields L 2 k such that the following properties hold:

(1) The field of constants of L is C.
(2) There exists a fundamental matrix F € GL,(L).
(3) The field L is generated by the entries of F over k.

A Picard-Vessiot field for y' = y over k = C(¢) is then the quotient
field of k[X,X™!], i.e., the ring k(X) = C(t,X). On the other hand, the
Picard-Vessiot ring for ¢’ = y over k = C(e') discussed above is already a
Picard-Vessiot field for ¢’ = y over C(e*'), because it is a field and hence
isomorphic to its quotient field.

2.5. The differential Galois group. Given an equation y’ = Ay over k
of dimension n, we are looking for its differential Galois group. By defini-
tion this is the group Gal(R/k) of differential k-algebra automorphisms of
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a Picard-Vessiot ring R for the equation, i.e., the group of k-algebra auto-
morphisms o: R — R such that o(f”") = o(f)" forall f € R.

We start by computing the differential Galois group of y’ = y over C(t).
In this case we have R = C(¢)[X, X '] with X’ = X, and a C(t)-algebra
automorphism o: R — R is uniquely determined by o(X). Since o(X)’ =
0(X’") = 0(X), 0(X) has to be a solution of y’ = y in R, hence of the form
¢ X for some ¢, € C*. This shows that Gal(R/C(t)) = (C*,-).

We compute now the Galois group of the same equation y’ = y over
C(e%). In this case R = L = C(e*)[X]/(X> - €%) is an algebraic extension
obtained by taking the 3-rd root of an element in C(e%*), and this field
already contains all 3-rd roots of unity, so this is a Kummer extension with
Galois group Z/3Z [Bos18, §4.9]. Explicitly, writing L = k(«) for an a €
L such that &> = €% and @ = a and {3 € C(e*) for a primitive 3-rd
root of unity, we have automorphisms o;: a — {éa for i € {0,1,2}. The
isomorphism is given by o; — i + 3Z for each i € {0,1,2}. We check that
each of these o; is a differential automorphism, i.e., that it commutes with
the derivation on L. By construction we have o’ = @, hence

(0i(@)) = o' = Ga = 6i(a) = ai(a’)
foralli € {0,1,2} and Gal(L/C(e*)) = Z/3Z.

Let us also recall some useful results concerning differential Galois
groups from previous talks:

Lemma 2 ([PS03, p. 19]). If we fix a fundamental matrix F € M,(R),
then we may regard Gal(R/k) as a subgroup of GL,(C) by sending an
automorphism o to the uniquely determined constant matrix C, such that
o(F) = FC,. This gives us a faithful representation p: Gal(R/k) — GL(V),
whereV := {v € R" | v’ = Av} is the solution space of our equation, which is
an n-dimensional C-vector space.

Proof. Suppose such a matrix C, existed. Then we would have C, =
F~'o(F) € GL,(R), so it is uniquely determined by F and 0. To show
the existence we need to check that C/. = 0. For this we first observe that
o(F)" = Ao(F), because o is the identity on k and thus o(A) = A. There-
fore we have

AFC, = Ao (F) = o(F) = (FC,)’ = F'C, + FC,, = AFCy + FC,,

hence FC/, = 0 and C, = 0 because F is invertible. Thus we have a well-
defined function Gal(R/k) — GL,(C).

We check next that this is a group homomorphism. By the formula above
we have

Coy00, = F'0105(F) = F'01(FF '03(F)) = F'01(FC,,) = F'01(F)Co,,

where in the last inequality we have used that 01(C,,) = C,, because o7 is
the identity on k. But we also have F~'o(F) = C,,, hence Cy,05, = Cs,Co,
as claimed. This shows that we have a group homomorphism.
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We check next that this is an injective group homomorphism. Suppose
F~l6(F) = 1, is the identitiy matrix. Then ¢(F) = F. Since the entries and
the inverse of the determinant of F generate R as a k-algebra, this implies
that o(f) = f for all f € R, hence ¢ = idg and the group homomorphism
is injective.

For the last statement, note that the columns of F form a C-basis of V.
This fixes an isomorphism GL,(C) = GL(V). Hence this injective group
homomorphism translates into a faithful representation p: Gal(R/k) —
GL(V). O

Lemma 3 ([PS03, p. 19]). Let L denote the quotient field of R, which is then
by definition a Picard-Vessiot field for the equation. Let Gal(L/k) denote the
group of k-linear automorphisms of L which commute with the derivation on
L. Then there is a group isomorphism Gal(R/k) — Gal(L/k).

Proof. Let 0: R — R be an automorphism in Gal(R/k). Since o is bijective
it extends to a k-linear automorphism ¢: L — L given by
- (f ) _o(f)
ol=]=—-=.
9] a9

We check that ¢ commutes with the derivation on L:
5((f)') _of'g-f9) _a(f)alg) -a(f)alg) _ (G(f))'.

g9 a(g%) a(g)? a(g)

Hence 6 € Gal(L/k). Moreover, the above formula for & shows that
0100, = 01 0 G2, SO 0 +— 7 is a group homomorphism. Since o is de-
termined by &, this group homomorphism is injective. Let us show that it
is also surjective.

Let 7 € Gal(L/k). We want to show that the restriction of 7 to R has
image equal to R, i.e., that 7(R) = R when we identify R with a subring of
L as usual. Let F € M, (R) be a fundamental matrix for our equation, so
that the columns of F form a C-basis of the solution space V = {v € R" |
v’ = Av}. We regard F as a matrix with coefficients in L, and the same
arguments as in the proof of Lemma 2 show that we can write 7(F) = FC,
for some C; € GL,(C). Since the entries of F are all in R and C C k, the
entries of FC,; = 7(F) are in R as well. Moreover, since

1 1
det(z(F))  det(F)detC;
and the right hand side is in R, so is the left hand side, which implies that
7(R) € GL,(R). Since the k-algebra R is generated by the entries and the
inverse of the determinant of F and 7 is a k-algebra isomorphism, the k-
algebra 7(R) is generated by the entries and the inverse of the determinant
of 7(F), hence 7(R) C R. Applying the same arguments to 7~ € Gal(L/k)
we deduce that 771(R) C R, hence R C 7(R) as well and 7(R) = R. O

Let us denote G := Gal(L/k). We have seen in previous talks that G is
an algebraic subgroup of GL,(C), that the Lie algebra of G coincides with
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the Lie algebra of the derivations of L/k that commute with the derivation
on L and that the field L® of G-invariant elements of L is equal to k [PS03,
Theorem 1.27].

Moreover, we have also talked about torsors and seen that Z := Spec(R)
is a G-torsor over k, i.e., there is a right G-action of G on Z such that for
any v, w € Z(k) there exists a unique g € G(k) such that v = wg. Recall
that a G-torsor was called trivial if there is a k-scheme isomorphism Z = G
which identifies ZXG — G with the multiplication morphism. A G-torsor
is trivial if and only if it has a k-rational point. One can think of torsors
as principal G-bundles over a point, and this last statement corresponds
to the topological statement that a principal G-bundle is trivial if and only
if it admits a section. Intuitively, the difference between a G-torsor and G
itself is that on a G-torsor we don’t have a distinguished neutral element.
A rational point or a seciton defines a notion of neutral element and this
allows us to find the desired isomorphism. See [PS03, Appendix A.2.3] for
more details.

3. PROOF OF THE CORRESPONDENCE

We consider an equation y’ = Ay over k of dimension n and we let R
be a Picard-Vessiot ring, L the quotient field of R, which is then a Picard-
Vessiot field, and G := Gal(L/k) the differential Galois group, which is then
isomorphic via restriction to the differential Galois group Gal(R/k). We
denote by S the set of closed subgroups of G and by L the set of differential
subfields of L containing k. The reference throughout this section is [PS03,
Proposition 1.34]. We will use the following result from Christoph’s talk:

Theorem 4 ([PS03, Theorem 1.27]). Let y’ = Ay be a differential equation
of degree n over k, having Picard-Vessiot field L 2 k and differential Galois
group G = Gal(L/k). Then
(1) The group G, considered as a subgroup of GL,(C), is an algebraic
group.
(2) The Lie algebra of G coincides with the Lie algebra of the derivations
of L/k that commute with the derivation on L.
(3) The field LC of G-invariant elements of L is equal to k.

We will also use the following result from Johan’s talk:

Corollary 5 ([PS03, Corollary 1.30]). Let R be a Picard-Vessiot ring for the
equationy’ = Ay overk. Let L be the field of fractions of R. Put Z = Spec(R).
Let G denote the differential Galois group and C[G] the coordinate ring of G
and let g denote the Lie algebra of G. Then:

(1) There is a finite extension k 2 k such that Z; = Gy.

(2) The scheme Z is smooth and connected.

(3) The transcendence degree of L/k is equal to the dimension of G.

(4) Let H be a subgroup of G with Zariski closure H. Then L = k if and
only ifH = G.
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Particularly relevant will be the last statements of both results, i.e., that
LS = k and that L¥ = k implies that H = G for subgroups H C G.

Lemma 6. IfH is a closed subgroup of G, then L' is a differential subfield
of L containing k. Hence we have a well-defined map a: S — L given by
a(H) = LH.

Proof. Since every o € G restricts to the identity on k, k € L¥ is a subfield.
And a direct computation shows that L C L is a subfield as well. Hence
it suffices to show that L is a differential subfield of L. So let a € L and
letc € HC G. Theno(a’) = o(a) =a’. Hence @’ € L as well and L¥ is a
differential subfield. |

Lemma 7. If M is a differential subfield of L containing k, then the set of
M-linear differential automorphisms Gal(L/M) is a closed subgroup of G.
Hence we have a well-defined map : L — S given by f(M) = Gal(L/M).

Proof. Since Gal(L/M) C G is the subset of elements that restrict to the
identity on M, it is a subgroup of G. Let F € GL,(L) be a fundamental
matrix for the equation y’ = Ay over k. Since L is a Picard-Vessiot field of
this equation, the field of constants of L is C and L is generated as a field
extension over k by the entries of F. In particular, L is generated as a field
extension over M by the entries of F, and A € M, (M) as well under the
inclusion k € M. Hence L is a Picard-Vessiot field for the equation ¢y’ = Ay
over M by [PS03, Proposition 1.22] and Gal(L/M) is a closed subgroup of
GL,(C) by [PS03, Theorem 1.27]. This implies that Gal(L/M) C G is closed
as well. O

Lemma 8. The maps a: S — L and f: L — S from Lemma 6 and
Lemma 7 are mutually inverse.

Proof. Let M € L be an intermediate differential field. Then af(M) =
LGAL/M) YWe regard 4 = Ay as an equation over M again and apply [PS03,
Theorem 1.27] regarding L as the Picard-Vessiot field of y' = Ay over M to
deduce that af(M) = M.

Let H € S be a closed subgroup. Then we have H C fa(H), because
every o € H has the property that o(a) = a for all a € f(H) = LY, hence
o € Gal(L/L™). We now regard y’ = Ay as an equation over L¥ and apply
[PS03, Corollary 1.30] to deduce that the closed subgroup H € Gal(L/L")
is in fact the whole Galois group Gal(L/L™). O

Example 9. Let n € N.; and let L = C(¢)(X) be the Picard-Vessiot field
of ¥ = y over C(t). We’ve seen earlier that its differentail Galois group
is Gal(L/k) = C*, and the group py, of n-th roots of unity is a closed sub-
group of C*. The corresponding inermediate differential field is C(¢) (X").
Indeed, this is a differential field as well, because (X")" = nX" € C(t)(X").
On the other hand, there are no intermediate differential fields for the
equation y’ = y over C(e%), because in this case the Picard-Vessiot field
extension has degree 3 and the Galois group is of order 3.
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Lemma 10. Let H € S be a closed subgroup of G. If o(L) = L for all
o € G, then the restriction morphism G — Gal(L! /k) is surjective and has
kernel H. In particular, H is a normal subgroup of G in this case.

Proof. If the assumption is true, then the restriction morphism is a well-
defined group homomorphism. The kernel is by definition fa(H) = H, so
it remains to show the surjectivity assertion.

Let ¢ € Gal(L¥/k) be a differential automorphism of L over k,
which we can regard as a k-linear homomorphism of differential fields
o: L — L. Our goal is to extend this to a k-linear differential isomorph-
ism o: L — L. Since L is a Picard-Vessiot field for the equation y’ = Ay
over k, its subfield of constants is C and there exists a fundamental matrix
F € GL,(L) whose entries generate L as a field extension over k, hence
also as a field extension over LY. This implies that L is a Picard-Vessiot
field for the equation y’ = Ay over L [PS03, Proposition 1.22]. Let us de-
note by 1: LH — L the inclusion. The matrix F is still a fundamental matrix
for y = 0(A)y = Ay, and its entries generate L as a field extension over
o (L) because they already generate L as a field extension over k. Hence
o: LH — L is also a Picard-Vessiot field for the equation ¢’ = Ay over L¥
and we have the following situation:

L--251
T A
LH

The uniqueness of the Picard-Vessiot field implies that we can find the
dashed isomorphism L = L extending o: L — L. O

Lemma 11. The converse of Lemma 10 holds as well, ie., if H € S is a
normal subgroup of G, then o(L") = LY for all o € G and the restriction
morphism G — Gal(L" /k) is surjective with kernel H.

Proof. The second part of the statement follows as in Lemma 10, so let us
show that o(Lf) = L for all 0 € G. Let o € G be an arbitrary element
and let a € L. We want to show that o(a) € LY, so let also 7 € H. The
equation 7o(a) = o(a) is equivalent to 0~ '7o(a) = a. Since H is a normal
subgroup of G, 07'r0 € H again, so o~ ro(a) = a as we wanted to show.
Hence o(L¥) c L¥ for all o € G. Conversely, applying what we have just
proven to 0! € G we deduce that ¢~ (L¥) € L. Therefore

LH = oo (LF) c o(LF) c LH
and the desired equality follows. O

Combining Lemma 6, Lemma 7, Lemma 8, Lemma 10 and Lemma 11 we
obtain the differential analogue of the usual Galois corresopndence [Bos18,
Theorem 4.1/6]. One can also show using some theory of linear algebraic
groups that if H € S is a normal subgroup of G, then L is a Picard-Vessiot
field for some linear differential equation over k [PS03, Corollary 1.40].



DIFFERENTIAL GALOIS CORRESPONDENCE 9

Let us also mention the following:

Lemma 12. Let G° denote the identity component of G. Then 1% Skisa
finite Galois extension with Galois group G/G°. Moreover, it is the algebraic
closure of k in L.

Proof. Since G has only finitely many irreducible components, G/G° is a
finite group. We have (LS*)G/G" = k, because LC = k. Hence k € L¢" isa
finite Galois extension with Galois group G/G° [Bos18, Proposition 4.1/4].

To show that LC" is the algebraic closure of k in L, let « € L be algebraic
over k. We want to show that k(a) C LS. An element ¢ € G will only
send « to some other root of its minimal polynomial, so the G-orbit of «
is finite. Therefore Aut(L/k(a)) = {0 € G | o(a) = «} is an algebraic
subgroup of G of finite index and G° C Aut(L/k(a)), so k(a) C LS as we
wanted to show. O

4. ANOTHER EXAMPLE

We consider now the equation y’ = 8 instead, still working over the two
fields C(t) and C(e*'). We can reduce this equation to the matrix equation

yi) _ [0 8) (w1

y,) \0 0)\yz)’
so that y, = A € Cis forced to be a constant and y; = 8A. If F € GLy(R) is
a fundamental matrix in some differential ring extension R, then we have

Fi, F,\_(0 8 (Fu F) _(8Fx 8Fz

Fél Féz 0 0 F21 F22 0 0 ’
Therefore F,;, F5; € C are constants. But they cannot both be zero, because
we want the matrix to be invertible. So let’s say F»; = 0 and F;; = 1. Then

we need Fj, = 0 and F], = 8. But F;; cannot be zero, because we want
the matrix to be invertible, so we take F;; = 1 and the fundamental matrix

becomes
(1 Fip
=5 )

with Fj; a solution of our original equation y’ = 8. If we are working over
C(t), then a solution already exists in the base field, namely F;, = 8¢. So in
this case C(t) is its own Picard-Vessiot field extension and the differential
Galois group is trivial. On the other hand, there is no solution in C(e*'),
so in this case we need to pass to a non-trivial extension. We add a formal
solution by considering the polynomial ring R := C(e*')[X] with X’ = 8.
A fundamental matrix F € GLy(R) is given by

1 X
<[ %)

so R is generated as a C(e*')-algebra by the entries of the fundamental
matrix and the inverse of its determinant. It remains to show that R is a
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simple differential ring in order to conclude that it is the Picard-Vessiot
ring of the equation y’ = 8 over C(e*). Let I = (P) be a differential ideal
of C(e¥) withP = X" + a1 X™ ' +---4+ay € R.If m =0, then I = (0) or
I =R. So assume m > 0. Then P’ = (8m +a,_)X™ ' +--- € (P), hence
P’ = 0 for degree reasons. In particular we have 8m +a;,_, =0, ie,

—am-1]| = 8.
m

This would imply that %am_l € C(e%) was already a non-zero solution
of the equation in C(e%). But no such solution exists, so m = 0 and R is a
simple differential ring. Let now o € Gal(R/C(e*)) be an automorphism
in the differential Galois group. Then o is uniquely determined by o(X),
and we need
o(X) =a(X') =0(8) =38,

hence ¢(X) is another solution of the equation y’ = 8 over C(e%). If we
write 0(X) = apX™+---+ay € R, then 0(X)’ = 8ma,X™ ' +--- + 8ay,
so for degree reasons we must have o(X) = X + a, for some a, € C(e’)
which depends on 0. We have then another fundamental matrix ggiven by

~ (1 X+as
(o 1)

We compute F~'F in order to find the matrix C, € GL3(C) corresponding

c _(1 —X) (1 X+a0) _(1 a(,)
710 1 0 1 o 1 /)°
Therefore Gal(L/C(e?)) = Gal(R/C(e%*)) = (C,+).

APPENDIX A. SOLUTIONS TO EXERCISES
The exercises below are taken from [PS03, Exercises 1.5].

Exercise 1 (Constructions with rings and derivations). Let R be any differ-
ential ring with derivation 9.
(a) Let t,n € R and assume that n is invertible. Prove the formula
t d(t)n — ta(n)
off) - 20mt,

n n

Solution. Assume first that t = 1. The Leibniz rule implies that
a(1) = (1) + a(1) = 20(1),

and since Q C R we deduce that 9(1) = 0. So in this case we need
to show that

Again by the Leibniz rule we have

0=0(1) =a(nn") = a—: +na(nh),
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hence the claim. Now for any t € R we can apply again the Leibniz
rule to the product tn~! to deduce the desired equality. ]

(b) Let I C R be an ideal. Prove that 9 induces a derivation on R/I if
and only if 9(I) C I.

Remark 13. It may happen that R/I is no longer of characteristic
zZero.

Solution. It follows from the Leibniz rule that 9(0) = 0 on any dif-
ferential ring, even if it does not contain Q. If 9 induces a derivation
onR/I, then 9(0+1) =0+1,1ie., d(a) € I for all a € I. Conversely,
if d(a) € I for all a € I, then 0 induces a well-defined derivation on
R/I. Indeed, since 9(0) = 0 and d(a + b) = d(a) + 9(b), 9 is a group
homomorphism. Therefore
a-bel=d(a—b)=039(a)—a(b) €1,
so d: R/I — R/I is a well-defined function. We have also
da+b+1)=0(a+b)+I=39(a)+d(b)+I=0(a+1)+3(b+]1),
so d: R/I — R/I is additive. And finally
d(ab+1) =9(ab) +1=ad(b)+bd(a)+1=(a+D)o(b+I)+ (b+1)d(a+1I),
so d: R/I — R/I is a derivation. ]
(c) Let the ideal I C R be generated by {a;}jej. Prove that 9(I) C I if
d(aj) € Iforall j e J.
Solution. Since 9 is a group homomorphism and I is a subgroup, it
suffices to show that d(aa;) € I for all j € J and all a € R. Since
aj,d(a;) € I and I is an ideal, we have ad(a;) € I and a;d(a) € I,
hence
d(aa;) = ad(a;j) +a;o(a) € I.
|
(d) LetS € Rbe amultiplicative subset. Prove that there exists a unique

derivation @ on RS™! such that the canonical map R — RS™! com-
mutes with 9. Hint: Use the fact that tr = 0 implies t2d(r) = 0.

Solution. Suppose such a derivation existed andleta € Rand s € S.
Since (the equivalence class of) s is invertible in RS™!, part (a) of
this exercise implies that

a\ sd(a) —ad(s)
2(2) = 5
$ s

This proves uniqueness. For the existence we need to check that
the previous expression is a well-defined derivation on RS™!. Let
a,b € Rand s,t € S such that a/s = b/t, i.e., suppose there exists
some u € S such that u(at — bs) = 0. We need to show that there
eixsts some v € S such that

o(£(s8(a) — ad(s)) — s2(ta(b) — ba(t))) = 0.
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Taking the hint for granted and using that uat = ubs we deduce
0 = stu’d(at — bs) = stu®(td(a) + ad(t) — sa(b) — ba(s))
= u?(st?d(a) + stad(t) — s’ta(b) — stba(s))
= u?t?sd(a) — u?stba(s) — us*ta(b) + ustad(t)
= u’t’sd(a) — u*t>ad(s) — u’s’ta(b) + u’s’bo(t)
= u?(t*(sd(a) — ad(s)) — s*(ta(b) — ba(t))

So taking v = u® € S works. We prove the hint now. From tr = 0
we deduce
a(tr) =0 =1ta(r) +ro(t).
Multiplying the equality by ¢ and using again that tr = 0 we ob-
tain the claim. Therefore the formula above yields a well-defined
function 9: RS™! — RS™L.
We check finally that it is a derivation. On the one hand we have

(a b) (at+bs)
al=+2]=a
S t st

st(ad(t) + ta(a) + ba(s) + sa(b)) — (at + bs)(ta(s) +sa(t))

s2t2
2 2
_t (sa(as)z; ad(s)) LS (ta(l;)Zt—2 bo(t)) o

oft)o(?)

s0 d: RS™! — RS7!is additive. On the other hand we have

o575

std(ab) — abd(st)

s2t2
_ stad(b) + stba(a) — absd(t) — abtd(s)
B s2t2
_ stad(b) + stbad(a) — absd(t) — abtd(s)
a s2t2
as (ta(b) - ba(t)) bt (sa(a) - aa(s))
= — _— + JR— —_
s2 t? t? 52
a_(b b_(a
- (;) +79(5),
so 9: RS~ — RS ! is a derivation. |

(e) Consider the polynomial ring R[Xj,...,X,] and a multiplicative
subset S C R[Xi,...,X,]. Let ay,...,an, € R[Xy,...,X,]S7!
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be given. Prove that there exists a unique deriva-
tion @ on R[Xi,...,X,]S™! such that the canonical map
R — R[Xiy,...,X,]S™! commutes with 9 and d(X;) = a; for
all i.

Solution. Suppose first that all g; are in R[ X, ..., X},]. In that case,
by part (d) of this exercise, it suffices to find a compatible deriv-
ation on R[Xj,...,X,]|. Suppose that we have such a compatible
derivation d on R[Xj, ..., X,]. Induction on m; shows that

a(le') = miain.'ni_l

for all m; > 1. With the convention that Xi_1 = 0, the same formula
holds for m; = 0 as well. The Leibniz rule implies then that

n
(XM -+ XM = Z maaX™ - XML X
i=1

for all such monomials, again with the convention that Xl._1 = 0.
We keep this convention throughout the rest of the solution. For
an element b € R we have

n
A(bX™ -+ X = (b)X] -+ X+ b [ > ma X[ X X

1
i=1

(2)
Any polynomial P € R[Xj, ..., X,] is a finite sum of such monomi-
als, so such a dis already uniquely determined by Equation (2). This
shows uniqueness. For the existence part, it remains to show that 9
determines a well-defined derivation. Additivity holds by construc-
tion and by definition of addition of polynomials. So we only need
to check the Leibniz rule. We check it first for the product of two
monomials as in Equation (2), say bX;" - - - X" and chl - X" On
one hand we have

a(beX ™ . XMty = (ca(b) + ba(c)) XM .. XMl

n
+be (Z(ml- + ll-)ainmlJrl1 I GAAL R L X

i
i=1

On the other hand we have

)
eX) - XPa(bX]" - XM =

n
ca(b)XI"“Lh Co X e (Z miaixlmﬁll oMt XMt

i
i=1

Adding the analogous term we deduce that the Leibniz rule holds in
this case. Let now M;, M, and M3 be monomials. Since d(M;My) =
M d(M;) + Mjo(My) and 9 is additive, we have

(M + Mp)M3) = M3(a(M;) + d(Mz)) + (My + M3)d(Ms).
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By induction, the Leibniz rule is satisfied for the product of an arbit-
rary polynomial with a monomial. And if M; and M, are monomi-
als and P is an arbitrary polynomial, then using additivity and the
Leibniz rule for the product of a polynomial with a monomial we
deduce that

O(P(M; + Mz)) = (M + M3)d(P) + Po(M; + My),

so by induction we conclude that the Leibniz rule holds in general.
This proves the existence and hence finishes the proof when a; €
R[Xi,...,Xy] foralli e {1,...,n}.

Now write each a; = P;/Q;, where P;,Q; € R[X,...,X,] for
alli € {1,...,n}. Consider the ring A = R[Xy,..., X, T1, ..., T;]
and its ideal I = (1 — T104,...,1 — T,Q,). In the quotient ring
A/I we can think of T; as Qi_l, so we first extend 9: R — Rto a
derivation 9: A — A such that 9(X;) = P;T; and o(T;) = —T?9(Q;).
For example, if P; = 2X; and Q; = 3X12 + 2, then we would have
8(X1) = 2X1T1 and

o(Ty) = —6T{X19(X1) = —12T7 X}

Now we check that the (uniquely determined) derivationd: A — A
extends to a uniquely determined derivation 9: A/I — A/I using
parts (b) and (c) of this exercise. For each i € {1,...,n} we have

(1 - TQy) = —Qi(~-T3(Q1)) — T:0(Q;) = (0N Ti(1 - T;Q)),

so we can indeed apply part (b) of this exercise to obtain the
uniquely determined 9: A/I — A/I with the specified properties.
The localization of A/I at (the image of) S is the same as the loc-
alization of R[Xy,...,X,]| at S and q; is the image of P;T; + I for
all i € {1,...,n}; this follows from the universal property of the
localization. Part (d) of this exercise allows us to conclude the solu-
tion. [

Exercise 2 (Constants). Let R be any differential ring with derivation o.

(a) Prove that the set of constants C of R is a subring containing 1.

Solution. We have seen in the previous exercise that 9(1) = 0 as a
consequence of Q C R, so 1is always a constant. We have also seen
in the previous exercise that 9(0) = 0 in any case, so 0 is a constant
as well. If ¢ and d are constants, then d(c +d) = d(¢) + d(d) = 0, so
¢ +d is a constant as well. And d(cd) = cd(d) +da(c) = 0, so cd is
a constant as well. Therefore C is a subring containing 1. ]

(b) Prove that C is a field if R is a field.

Solution. After part (a) of this exercise, it remains only to show that
¢! is a constant for any non-zero constant c. But we have seen in
the previous exercise that d(c™!) = —d(c)c™?, so ¢! is a constant as

well. ]
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Assume that K 2 R is an extension of differential fields.
(c) Assume that ¢ € K is algebraic over the constants C of R. Prove
that d(c) = 0. Hint: Let P(X) be the minimal monic polynomial of
c over C. Differentiate the expression P(c) = 0 and use the fact that
QCcR

Solution. We consider the derivation on R[X] which is compatible
with the derivation on R and such that 9(X) = 1, which is unique
and well-defined by the previous exercise. Then we consider the
polynomial 9(P) € R[X]. If ¢ = 0, then d(c) = 0. So we may
assume that deg(P) > 1. We have deg(dP) = deg(P) — 1, because
Q € R. Explicitly, if P = 3" a; X ! then it follows from the solution
to the previous exercise that

a(P) = Zm](iaixi_l +d(a;)X'),
i=0

with the convention again that X ~1 = 0. Since a; € C for all i, we

have
m

a(P) = Z ia; X1
i=1
We may regard c like a variable and extend the derivation to R[X, c]
so that d(X) = 1 and 9(c¢) is the value taht we want to determine.
The solution to the previous exericse shows again that

d(P(c)) = (Z iaia(c)ci_l) +0=09(c) (Z iaici_l) = d(c)(a(P)(c)),

i=1 i=1

where we are using that P € C[X] one more time in the first equal-
ity above. Since P(c) = 0, we have

a(c)(a(P)(c)) = 0.

But P is the minimal polynomial of ¢ over C and deg(P) >
deg(a(P)) > 0, so d(P)(c) # 0. Since R is a field, we deduce that
d(c) = 0 and c is a constant. |

(d) Show that ¢ € K, d(c) = 0 and c is algebraic over R, implies that c
is algebraic over the field of constants C of R. Hint: Let P(X) be the
minimal monic polynomial of ¢ over R. Differentiate the expression
P(c) =0and use Q C R.

Solution. Let ¢ € K be such a constant. We may again assume that
¢ # 0. We need to find a non-zero polynomial Q € C[X] such that
Q(c) = 0. Let P € R[X] be the minimal monic polynomial of ¢ over
R as in the hint, say P = > a;X" with a; € R. We consider again
the induced derivaton on R[X] with the property that 9(X) = 1.
Using again the formulas in the solution to the previous exercise
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and the assumption that d(c) = 0 we have

m

a(P(c)) =0+ (Z a(a;) X’

i=0

=0.

This implies that d(a;) = 0 for all i, so P € C[X]. Since ¢ # 0, P # 0.
Hence c is algebraic over C. ]

Exercise 3 (Derivations on field extensions). Let F be a field (of character-
istic 0) and let 0 be a derivation on F. Prove the following statements.

(a) Let F C F(X) be a transcendental extension of F. Choose an a €
F(X). There is a unique derivation 9 of F(X), extending 9, such
that 9(X) = a.

Solution. By definition, F(X) is the smallest field containing F and
X. Therefore F(X) is also the field of fractions of the polynomial
ring F[X]. The claim follows then from part (e) of the first exercise.

|

(b) Let F C F be a finite extension, then o has a unique extension to a

derivation of F. Hint: F = F(a), where a satisfies some irreducible
polynomial over F. Use the first exercise and Q C F.

Solution. Let us show uniqueness first. Since Q C F, the extension
is separable. By the primitive element theorem there exists some
a € F such that F = F(a) and such that there exists some monic
irreducible polynomial P = ). a;X" € F[X] such that P(a) = 0 in
F. Therefore we must have

m m
0= a(P(a)) = (a) (Z za,-ai—l) + Z a(a;)d,
i=1 i=0
and since Q C F and P is the minimal polynomial of a we must
also have >\ ig;a"™! # 0. The value of d(a) is therefore uniquely
determined as
iz d(a;)d’
>migaiTt
This proves the uniqueness.
For the existence, we use part (e) of the first exercise with
S € F[X] the set of powers of the non-zero polynomial Q :=
" ia;X'"'. We can then define a derivation on ST'F[X] with the

d(a) = —

property that
mod(aX
o(x) = 2z X
Q
We have F = F[X]/(P) and the image of Q is invertible in F, so we
have

S7'F[X]/S™Y(P) =S'F =F.
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By parts (b) and (c) of the first exercise, it suffices to show that
d(P) € S71(P) in ST'F[X]. But replacing a by X in the formula
above shows that d(P) = 0, thus we have a well-defined derivation
on F extending the given derivation on F. ]

(c) Prove that d has a unique extension to any field F that is algebraic
over F (and, in particular, to the algebraic closure of F).

Solution. We can write any algebraic extension as the union of all
finite subextensions. The uniqueness in part (b) of this exercise
allows us to extend 9 to each such finite subextension in a way that
glues together to a well-defined 9 on their union. ]

(d) Show that (b) and (c) are, in general, false if F has characteristic
p > 0. Hint: Let F, be the field with p elements and consider the
field extension F,(x?) C F,(x), where x is transcendental over F,,.

Solution. We consdier & = 0 on IF, and use part (a) of this exercise
to extend 0 to F,(x) in two different ways: d) = 0 and 9; such that
d1(x) =1.Forall j € {1,2},all a € F, and all i € N, we have

9j(ax?) = piax?'9;(x) = 0,

so both 9y and 9, are extensions of @ = 0 on F,(x”) to F,(x). But
do # J1, so the uniqueness in part (b) fails. ]

(e) Let F be a perfect field of characteristic p > 0 (i.e., F* =: {a|a €
F} is equal to F). Show that the only derivation on F is the zero
derivation.

Solution. Let 9 be a derivation on F and let a € F. We want to show
that d(a) = 0. Since Frobenius is surjective, we can write a = b for
some b € F. Then we have

a(a) = a(bP) = pbPa(b) = 0,

hence 0 = 0. |

(f) Suppose that F is a field of characteristic p > 0 such that [F : FP] =
p. Give a construction of all derivations on F. Hint: Compare with
the beginning of [PS03, Sect. 13.1].

Solution. Let 0: F — F be a derivation. Let a = b” be an element
in FP. Then d(a) = pb?~'9(b) = 0. So 9: F — F is FP-linear,
and in particular it is uniquely determined by the values of o at
the elements of a basis of F over FP. Since [F : FP] = p is prime,
every x € F\ FP generates the field extension F? C F. We consider
the basis 1, x,...,x?~! of F over FP. Since 1 € F?, we must have
d(1) = 0. We have

a(x)) = jx’1a(x)
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forall j € {1,...,p — 1}, so 9 is uniquely deterined by the value
d(x) € F. So every derivation 9: F — F has the form

r-1 p-1
0 (Z aixi) = d(x) (Z iaixi_l)
i=0 i=1

for some d(x) € F, where a; € FP foralli € {0,...,p — 1}. Con-
versely, given any f € F, we can define an FP-linear derivation
0: F — F by setting d(x) = f. Such a derivation is by definition
additive, so we only need to check that the Leibniz rule holds. We
start by checking the Leibniz rule on temrs of the form ax with
a € FP. In that case we have

d(axbx) = 2abxd(x) = bxd(ax) + axd(bx).

In general we can use induction on the number of terms and the
additivity of 9 to conclude that the Leibniz rule holds in general as
in part (e) of the first exercise. |

Exercise 4 (Lie algebras and derivations). A Lie algebra over a field C is a
C-vector space V equipped with a C-bilinear map [, |: V. XV — V that
satisfies [u, u] = 0 for all u € V and satisfies the Jacobi identity.

(a) Let F be any field and let C C F be a subfield. Let Der(F/C) denote
the set of all derivations d on F such that 9 is the zero map on C.
Prove that Der(F/C) is a vector space over F. Prove that for any
two elements 9,9, € Der(F/C), the map 919, — 99, is again in
Der(F/C). Conclude that Der(F/C) is a Lie algebra over C.
Solution. The Leibniz rule and the assumption that Q C F imply
that d|c = 0 if and only if 9: F — F is C-linear. So Der(F/C) is the
set of C-linear derivations on F. The zero derivation is C-linear, so
this set is non-empty. Let 9; and 9, be two C-linear derivations. We
check that 9; + 9, is a C-linear derivation. For any a,b € F we have

(91 +02)(a+b) = d1(a) +91(b) +92(a) +92(b) = (91 +32)(a) + (91 +32) (b),
S0 0; + 05 is additive. Moreover, we also have
((91 + 82)(ab) = 81(ab) + 82(ab)
= bal(a) + aal(b) + baz(a) + aaz(b)
= b((91 + ) (a)) +a((91 + ;) (b)),
so the Leibniz rule is also satisfied by 9; + 9,. And for ¢ € C we have
(01+02)(c) = 91(c) +d2(c) = 0,50 91 + Iy is C-linear as well. If dis a
C-linear derivation, then so is —9. Pointwise addition of functions
is associative and commutative, so Der(F/C) is an abelian group.
We define a scalar multiplication pointwise as well, i.e., (19)(a) :=
A(d(a)) for 0 € Der(F/C), A,a € F. This defines again a C-linear

derivation on F and endows Der(F/C) with the structure of a vector
space over F.
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For 91, 0, € Der(F/C) we define
[01,02] := 9100y — 32 009.
We check that 9, d;] is again a C-linear derivation on F. For a, b €
F we have
[01,0:](a+b) =01 00,(a+b) —9y00,(a+Db)
=91 0d2(a) + 01 00(b) —d2001(a) — 92 001(b)
= [01,9:](a) + [91, 92] (D)
and also

[1, 32 (ab) = 8y o d;(ab) — 9, o 91 (ab)
= 91(ba2(a) + adz (b)) — 2(bo1(a) + ad1 (b))
= 92(a)d1(b) + b(0;1 0 92(a)) + 02(b)d1(a) + a(d; © 92(b))
—91(a)92(b) — b(35 0 91(a)) — 91(b)d2(a) — a(dz 0 91(b))
= b(01 0 92(a)) +a(91 0 92(b)) — b(dz 0 91(a)) — a(dz o 31 (b))
= b[d1,9:](a) + a[ a1, 22](b),

so [d1, 02] is a derivation. If 9; and 9, vanish on C, then so does
[01, 02], so it is a C-linear derivation, as we wanted to show. Since
derivations are group homomorphisms, the bracket [—, —] is Z-
bilinear. If 9;, d; € Der(F/C), ¢ € C and a € F, then

[cd1, d2](a) = c(91(02(a))) — d2(c(d1(a))) = c[01, d2](a) = [0, cdz](a),

so the bracket is in fact C-bilinear. For any derivation o we have
d0d—09do00d=0,so it is also antisymmetric. It remains to show the
Jacobi identity. So let x, y, z € Der(F/C). We have

[[xylz] + [[yz]x] + [[ex]yl = (xy = yx)z — 2(xy — yx) + (yz - zy)x
- x(yz — zy) + (zx — x2)y — y(zx — x2)
=0,

because composition of group homomorphisms is associative and
Z-bilinear. Therefore Der(F/C) is a Lie algebra over C. |

(b) Assume now that the field C has characteristic 0 and that F/C is a
finitely generated field extension. One can show that there is an in-
termediate field M = C(zy, . . ., zg) with M/C purely transcendental
and F/M finite. Prove, with the help of the third exercise, that the
dimension of the F-vector space Der(F/C) is equal to d.

Solution. We argue by induction on d. For d = 0 we have
Der(F/C) = 0 by the second exercise, because the elements of C
are constants and finite extensions are algebraic. Suppose the res-
ult is true for some d € N and assume F/C is such that there ex-
ists an intermediate field M = C(zy, ..., z4, z4+1) With M/C purely
transcendental and F/M finite. Let N := C(zy,...,z4), so that
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M = N(zg441) is a transcendental extension. From the third exer-
cise we know that

dimp(Der(F/C)) = dimy (Der(M/C)).

From the third exercise we also know that

dimy;(Der(M/C)) = dimy(Der(N/C)) + 1,

because every derivation on M = N(z441) is uniquely determined
by a derivation on N and an element f € M. By induction hypo-
thesis we have dimy (Der(N/C)) = d, therefore dimp(Der(F/C)) =
d+1. |

[Bos18]

[PS03]
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