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1. Introduction

Let𝑘 be a di�erential �eld of characteristic zerowith algebraically closed
sub�eld of constants𝐶 , 𝑛 ∈ N and 𝐴 ∈ M𝑛 (𝑘) an 𝑛 ×𝑛 matrix with entries
in 𝑘 . We consider a matrix di�erential equation over 𝑘 of dimension 𝑛 of
the form ©­­«

𝑦′1
...

𝑦′𝑛

ª®®¬ =
©­­«
𝑎11 · · · 𝑎1𝑛
...

...

𝑎𝑛1 · · · 𝑎𝑛𝑛

ª®®¬
©­­«
𝑦1
...

𝑦𝑛

ª®®¬ , (1)

which we will also write as 𝑦′ = 𝐴𝑦 using the convention that the deriv-
ation acts entry-wise. We would like to �nd 𝑛 solution vectors linearly
independent over 𝐶 , but this may not be possible in 𝑘𝑛 . This motivates
passing to a Picard-Vessiot extension 𝑘 ⊆ 𝐿, in which some 𝐹 ∈ GL𝑛 (𝐿)
such that 𝐹 ′ = 𝐴𝐹 exists. Fixing such a fundamental matrix 𝐹 we obtain
an embedding of the group Gal(𝐿/𝑘) of di�erential 𝑘-automorphisms of
𝐿 into GL𝑛 (𝐶) which expresses Gal(𝐿/𝑘) as a linear algebraic algebraic
group, i.e., a Zariski-closed subgroup of GL𝑛 (𝐶). Our goal is to prove the
Galois correspondence in this context:
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Theorem 1. In the setting above, there is an inclusion reversing bijection
between closed subgroups of Gal(𝐿/𝑘) and intermediate di�erential �elds of
𝑘 ⊆ 𝐿 given by sending a subgroup 𝐻 to the �xed �eld 𝐿𝐻 and a sub�eld 𝑀
to the Galois group Gal(𝐿/𝑀).

2. Recollections from previous talks

Most of the necessary results have already been discussed in earlier
talks, so today’s talk is more about putting the various ingredients to-
gether. In particular, it is a good opportunity to recall the things that we
have seen so far. So let us recall all the objects involved in the statement
through a couple of concrete examples.

2.1. The di�erential �eld. We are working over a di�erential �eld 𝑘 of
characteristic zero. This means that 𝑘 is a �eld of characteristic zero to-
gether with a derivation on 𝑘 , i.e., a function (−)′ : 𝑘 → 𝑘 such that

(𝑎 + 𝑏)′ = 𝑎′ + 𝑏′ and (𝑎𝑏)′ = 𝑎′𝑏 + 𝑎𝑏′

for all 𝑎, 𝑏 ∈ 𝑘 . Inside 𝑘 we have the subset of constants

𝐶 := {𝑎 ∈ 𝑘 | 𝑎′ = 0},
which is a sub�eld of 𝑘 [PS03, Exercises 1.5.2]. Wework under the assump-
tion that𝐶 is an algebraically closed �eld. We will consider the �elds C(𝑡)
and C(𝑒3𝑡 ) with the usual derivation. In both cases the �eld of constants
is C.

2.2. The di�erential equation. Throughout the recollection we will fo-
cus on the 1-dimensional equation 𝑦′ = 𝑦. In this case, a fundamental mat-
rix over some extension of di�erential rings 𝑘 ⊆ 𝑅 consists of an invertible
element 𝑢 ∈ 𝑅× such that 𝑢′ = 𝑢. Neither in 𝑘 = C(𝑡) nor in 𝑘 = C(𝑒3𝑡 ) we
have such an element 𝑢, so in both cases we need to consider non-trivial
extensions to �nd non-zero solutions to the equation.

2.3. The Picard-Vessiot ring. The Picard-Vessiot ring of Equation (1)
over 𝑘 is de�ned as a di�erential ring 𝑅 over 𝑘 satisfying the following
properties:

(1) The di�erential ring 𝑅 is a simple di�erential ring, i.e., its only dif-
ferential ideals are 0 and 𝑅.

(2) There exists a fundamental matrix 𝐹 ∈ GL𝑛 (𝑅), i.e., a matrix 𝐹 ∈
GL𝑛 (𝑅) such that 𝐹 ′ = 𝐴𝐹 .

(3) The 𝑘-algebra 𝑅 is generated by the entries of a fundamental matrix
𝐹 and the inverse of the determinant of 𝐹 .

As we pointed out earlier, the Picard-Vessiot ring for 𝑦′ = 𝑦 over 𝑘 will
be a non-trivial extension both in the case of 𝑘 = C(𝑡) and in the case of
𝑘 = C(𝑒3𝑡 ). In order to write it down explicitly we start by adding a formal
solution, i.e., we consider 𝑘 [𝑋,𝑋−1] with the derivation extending the one
on 𝑘 such that 𝑋 ′ = 𝑋 , cf. [PS03, Exercises 1.5.1]. In this ring we have now
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a fundamental matrix given by 𝑋 itself, because 𝑋 is a unit and 𝑋 ′ = 𝑋 .
So conditions (2) and (3) in the de�nition of the Picard-Vessiot ring are
satis�ed. But we still need to study condition (1).

Let us �rst deal with the case 𝑘 = C(𝑡). In this case the claim is that
𝑅 = 𝑘 [𝑋,𝑋−1] is already a simple di�erential ring, hence a Picard-Vessiot
ring for the equation𝑦′ = 𝑦 over𝑘 . Indeed, let (𝑃) be a non-zero di�erential
ideal for some 𝑃 = 𝑋𝑚+· · ·+𝑎1𝑋+𝑎0. Multiplying by the appropriate power
of 𝑋−1 we may assume that 𝑎0 ≠ 0, and our goal is to show that 𝑚 = 0,
i.e., that 𝑃 = 𝑎0 is a unit and thus (𝑃) = 𝑅. Assume that𝑚 > 0. Since (𝑃)
is a di�erential ideal, 𝑃 ′ = 𝑚𝑋𝑚 + · · · + 𝑎1𝑋 ∈ (𝑃), so 𝑃 ′ −𝑚𝑃 ∈ (𝑃) and
from degree comparison we deduce that 𝑃 ′ = 𝑚𝑃 . But this would imply
that 𝑎0 = 0, a contradiction. Hence𝑚 = 0 and (𝑃) = 𝑅.

Let us now consider the case 𝑘 = C(𝑒3𝑡 ). In the previous case we
needed the full transcendental extension 𝑘 [𝑋,𝑋−1], but in this case it will
su�ce to �nd a third root of 𝑒3𝑡 , so we should expect to �nd some max-
imal di�erential ideal such that the quotient gives the desired algebraic
extension of 𝑘 . We look at the ideal 𝐼 = (𝑋 3 − 𝑒3𝑡 ) in 𝑘 [𝑋,𝑋−1]. Since
(𝑋 3 − 𝑒3𝑡 )′ = 3(𝑋 3 − 𝑒3𝑡 ) ∈ 𝐼 , this is a non-zero di�erential ideal. We let
𝑅 = 𝑘 [𝑋,𝑋−1]/𝐼 be the quotient, which is then a di�erential ring [PS03,
Exercises 1.5.1]. We can also regard 𝑅 as the localization of 𝑘 [𝑋 ]/(𝑋 3−𝑒3𝑡 )
at the set of powers of the image of 𝑋 , because localization is exact. But
𝑋 3 − 𝑒3𝑡 is irreducible in 𝑘 [𝑋 ], because it is of degree 3 and has no root, so
𝑘 [𝑋 ]/(𝑋 3 − 𝑒3𝑡 ) is a �eld already and therefore so is 𝑅. This shows that 𝑅
is a Picard-Vessiot ring in this case.

2.4. ThePicard-Vessiot �eld. APicard-Vessiot ring for Equation (1) over
𝑘 always exists, and any two Picard-Vessiot rings for this equation are iso-
morphic [PS03, Proposition 1.20]. Moreover, Picard-Vessiot rings are in-
tegral domains [PS03, Lemma 1.17] and their quotient �elds still have𝐶 as
�eld of constants [PS03, Proposition 1.20]. The quotient �eld of a Picard-
Vessiot ring for Equation (1) is called a Picard-Vessiot �eld for this equation,
and by [PS03, Proposition 1.22] it can also be characterized as an extension
of di�erential �elds 𝐿 ⊇ 𝑘 such that the following properties hold:

(1) The �eld of constants of 𝐿 is 𝐶 .
(2) There exists a fundamental matrix 𝐹 ∈ GL𝑛 (𝐿).
(3) The �eld 𝐿 is generated by the entries of 𝐹 over 𝑘 .
A Picard-Vessiot �eld for 𝑦′ = 𝑦 over 𝑘 = C(𝑡) is then the quotient

�eld of 𝑘 [𝑋,𝑋−1], i.e., the ring 𝑘 (𝑋 ) = C(𝑡, 𝑋 ). On the other hand, the
Picard-Vessiot ring for 𝑦′ = 𝑦 over 𝑘 = C(𝑒3𝑡 ) discussed above is already a
Picard-Vessiot �eld for 𝑦′ = 𝑦 over C(𝑒3𝑡 ), because it is a �eld and hence
isomorphic to its quotient �eld.

2.5. The di�erential Galois group. Given an equation 𝑦′ = 𝐴𝑦 over 𝑘
of dimension 𝑛, we are looking for its di�erential Galois group. By de�ni-
tion this is the group Gal(𝑅/𝑘) of di�erential 𝑘-algebra automorphisms of
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a Picard-Vessiot ring 𝑅 for the equation, i.e., the group of 𝑘-algebra auto-
morphisms 𝜎 : 𝑅 → 𝑅 such that 𝜎 (𝑓 ′) = 𝜎 (𝑓 )′ for all 𝑓 ∈ 𝑅.
We start by computing the di�erential Galois group of 𝑦′ = 𝑦 over C(𝑡).

In this case we have 𝑅 = C(𝑡) [𝑋,𝑋−1] with 𝑋 ′ = 𝑋 , and a C(𝑡)-algebra
automorphism 𝜎 : 𝑅 → 𝑅 is uniquely determined by 𝜎 (𝑋 ). Since 𝜎 (𝑋 )′ =
𝜎 (𝑋 ′) = 𝜎 (𝑋 ), 𝜎 (𝑋 ) has to be a solution of 𝑦′ = 𝑦 in 𝑅, hence of the form
𝑐𝜎𝑋 for some 𝑐𝜎 ∈ C×. This shows that Gal(𝑅/C(𝑡)) � (C×, ·).

We compute now the Galois group of the same equation 𝑦′ = 𝑦 over
C(𝑒3𝑡 ). In this case 𝑅 = 𝐿 � C(𝑒3𝑡 ) [𝑋 ]/(𝑋 3−𝑒3𝑡 ) is an algebraic extension
obtained by taking the 3-rd root of an element in C(𝑒3𝑡 ), and this �eld
already contains all 3-rd roots of unity, so this is a Kummer extension with
Galois group Z/3Z [Bos18, §4.9]. Explicitly, writing 𝐿 = 𝑘 (𝛼) for an 𝛼 ∈
𝐿 such that 𝛼3 = 𝑒3𝑡 and 𝛼′ = 𝛼 and 𝜁3 ∈ C(𝑒3𝑡 ) for a primitive 3-rd
root of unity, we have automorphisms 𝜎𝑖 : 𝛼 ↦→ 𝜁 𝑖3𝛼 for 𝑖 ∈ {0, 1, 2}. The
isomorphism is given by 𝜎𝑖 ↦→ 𝑖 + 3Z for each 𝑖 ∈ {0, 1, 2}. We check that
each of these 𝜎𝑖 is a di�erential automorphism, i.e., that it commutes with
the derivation on 𝐿. By construction we have 𝛼′ = 𝛼 , hence

(𝜎𝑖 (𝛼))′ = 𝜁 𝑖3𝛼′ = 𝜁 𝑖3𝛼 = 𝜎𝑖 (𝛼) = 𝜎𝑖 (𝛼′)

for all 𝑖 ∈ {0, 1, 2} and Gal(𝐿/C(𝑒3𝑡 )) � Z/3Z.
Let us also recall some useful results concerning di�erential Galois

groups from previous talks:

Lemma 2 ([PS03, p. 19]). If we �x a fundamental matrix 𝐹 ∈ M𝑛 (𝑅),
then we may regard Gal(𝑅/𝑘) as a subgroup of GL𝑛 (𝐶) by sending an
automorphism 𝜎 to the uniquely determined constant matrix 𝐶𝜎 such that
𝜎 (𝐹 ) = 𝐹𝐶𝜎 . This gives us a faithful representation 𝜌 : Gal(𝑅/𝑘) → GL(𝑉 ),
where𝑉 := {𝑣 ∈ 𝑅𝑛 | 𝑣′ = 𝐴𝑣} is the solution space of our equation, which is
an 𝑛-dimensional 𝐶-vector space.

Proof. Suppose such a matrix 𝐶𝜎 existed. Then we would have 𝐶𝜎 =

𝐹−1𝜎 (𝐹 ) ∈ GL𝑛 (𝑅), so it is uniquely determined by 𝐹 and 𝜎 . To show
the existence we need to check that 𝐶′

𝜎 = 0. For this we �rst observe that
𝜎 (𝐹 )′ = 𝐴𝜎 (𝐹 ), because 𝜎 is the identity on 𝑘 and thus 𝜎 (𝐴) = 𝐴. There-
fore we have

𝐴𝐹𝐶𝜎 = 𝐴𝜎 (𝐹 ) = 𝜎 (𝐹 )′ = (𝐹𝐶𝜎 )′ = 𝐹 ′𝐶𝜎 + 𝐹𝐶′
𝜎 = 𝐴𝐹𝐶𝜎 + 𝐹𝐶′

𝜎 ,

hence 𝐹𝐶′
𝜎 = 0 and 𝐶′

𝜎 = 0 because 𝐹 is invertible. Thus we have a well-
de�ned function Gal(𝑅/𝑘) → GL𝑛 (𝐶).

We check next that this is a group homomorphism. By the formula above
we have

𝐶𝜎1◦𝜎2 = 𝐹
−1𝜎1𝜎2(𝐹 ) = 𝐹−1𝜎1(𝐹𝐹−1𝜎2(𝐹 )) = 𝐹−1𝜎1(𝐹𝐶𝜎2) = 𝐹−1𝜎1(𝐹 )𝐶𝜎2,

where in the last inequality we have used that 𝜎1(𝐶𝜎2) = 𝐶𝜎2 because 𝜎1 is
the identity on 𝑘 . But we also have 𝐹−1𝜎1(𝐹 ) = 𝐶𝜎1 , hence 𝐶𝜎1◦𝜎2 = 𝐶𝜎1𝐶𝜎2
as claimed. This shows that we have a group homomorphism.
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We check next that this is an injective group homomorphism. Suppose
𝐹−1𝜎 (𝐹 ) = 1𝑛 is the identitiy matrix. Then 𝜎 (𝐹 ) = 𝐹 . Since the entries and
the inverse of the determinant of 𝐹 generate 𝑅 as a 𝑘-algebra, this implies
that 𝜎 (𝑓 ) = 𝑓 for all 𝑓 ∈ 𝑅, hence 𝜎 = id𝑅 and the group homomorphism
is injective.

For the last statement, note that the columns of 𝐹 form a 𝐶-basis of 𝑉 .
This �xes an isomorphism GL𝑛 (𝐶) � GL(𝑉 ). Hence this injective group
homomorphism translates into a faithful representation 𝜌 : Gal(𝑅/𝑘) →
GL(𝑉 ). �

Lemma 3 ([PS03, p. 19]). Let 𝐿 denote the quotient �eld of 𝑅, which is then
by de�nition a Picard-Vessiot �eld for the equation. Let Gal(𝐿/𝑘) denote the
group of 𝑘-linear automorphisms of 𝐿 which commute with the derivation on
𝐿. Then there is a group isomorphism Gal(𝑅/𝑘) → Gal(𝐿/𝑘).
Proof. Let 𝜎 : 𝑅 → 𝑅 be an automorphism in Gal(𝑅/𝑘). Since 𝜎 is bijective
it extends to a 𝑘-linear automorphism 𝜎̃ : 𝐿 → 𝐿 given by

𝜎̃

(
𝑓

𝑔

)
=
𝜎 (𝑓 )
𝜎 (𝑔) .

We check that 𝜎̃ commutes with the derivation on 𝐿:

𝜎̃

((
𝑓

𝑔

)′)
=
𝜎 (𝑓 ′𝑔 − 𝑓 𝑔′)

𝜎 (𝑔2) =
𝜎 (𝑓 )′𝜎 (𝑔) − 𝜎 (𝑓 )𝜎 (𝑔)′

𝜎 (𝑔)2 =

(
𝜎 (𝑓 )
𝜎 (𝑔)

)′
.

Hence 𝜎̃ ∈ Gal(𝐿/𝑘). Moreover, the above formula for 𝜎̃ shows that
˜𝜎1 ◦ 𝜎2 = 𝜎1 ◦ 𝜎2, so 𝜎 ↦→ 𝜎̃ is a group homomorphism. Since 𝜎 is de-

termined by 𝜎̃ , this group homomorphism is injective. Let us show that it
is also surjective.

Let 𝜏 ∈ Gal(𝐿/𝑘). We want to show that the restriction of 𝜏 to 𝑅 has
image equal to 𝑅, i.e., that 𝜏 (𝑅) = 𝑅 when we identify 𝑅 with a subring of
𝐿 as usual. Let 𝐹 ∈ M𝑛 (𝑅) be a fundamental matrix for our equation, so
that the columns of 𝐹 form a 𝐶-basis of the solution space 𝑉 = {𝑣 ∈ 𝑅𝑛 |
𝑣′ = 𝐴𝑣}. We regard 𝐹 as a matrix with coe�cients in 𝐿, and the same
arguments as in the proof of Lemma 2 show that we can write 𝜏 (𝐹 ) = 𝐹𝐶𝜏
for some 𝐶𝜏 ∈ GL𝑛 (𝐶). Since the entries of 𝐹 are all in 𝑅 and 𝐶 ⊆ 𝑘 , the
entries of 𝐹𝐶𝜏 = 𝜏 (𝐹 ) are in 𝑅 as well. Moreover, since

1
det(𝜏 (𝐹 )) =

1
det(𝐹 ) det𝐶𝜏

and the right hand side is in 𝑅, so is the left hand side, which implies that
𝜏 (𝑅) ∈ GL𝑛 (𝑅). Since the 𝑘-algebra 𝑅 is generated by the entries and the
inverse of the determinant of 𝐹 and 𝜏 is a 𝑘-algebra isomorphism, the 𝑘-
algebra 𝜏 (𝑅) is generated by the entries and the inverse of the determinant
of 𝜏 (𝐹 ), hence 𝜏 (𝑅) ⊆ 𝑅. Applying the same arguments to 𝜏−1 ∈ Gal(𝐿/𝑘)
we deduce that 𝜏−1(𝑅) ⊆ 𝑅, hence 𝑅 ⊆ 𝜏 (𝑅) as well and 𝜏 (𝑅) = 𝑅. �

Let us denote 𝐺 := Gal(𝐿/𝑘). We have seen in previous talks that 𝐺 is
an algebraic subgroup of GL𝑛 (𝐶), that the Lie algebra of 𝐺 coincides with
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the Lie algebra of the derivations of 𝐿/𝑘 that commute with the derivation
on 𝐿 and that the �eld 𝐿𝐺 of𝐺-invariant elements of 𝐿 is equal to 𝑘 [PS03,
Theorem 1.27].

Moreover, we have also talked about torsors and seen that 𝑍 := Spec(𝑅)
is a 𝐺-torsor over 𝑘 , i.e., there is a right 𝐺-action of 𝐺 on 𝑍 such that for
any 𝑣,𝑤 ∈ 𝑍 (𝑘) there exists a unique 𝑔 ∈ 𝐺 (𝑘) such that 𝑣 = 𝑤𝑔. Recall
that a𝐺-torsor was called trivial if there is a 𝑘-scheme isomorphism𝑍 � 𝐺
which identi�es 𝑍 ×𝐺 → 𝐺 with the multiplication morphism. A𝐺-torsor
is trivial if and only if it has a 𝑘-rational point. One can think of torsors
as principal 𝐺-bundles over a point, and this last statement corresponds
to the topological statement that a principal𝐺-bundle is trivial if and only
if it admits a section. Intuitively, the di�erence between a 𝐺-torsor and 𝐺
itself is that on a 𝐺-torsor we don’t have a distinguished neutral element.
A rational point or a seciton de�nes a notion of neutral element and this
allows us to �nd the desired isomorphism. See [PS03, Appendix A.2.3] for
more details.

3. Proof of the correspondence

We consider an equation 𝑦′ = 𝐴𝑦 over 𝑘 of dimension 𝑛 and we let 𝑅
be a Picard-Vessiot ring, 𝐿 the quotient �eld of 𝑅, which is then a Picard-
Vessiot �eld, and𝐺 := Gal(𝐿/𝑘) the di�erential Galois group, which is then
isomorphic via restriction to the di�erential Galois group Gal(𝑅/𝑘). We
denote byS the set of closed subgroups of𝐺 and byL the set of di�erential
sub�elds of 𝐿 containing 𝑘 . The reference throughout this section is [PS03,
Proposition 1.34]. We will use the following result from Christoph’s talk:

Theorem 4 ([PS03, Theorem 1.27]). Let 𝑦′ = 𝐴𝑦 be a di�erential equation
of degree 𝑛 over 𝑘 , having Picard-Vessiot �eld 𝐿 ⊇ 𝑘 and di�erential Galois
group 𝐺 = Gal(𝐿/𝑘). Then

(1) The group 𝐺 , considered as a subgroup of GL𝑛 (𝐶), is an algebraic
group.

(2) The Lie algebra of𝐺 coincides with the Lie algebra of the derivations
of 𝐿/𝑘 that commute with the derivation on 𝐿.

(3) The �eld 𝐿𝐺 of 𝐺-invariant elements of 𝐿 is equal to 𝑘 .

We will also use the following result from Johan’s talk:

Corollary 5 ([PS03, Corollary 1.30]). Let 𝑅 be a Picard-Vessiot ring for the
equation𝑦′ = 𝐴𝑦 over 𝑘 . Let 𝐿 be the �eld of fractions of 𝑅. Put 𝑍 = Spec(𝑅).
Let𝐺 denote the di�erential Galois group and𝐶 [𝐺] the coordinate ring of𝐺
and let 𝔤 denote the Lie algebra of 𝐺 . Then:

(1) There is a �nite extension 𝑘̃ ⊇ 𝑘 such that 𝑍
𝑘̃
� 𝐺

𝑘̃
.

(2) The scheme 𝑍 is smooth and connected.
(3) The transcendence degree of 𝐿/𝑘 is equal to the dimension of 𝐺 .
(4) Let 𝐻 be a subgroup of𝐺 with Zariski closure 𝐻 . Then 𝐿𝐻 = 𝑘 if and

only if 𝐻 = 𝐺 .
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Particularly relevant will be the last statements of both results, i.e., that
𝐿𝐺 = 𝑘 and that 𝐿𝐻 = 𝑘 implies that 𝐻 = 𝐺 for subgroups 𝐻 ⊆ 𝐺 .
Lemma 6. If 𝐻 is a closed subgroup of 𝐺 , then 𝐿𝐻 is a di�erential sub�eld
of 𝐿 containing 𝑘 . Hence we have a well-de�ned map 𝛼 : S → L given by
𝛼 (𝐻 ) = 𝐿𝐻 .
Proof. Since every 𝜎 ∈ 𝐺 restricts to the identity on 𝑘 , 𝑘 ⊆ 𝐿𝐻 is a sub�eld.
And a direct computation shows that 𝐿𝐻 ⊆ 𝐿 is a sub�eld as well. Hence
it su�ces to show that 𝐿𝐻 is a di�erential sub�eld of 𝐿. So let 𝑎 ∈ 𝐿𝐻 and
let 𝜎 ∈ 𝐻 ⊆ 𝐺 . Then 𝜎 (𝑎′) = 𝜎 (𝑎)′ = 𝑎′. Hence 𝑎′ ∈ 𝐿𝐻 as well and 𝐿𝐻 is a
di�erential sub�eld. �

Lemma 7. If 𝑀 is a di�erential sub�eld of 𝐿 containing 𝑘 , then the set of
𝑀-linear di�erential automorphisms Gal(𝐿/𝑀) is a closed subgroup of 𝐺 .
Hence we have a well-de�ned map 𝛽 : L → S given by 𝛽 (𝑀) = Gal(𝐿/𝑀).
Proof. Since Gal(𝐿/𝑀) ⊆ 𝐺 is the subset of elements that restrict to the
identity on 𝑀 , it is a subgroup of 𝐺 . Let 𝐹 ∈ GL𝑛 (𝐿) be a fundamental
matrix for the equation 𝑦′ = 𝐴𝑦 over 𝑘 . Since 𝐿 is a Picard-Vessiot �eld of
this equation, the �eld of constants of 𝐿 is 𝐶 and 𝐿 is generated as a �eld
extension over 𝑘 by the entries of 𝐹 . In particular, 𝐿 is generated as a �eld
extension over 𝑀 by the entries of 𝐹 , and 𝐴 ∈ M𝑛 (𝑀) as well under the
inclusion 𝑘 ⊆ 𝑀 . Hence 𝐿 is a Picard-Vessiot �eld for the equation 𝑦′ = 𝐴𝑦
over 𝑀 by [PS03, Proposition 1.22] and Gal(𝐿/𝑀) is a closed subgroup of
GL𝑛 (𝐶) by [PS03, Theorem 1.27]. This implies that Gal(𝐿/𝑀) ⊆ 𝐺 is closed
as well. �

Lemma 8. The maps 𝛼 : S → L and 𝛽 : L → S from Lemma 6 and
Lemma 7 are mutually inverse.

Proof. Let 𝑀 ∈ L be an intermediate di�erential �eld. Then 𝛼𝛽 (𝑀) =

𝐿Gal(𝐿/𝑀) . We regard𝑦′ = 𝐴𝑦 as an equation over𝑀 again and apply [PS03,
Theorem 1.27] regarding 𝐿 as the Picard-Vessiot �eld of 𝑦′ = 𝐴𝑦 over𝑀 to
deduce that 𝛼𝛽 (𝑀) = 𝑀 .

Let 𝐻 ∈ S be a closed subgroup. Then we have 𝐻 ⊆ 𝛽𝛼 (𝐻 ), because
every 𝜎 ∈ 𝐻 has the property that 𝜎 (𝑎) = 𝑎 for all 𝑎 ∈ 𝛽 (𝐻 ) = 𝐿𝐻 , hence
𝜎 ∈ Gal(𝐿/𝐿𝐻 ). We now regard 𝑦′ = 𝐴𝑦 as an equation over 𝐿𝐻 and apply
[PS03, Corollary 1.30] to deduce that the closed subgroup 𝐻 ⊆ Gal(𝐿/𝐿𝐻 )
is in fact the whole Galois group Gal(𝐿/𝐿𝐻 ). �

Example 9. Let 𝑛 ∈ N>1 and let 𝐿 = C(𝑡) (𝑋 ) be the Picard-Vessiot �eld
of 𝑦′ = 𝑦 over C(𝑡). We’ve seen earlier that its di�erentail Galois group
is Gal(𝐿/𝑘) � C×, and the group 𝜇𝑛 of 𝑛-th roots of unity is a closed sub-
group of C×. The corresponding inermediate di�erential �eld is C(𝑡) (𝑋𝑛).
Indeed, this is a di�erential �eld as well, because (𝑋𝑛)′ = 𝑛𝑋𝑛 ∈ C(𝑡) (𝑋𝑛).
On the other hand, there are no intermediate di�erential �elds for the
equation 𝑦′ = 𝑦 over C(𝑒3𝑡 ), because in this case the Picard-Vessiot �eld
extension has degree 3 and the Galois group is of order 3.
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Lemma 10. Let 𝐻 ∈ S be a closed subgroup of 𝐺 . If 𝜎 (𝐿𝐻 ) = 𝐿𝐻 for all
𝜎 ∈ 𝐺 , then the restriction morphism 𝐺 → Gal(𝐿𝐻/𝑘) is surjective and has
kernel 𝐻 . In particular, 𝐻 is a normal subgroup of 𝐺 in this case.

Proof. If the assumption is true, then the restriction morphism is a well-
de�ned group homomorphism. The kernel is by de�nition 𝛽𝛼 (𝐻 ) = 𝐻 , so
it remains to show the surjectivity assertion.

Let 𝜎 ∈ Gal(𝐿𝐻/𝑘) be a di�erential automorphism of 𝐿𝐻 over 𝑘 ,
which we can regard as a 𝑘-linear homomorphism of di�erential �elds
𝜎 : 𝐿𝐻 → 𝐿. Our goal is to extend this to a 𝑘-linear di�erential isomorph-
ism 𝜎 : 𝐿 → 𝐿. Since 𝐿 is a Picard-Vessiot �eld for the equation 𝑦′ = 𝐴𝑦

over 𝑘 , its sub�eld of constants is𝐶 and there exists a fundamental matrix
𝐹 ∈ GL𝑛 (𝐿) whose entries generate 𝐿 as a �eld extension over 𝑘 , hence
also as a �eld extension over 𝐿𝐻 . This implies that 𝐿 is a Picard-Vessiot
�eld for the equation 𝑦′ = 𝐴𝑦 over 𝐿𝐻 [PS03, Proposition 1.22]. Let us de-
note by 𝜄 : 𝐿𝐻 → 𝐿 the inclusion. The matrix 𝐹 is still a fundamental matrix
for 𝑦′ = 𝜎 (𝐴)𝑦 = 𝐴𝑦, and its entries generate 𝐿 as a �eld extension over
𝜎 (𝐿𝐻 ) because they already generate 𝐿 as a �eld extension over 𝑘 . Hence
𝜎 : 𝐿𝐻 → 𝐿 is also a Picard-Vessiot �eld for the equation 𝑦′ = 𝐴𝑦 over 𝐿𝐻
and we have the following situation:

𝐿 𝐿

𝐿𝐻

�

𝜄
𝜎

The uniqueness of the Picard-Vessiot �eld implies that we can �nd the
dashed isomorphism 𝐿 � 𝐿 extending 𝜎 : 𝐿𝐻 → 𝐿. �

Lemma 11. The converse of Lemma 10 holds as well, i.e., if 𝐻 ∈ S is a
normal subgroup of 𝐺 , then 𝜎 (𝐿𝐻 ) = 𝐿𝐻 for all 𝜎 ∈ 𝐺 and the restriction
morphism 𝐺 → Gal(𝐿𝐻/𝑘) is surjective with kernel 𝐻 .

Proof. The second part of the statement follows as in Lemma 10, so let us
show that 𝜎 (𝐿𝐻 ) = 𝐿𝐻 for all 𝜎 ∈ 𝐺 . Let 𝜎 ∈ 𝐺 be an arbitrary element
and let 𝑎 ∈ 𝐿𝐻 . We want to show that 𝜎 (𝑎) ∈ 𝐿𝐻 , so let also 𝜏 ∈ 𝐻 . The
equation 𝜏𝜎 (𝑎) = 𝜎 (𝑎) is equivalent to 𝜎−1𝜏𝜎 (𝑎) = 𝑎. Since 𝐻 is a normal
subgroup of 𝐺 , 𝜎−1𝜏𝜎 ∈ 𝐻 again, so 𝜎−1𝜏𝜎 (𝑎) = 𝑎 as we wanted to show.
Hence 𝜎 (𝐿𝐻 ) ⊆ 𝐿𝐻 for all 𝜎 ∈ 𝐺 . Conversely, applying what we have just
proven to 𝜎−1 ∈ 𝐺 we deduce that 𝜎−1(𝐿𝐻 ) ⊆ 𝐿𝐻 . Therefore

𝐿𝐻 = 𝜎𝜎−1(𝐿𝐻 ) ⊆ 𝜎 (𝐿𝐻 ) ⊆ 𝐿𝐻

and the desired equality follows. �

Combining Lemma 6, Lemma 7, Lemma 8, Lemma 10 and Lemma 11 we
obtain the di�erential analogue of the usual Galois corresopndence [Bos18,
Theorem 4.1/6]. One can also show using some theory of linear algebraic
groups that if𝐻 ∈ S is a normal subgroup of𝐺 , then 𝐿𝐻 is a Picard-Vessiot
�eld for some linear di�erential equation over 𝑘 [PS03, Corollary 1.40].
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Let us also mention the following:

Lemma 12. Let 𝐺0 denote the identity component of 𝐺 . Then 𝐿𝐺
0 ⊃ 𝑘 is a

�nite Galois extension with Galois group 𝐺/𝐺0. Moreover, it is the algebraic
closure of 𝑘 in 𝐿.

Proof. Since 𝐺 has only �nitely many irreducible components, 𝐺/𝐺0 is a
�nite group. We have (𝐿𝐺0)𝐺/𝐺0

= 𝑘 , because 𝐿𝐺 = 𝑘 . Hence 𝑘 ⊆ 𝐿𝐺
0 is a

�nite Galois extension with Galois group𝐺/𝐺0 [Bos18, Proposition 4.1/4].
To show that 𝐿𝐺0 is the algebraic closure of 𝑘 in 𝐿, let 𝛼 ∈ 𝐿 be algebraic

over 𝑘 . We want to show that 𝑘 (𝛼) ⊆ 𝐿𝐺
0 . An element 𝜎 ∈ 𝐺 will only

send 𝛼 to some other root of its minimal polynomial, so the 𝐺-orbit of 𝛼
is �nite. Therefore Aut(𝐿/𝑘 (𝛼)) = {𝜎 ∈ 𝐺 | 𝜎 (𝛼) = 𝛼} is an algebraic
subgroup of𝐺 of �nite index and𝐺0 ⊆ Aut(𝐿/𝑘 (𝛼)), so 𝑘 (𝛼) ⊆ 𝐿𝐺

0 as we
wanted to show. �

4. Another example

We consider now the equation 𝑦′ = 8 instead, still working over the two
�elds C(𝑡) and C(𝑒3𝑡 ). We can reduce this equation to the matrix equation(

𝑦′1
𝑦′2

)
=

(
0 8
0 0

) (
𝑦1
𝑦2

)
,

so that 𝑦2 = 𝜆 ∈ C is forced to be a constant and 𝑦′1 = 8𝜆. If 𝐹 ∈ GL2(𝑅) is
a fundamental matrix in some di�erential ring extension 𝑅, then we have(

𝐹 ′11 𝐹 ′12
𝐹 ′21 𝐹 ′22

)
=

(
0 8
0 0

) (
𝐹11 𝐹12
𝐹21 𝐹22

)
=

(
8𝐹21 8𝐹22
0 0

)
.

Therefore 𝐹21, 𝐹22 ∈ C are constants. But they cannot both be zero, because
we want the matrix to be invertible. So let’s say 𝐹21 = 0 and 𝐹22 = 1. Then
we need 𝐹 ′11 = 0 and 𝐹 ′12 = 8. But 𝐹11 cannot be zero, because we want
the matrix to be invertible, so we take 𝐹11 = 1 and the fundamental matrix
becomes

𝐹 =

(
1 𝐹12
0 1

)
with 𝐹12 a solution of our original equation 𝑦′ = 8. If we are working over
C(𝑡), then a solution already exists in the base �eld, namely 𝐹12 = 8𝑡 . So in
this case C(𝑡) is its own Picard-Vessiot �eld extension and the di�erential
Galois group is trivial. On the other hand, there is no solution in C(𝑒3𝑡 ),
so in this case we need to pass to a non-trivial extension. We add a formal
solution by considering the polynomial ring 𝑅 := C(𝑒3𝑡 ) [𝑋 ] with 𝑋 ′ = 8.
A fundamental matrix 𝐹 ∈ GL2(𝑅) is given by

𝐹 =

(
1 𝑋

0 1

)
,

so 𝑅 is generated as a C(𝑒3𝑡 )-algebra by the entries of the fundamental
matrix and the inverse of its determinant. It remains to show that 𝑅 is a
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simple di�erential ring in order to conclude that it is the Picard-Vessiot
ring of the equation 𝑦′ = 8 over C(𝑒3𝑡 ). Let 𝐼 = (𝑃) be a di�erential ideal
of C(𝑒3𝑡 ) with 𝑃 = 𝑋𝑚 + 𝑎𝑚−1𝑋𝑚−1 + · · · + 𝑎0 ∈ 𝑅. If𝑚 = 0, then 𝐼 = (0) or
𝐼 = 𝑅. So assume𝑚 > 0. Then 𝑃 ′ = (8𝑚 + 𝑎′𝑚−1)𝑋𝑚−1 + · · · ∈ (𝑃), hence
𝑃 ′ = 0 for degree reasons. In particular we have 8𝑚 + 𝑎′𝑚−1 = 0, i.e.,(

−1
𝑚
𝑎𝑚−1

)′
= 8.

This would imply that −1
𝑚
𝑎𝑚−1 ∈ C(𝑒3𝑡 ) was already a non-zero solution

of the equation in C(𝑒3𝑡 ). But no such solution exists, so𝑚 = 0 and 𝑅 is a
simple di�erential ring. Let now 𝜎 ∈ Gal(𝑅/C(𝑒3𝑡 )) be an automorphism
in the di�erential Galois group. Then 𝜎 is uniquely determined by 𝜎 (𝑋 ),
and we need

𝜎 (𝑋 )′ = 𝜎 (𝑋 ′) = 𝜎 (8) = 8,
hence 𝜎 (𝑋 ) is another solution of the equation 𝑦′ = 8 over C(𝑒3𝑡 ). If we
write 𝜎 (𝑋 ) = 𝑎𝑚𝑋

𝑚 + · · · + 𝑎0 ∈ 𝑅, then 𝜎 (𝑋 )′ = 8𝑚𝑎𝑚𝑋𝑚−1 + · · · + 8𝑎1,
so for degree reasons we must have 𝜎 (𝑋 ) = 𝑋 + 𝑎𝜎 for some 𝑎𝜎 ∈ C(𝑒3𝑡 )
which depends on 𝜎 . We have then another fundamental matrix ggiven by

𝐹 =

(
1 𝑋 + 𝑎𝜎
0 1

)
.

We compute 𝐹−1𝐹 in order to �nd the matrix 𝐶𝜎 ∈ GL2(C) corresponding
to 𝜎 :

𝐶𝜎 =

(
1 −𝑋
0 1

) (
1 𝑋 + 𝑎𝜎
0 1

)
=

(
1 𝑎𝜎
0 1

)
.

Therefore Gal(𝐿/C(𝑒3𝑡 )) � Gal(𝑅/C(𝑒3𝑡 )) � (C, +).

Appendix A. Solutions to exercises

The exercises below are taken from [PS03, Exercises 1.5].

Exercise 1 (Constructions with rings and derivations). Let 𝑅 be any di�er-
ential ring with derivation 𝜕.

(a) Let 𝑡, 𝑛 ∈ 𝑅 and assume that 𝑛 is invertible. Prove the formula

𝜕

( 𝑡
𝑛

)
=
𝜕(𝑡)𝑛 − 𝑡 𝜕(𝑛)

𝑛2
.

Solution. Assume �rst that 𝑡 = 1. The Leibniz rule implies that
𝜕(1) = 𝜕(1) + 𝜕(1) = 2𝜕(1),

and since Q ⊆ 𝑅 we deduce that 𝜕(1) = 0. So in this case we need
to show that

𝜕(𝑛−1) = −𝜕𝑛
𝑛2
.

Again by the Leibniz rule we have

0 = 𝜕(1) = 𝜕(𝑛𝑛−1) = 𝜕𝑛

𝑛
+ 𝑛𝜕(𝑛−1),
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hence the claim. Now for any 𝑡 ∈ 𝑅 we can apply again the Leibniz
rule to the product 𝑡𝑛−1 to deduce the desired equality. �

(b) Let 𝐼 ⊆ 𝑅 be an ideal. Prove that 𝜕 induces a derivation on 𝑅/𝐼 if
and only if 𝜕(𝐼 ) ⊆ 𝐼 .

Remark 13. It may happen that 𝑅/𝐼 is no longer of characteristic
zero.

Solution. It follows from the Leibniz rule that 𝜕(0) = 0 on any dif-
ferential ring, even if it does not containQ. If 𝜕 induces a derivation
on 𝑅/𝐼 , then 𝜕(0 + 𝐼 ) = 0 + 𝐼 , i.e., 𝜕(𝑎) ∈ 𝐼 for all 𝑎 ∈ 𝐼 . Conversely,
if 𝜕(𝑎) ∈ 𝐼 for all 𝑎 ∈ 𝐼 , then 𝜕 induces a well-de�ned derivation on
𝑅/𝐼 . Indeed, since 𝜕(0) = 0 and 𝜕(𝑎 + 𝑏) = 𝜕(𝑎) + 𝜕(𝑏), 𝜕 is a group
homomorphism. Therefore

𝑎 − 𝑏 ∈ 𝐼 ⇒ 𝜕(𝑎 − 𝑏) = 𝜕(𝑎) − 𝜕(𝑏) ∈ 𝐼 ,
so 𝜕 : 𝑅/𝐼 → 𝑅/𝐼 is a well-de�ned function. We have also

𝜕(𝑎 + 𝑏 + 𝐼 ) = 𝜕(𝑎 + 𝑏) + 𝐼 = 𝜕(𝑎) + 𝜕(𝑏) + 𝐼 = 𝜕(𝑎 + 𝐼 ) + 𝜕(𝑏 + 𝐼 ),
so 𝜕 : 𝑅/𝐼 → 𝑅/𝐼 is additive. And �nally

𝜕(𝑎𝑏 + 𝐼 ) = 𝜕(𝑎𝑏) + 𝐼 = 𝑎𝜕(𝑏) +𝑏𝜕(𝑎) + 𝐼 = (𝑎 + 𝐼 )𝜕(𝑏 + 𝐼 ) + (𝑏 + 𝐼 )𝜕(𝑎 + 𝐼 ),
so 𝜕 : 𝑅/𝐼 → 𝑅/𝐼 is a derivation. �

(c) Let the ideal 𝐼 ⊆ 𝑅 be generated by {𝑎 𝑗 } 𝑗∈𝐽 . Prove that 𝜕(𝐼 ) ⊆ 𝐼 if
𝜕(𝑎 𝑗 ) ∈ 𝐼 for all 𝑗 ∈ 𝐽 .
Solution. Since 𝜕 is a group homomorphism and 𝐼 is a subgroup, it
su�ces to show that 𝜕(𝑎𝑎 𝑗 ) ∈ 𝐼 for all 𝑗 ∈ 𝐽 and all 𝑎 ∈ 𝑅. Since
𝑎 𝑗 , 𝜕(𝑎 𝑗 ) ∈ 𝐼 and 𝐼 is an ideal, we have 𝑎𝜕(𝑎 𝑗 ) ∈ 𝐼 and 𝑎 𝑗 𝜕(𝑎) ∈ 𝐼 ,
hence

𝜕(𝑎𝑎 𝑗 ) = 𝑎𝜕(𝑎 𝑗 ) + 𝑎 𝑗 𝜕(𝑎) ∈ 𝐼 .
�

(d) Let 𝑆 ⊆ 𝑅 be amultiplicative subset. Prove that there exists a unique
derivation 𝜕 on 𝑅𝑆−1 such that the canonical map 𝑅 → 𝑅𝑆−1 com-
mutes with 𝜕. Hint: Use the fact that 𝑡𝑟 = 0 implies 𝑡2𝜕(𝑟 ) = 0.
Solution. Suppose such a derivation existed and let 𝑎 ∈ 𝑅 and 𝑠 ∈ 𝑆 .
Since (the equivalence class of) 𝑠 is invertible in 𝑅𝑆−1, part (𝑎) of
this exercise implies that

𝜕

(𝑎
𝑠

)
=
𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)

𝑠2
.

This proves uniqueness. For the existence we need to check that
the previous expression is a well-de�ned derivation on 𝑅𝑆−1. Let
𝑎, 𝑏 ∈ 𝑅 and 𝑠, 𝑡 ∈ 𝑆 such that 𝑎/𝑠 = 𝑏/𝑡 , i.e., suppose there exists
some 𝑢 ∈ 𝑆 such that 𝑢 (𝑎𝑡 − 𝑏𝑠) = 0. We need to show that there
eixsts some 𝑣 ∈ 𝑆 such that

𝑣 (𝑡2(𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)) − 𝑠2(𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡))) = 0.
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Taking the hint for granted and using that 𝑢𝑎𝑡 = 𝑢𝑏𝑠 we deduce

0 = 𝑠𝑡𝑢2𝜕(𝑎𝑡 − 𝑏𝑠) = 𝑠𝑡𝑢2(𝑡 𝜕(𝑎) + 𝑎𝜕(𝑡) − 𝑠𝜕(𝑏) − 𝑏𝜕(𝑠))
= 𝑢2(𝑠𝑡2𝜕(𝑎) + 𝑠𝑡𝑎𝜕(𝑡) − 𝑠2𝑡 𝜕(𝑏) − 𝑠𝑡𝑏𝜕(𝑠))
= 𝑢2𝑡2𝑠𝜕(𝑎) − 𝑢2𝑠𝑡𝑏𝜕(𝑠) − 𝑢2𝑠2𝑡 𝜕(𝑏) + 𝑢2𝑠𝑡𝑎𝜕(𝑡)
= 𝑢2𝑡2𝑠𝜕(𝑎) − 𝑢2𝑡2𝑎𝜕(𝑠) − 𝑢2𝑠2𝑡 𝜕(𝑏) + 𝑢2𝑠2𝑏𝜕(𝑡)
= 𝑢2(𝑡2(𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)) − 𝑠2(𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡))

So taking 𝑣 = 𝑢2 ∈ 𝑆 works. We prove the hint now. From 𝑡𝑟 = 0
we deduce

𝜕(𝑡𝑟 ) = 0 = 𝑡 𝜕(𝑟 ) + 𝑟 𝜕(𝑡).
Multiplying the equality by 𝑡 and using again that 𝑡𝑟 = 0 we ob-
tain the claim. Therefore the formula above yields a well-de�ned
function 𝜕 : 𝑅𝑆−1 → 𝑅𝑆−1.

We check �nally that it is a derivation. On the one hand we have

𝜕

(
𝑎

𝑠
+ 𝑏
𝑡

)
= 𝜕

(
𝑎𝑡 + 𝑏𝑠
𝑠𝑡

)
=
𝑠𝑡 (𝑎𝜕(𝑡) + 𝑡 𝜕(𝑎) + 𝑏𝜕(𝑠) + 𝑠𝜕(𝑏)) − (𝑎𝑡 + 𝑏𝑠) (𝑡 𝜕(𝑠) + 𝑠𝜕(𝑡))

𝑠2𝑡2

=
𝑡2(𝑠𝜕(𝑎) − 𝑎𝜕(𝑠))

𝑠2𝑡2
+ 𝑠

2(𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡))
𝑠2𝑡2

+ 0

= 𝜕

(𝑎
𝑠

)
+ 𝜕

(
𝑏

𝑡

)
,

so 𝜕 : 𝑅𝑆−1 → 𝑅𝑆−1 is additive. On the other hand we have

𝜕

(
𝑎

𝑠

𝑏

𝑡

)
= 𝜕

(
𝑎𝑏

𝑠𝑡

)
=
𝑠𝑡 𝜕(𝑎𝑏) − 𝑎𝑏𝜕(𝑠𝑡)

𝑠2𝑡2

=
𝑠𝑡𝑎𝜕(𝑏) + 𝑠𝑡𝑏𝜕(𝑎) − 𝑎𝑏𝑠𝜕(𝑡) − 𝑎𝑏𝑡𝜕(𝑠)

𝑠2𝑡2

=
𝑠𝑡𝑎𝜕(𝑏) + 𝑠𝑡𝑏𝜕(𝑎) − 𝑎𝑏𝑠𝜕(𝑡) − 𝑎𝑏𝑡𝜕(𝑠)

𝑠2𝑡2

=
𝑎𝑠

𝑠2

(
𝑡 𝜕(𝑏) − 𝑏𝜕(𝑡)

𝑡2

)
+ 𝑏𝑡
𝑡2

(
𝑠𝜕(𝑎) − 𝑎𝜕(𝑠)

𝑠2

)
=
𝑎

𝑠
𝜕

(
𝑏

𝑡

)
+ 𝑏
𝑡
𝜕

(𝑎
𝑠

)
,

so 𝜕 : 𝑅𝑆−1 → 𝑅𝑆−1 is a derivation. �

(e) Consider the polynomial ring 𝑅 [𝑋1, . . . , 𝑋𝑛] and a multiplicative
subset 𝑆 ⊆ 𝑅 [𝑋1, . . . , 𝑋𝑛]. Let 𝑎1, . . . , 𝑎𝑛 ∈ 𝑅 [𝑋1, . . . , 𝑋𝑛]𝑆−1
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be given. Prove that there exists a unique deriva-
tion 𝜕 on 𝑅 [𝑋1, . . . , 𝑋𝑛]𝑆−1 such that the canonical map
𝑅 → 𝑅 [𝑋1, . . . , 𝑋𝑛]𝑆−1 commutes with 𝜕 and 𝜕(𝑋𝑖) = 𝑎𝑖 for
all 𝑖 .
Solution. Suppose �rst that all 𝑎𝑖 are in 𝑅 [𝑋1, . . . , 𝑋𝑛]. In that case,
by part (d) of this exercise, it su�ces to �nd a compatible deriv-
ation on 𝑅 [𝑋1, . . . , 𝑋𝑛]. Suppose that we have such a compatible
derivation 𝜕 on 𝑅 [𝑋1, . . . , 𝑋𝑛]. Induction on𝑚𝑖 shows that

𝜕(𝑋𝑚𝑖

𝑖
) =𝑚𝑖𝑎𝑖𝑋

𝑚𝑖−1
𝑖

for all𝑚𝑖 ≥ 1. With the convention that 𝑋−1
𝑖 = 0, the same formula

holds for𝑚𝑖 = 0 as well. The Leibniz rule implies then that

𝜕(𝑋𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 ) =
𝑛∑︁
𝑖=1

𝑚𝑖𝑎𝑖𝑋
𝑚1
1 · · ·𝑋𝑚𝑖−1

𝑖
· · ·𝑋𝑚𝑛

𝑛

for all such monomials, again with the convention that 𝑋−1
𝑖 = 0.

We keep this convention throughout the rest of the solution. For
an element 𝑏 ∈ 𝑅 we have

𝜕(𝑏𝑋𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 ) = 𝜕(𝑏)𝑋𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 + 𝑏
(
𝑛∑︁
𝑖=1

𝑚𝑖𝑎𝑖𝑋
𝑚1
1 · · ·𝑋𝑚𝑖−1

𝑖
· · ·𝑋𝑚𝑛

𝑛

)
.

(2)
Any polynomial 𝑃 ∈ 𝑅 [𝑋1, . . . , 𝑋𝑛] is a �nite sum of such monomi-
als, so such a 𝜕 is already uniquely determined by Equation (2). This
shows uniqueness. For the existence part, it remains to show that 𝜕
determines a well-de�ned derivation. Additivity holds by construc-
tion and by de�nition of addition of polynomials. So we only need
to check the Leibniz rule. We check it �rst for the product of two
monomials as in Equation (2), say 𝑏𝑋𝑚1

1 · · ·𝑋𝑚𝑛
𝑛 and 𝑐𝑋 𝑙11 · · ·𝑋 𝑙𝑛𝑛 . On

one hand we have

𝜕(𝑏𝑐𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑛+𝑙𝑛

𝑛 ) = (𝑐𝜕(𝑏) + 𝑏𝜕(𝑐))𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑛+𝑙𝑛

𝑛

+ 𝑏𝑐
(
𝑛∑︁
𝑖=1

(𝑚𝑖 + 𝑙𝑖)𝑎𝑖𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑖+𝑙𝑖−1

𝑖
· · ·𝑋𝑚𝑛

𝑛

)
On the other hand we have

𝑐𝑋
𝑙1
1 · · ·𝑋 𝑙𝑛𝑛 𝜕(𝑏𝑋

𝑚1
1 · · ·𝑋𝑚𝑛

𝑛 ) =

𝑐𝜕(𝑏)𝑋𝑚1+𝑙1
1 · · ·𝑋𝑚𝑛+𝑙𝑛

𝑛 + 𝑏𝑐
(
𝑛∑︁
𝑖=1

𝑚𝑖𝑎𝑖𝑋
𝑚1+𝑙1
1 · · ·𝑋𝑚𝑖+𝑙𝑖−1

𝑖
· · ·𝑋𝑚𝑛+𝑙𝑛

𝑛

)
.

Adding the analogous termwe deduce that the Leibniz rule holds in
this case. Let now 𝑀1, 𝑀2 and 𝑀3 be monomials. Since 𝜕(𝑀 𝑗𝑀𝑘) =
𝑀𝑘𝜕(𝑀 𝑗 ) +𝑀 𝑗 𝜕(𝑀𝑘) and 𝜕 is additive, we have
𝜕((𝑀1 +𝑀2)𝑀3) = 𝑀3(𝜕(𝑀1) + 𝜕(𝑀2)) + (𝑀1 +𝑀2)𝜕(𝑀3).
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By induction, the Leibniz rule is satis�ed for the product of an arbit-
rary polynomial with a monomial. And if 𝑀1 and 𝑀2 are monomi-
als and 𝑃 is an arbitrary polynomial, then using additivity and the
Leibniz rule for the product of a polynomial with a monomial we
deduce that

𝜕(𝑃 (𝑀1 +𝑀2)) = (𝑀1 +𝑀2)𝜕(𝑃) + 𝑃𝜕(𝑀1 +𝑀2),
so by induction we conclude that the Leibniz rule holds in general.
This proves the existence and hence �nishes the proof when 𝑎𝑖 ∈
𝑅 [𝑋1, . . . , 𝑋𝑛] for all 𝑖 ∈ {1, . . . , 𝑛}.

Now write each 𝑎𝑖 = 𝑃𝑖/𝑄𝑖 , where 𝑃𝑖, 𝑄𝑖 ∈ 𝑅 [𝑋1, . . . , 𝑋𝑛] for
all 𝑖 ∈ {1, . . . , 𝑛}. Consider the ring 𝐴 = 𝑅 [𝑋1, . . . , 𝑋𝑛,𝑇1, . . . ,𝑇𝑛]
and its ideal 𝐼 = (1 − 𝑇1𝑄1, . . . , 1 − 𝑇𝑛𝑄𝑛). In the quotient ring
𝐴/𝐼 we can think of 𝑇𝑖 as 𝑄−1

𝑖 , so we �rst extend 𝜕 : 𝑅 → 𝑅 to a
derivation 𝜕 : 𝐴 → 𝐴 such that 𝜕(𝑋𝑖) = 𝑃𝑖𝑇𝑖 and 𝜕(𝑇𝑖) = −𝑇 2

𝑖 𝜕(𝑄𝑖).
For example, if 𝑃1 = 2𝑋1 and 𝑄1 = 3𝑋 2

1 + 2, then we would have
𝜕(𝑋1) = 2𝑋1𝑇1 and

𝜕(𝑇1) = −6𝑇 2
1𝑋1𝜕(𝑋1) = −12𝑇 3

1𝑋
2
1 .

Nowwe check that the (uniquely determined) derivation 𝜕 : 𝐴 → 𝐴

extends to a uniquely determined derivation 𝜕 : 𝐴/𝐼 → 𝐴/𝐼 using
parts (b) and (c) of this exercise. For each 𝑖 ∈ {1, . . . , 𝑛} we have
𝜕(1 −𝑇𝑖𝑄𝑖) = −𝑄𝑖 (−𝑇 2

𝑖 𝜕(𝑄𝑖)) −𝑇𝑖𝜕(𝑄𝑖) = −𝜕(𝑄𝑖)𝑇𝑖 (1 −𝑇𝑖𝑄𝑖),
so we can indeed apply part (b) of this exercise to obtain the
uniquely determined 𝜕 : 𝐴/𝐼 → 𝐴/𝐼 with the speci�ed properties.
The localization of 𝐴/𝐼 at (the image of) 𝑆 is the same as the loc-
alization of 𝑅 [𝑋1, . . . , 𝑋𝑛] at 𝑆 and 𝑎𝑖 is the image of 𝑃𝑖𝑇𝑖 + 𝐼 for
all 𝑖 ∈ {1, . . . , 𝑛}; this follows from the universal property of the
localization. Part (d) of this exercise allows us to conclude the solu-
tion. �

Exercise 2 (Constants). Let 𝑅 be any di�erential ring with derivation 𝜕.
(a) Prove that the set of constants 𝐶 of 𝑅 is a subring containing 1.

Solution. We have seen in the previous exercise that 𝜕(1) = 0 as a
consequence ofQ ⊆ 𝑅, so 1 is always a constant. We have also seen
in the previous exercise that 𝜕(0) = 0 in any case, so 0 is a constant
as well. If 𝑐 and 𝑑 are constants, then 𝜕(𝑐 + 𝑑) = 𝜕(𝑐) + 𝜕(𝑑) = 0, so
𝑐 + 𝑑 is a constant as well. And 𝜕(𝑐𝑑) = 𝑐𝜕(𝑑) + 𝑑𝜕(𝑐) = 0, so 𝑐𝑑 is
a constant as well. Therefore 𝐶 is a subring containing 1. �

(b) Prove that 𝐶 is a �eld if 𝑅 is a �eld.
Solution. After part (𝑎) of this exercise, it remains only to show that
𝑐−1 is a constant for any non-zero constant 𝑐 . But we have seen in
the previous exercise that 𝜕(𝑐−1) = −𝜕(𝑐)𝑐−2, so 𝑐−1 is a constant as
well. �
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Assume that 𝐾 ⊇ 𝑅 is an extension of di�erential �elds.
(c) Assume that 𝑐 ∈ 𝐾 is algebraic over the constants 𝐶 of 𝑅. Prove

that 𝜕(𝑐) = 0. Hint: Let 𝑃 (𝑋 ) be the minimal monic polynomial of
𝑐 over𝐶 . Di�erentiate the expression 𝑃 (𝑐) = 0 and use the fact that
Q ⊆ 𝑅.
Solution. We consider the derivation on 𝑅 [𝑋 ] which is compatible
with the derivation on 𝑅 and such that 𝜕(𝑋 ) = 1, which is unique
and well-de�ned by the previous exercise. Then we consider the
polynomial 𝜕(𝑃) ∈ 𝑅 [𝑋 ]. If 𝑐 = 0, then 𝜕(𝑐) = 0. So we may
assume that deg(𝑃) ≥ 1. We have deg(𝜕𝑃) = deg(𝑃) − 1, because
Q ⊆ 𝑅. Explicitly, if 𝑃 =

∑𝑚
𝑖=0 𝑎𝑖𝑋

𝑖 , then it follows from the solution
to the previous exercise that

𝜕(𝑃) =
𝑚∑︁
𝑖=0

(𝑖𝑎𝑖𝑋 𝑖−1 + 𝜕(𝑎𝑖)𝑋 𝑖),

with the convention again that 𝑋−1 = 0. Since 𝑎𝑖 ∈ 𝐶 for all 𝑖 , we
have

𝜕(𝑃) =
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝑋
𝑖−1.

Wemay regard 𝑐 like a variable and extend the derivation to 𝑅 [𝑋, 𝑐]
so that 𝜕(𝑋 ) = 1 and 𝜕(𝑐) is the value taht we want to determine.
The solution to the previous exericse shows again that

𝜕(𝑃 (𝑐)) =
(
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝜕(𝑐)𝑐𝑖−1
)
+ 0 = 𝜕(𝑐)

(
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝑐
𝑖−1

)
= 𝜕(𝑐) (𝜕(𝑃) (𝑐)),

where we are using that 𝑃 ∈ 𝐶 [𝑋 ] one more time in the �rst equal-
ity above. Since 𝑃 (𝑐) = 0, we have

𝜕(𝑐) (𝜕(𝑃) (𝑐)) = 0.

But 𝑃 is the minimal polynomial of 𝑐 over 𝐶 and deg(𝑃) >

deg(𝜕(𝑃)) ≥ 0, so 𝜕(𝑃) (𝑐) ≠ 0. Since 𝑅 is a �eld, we deduce that
𝜕(𝑐) = 0 and 𝑐 is a constant. �

(d) Show that 𝑐 ∈ 𝐾 , 𝜕(𝑐) = 0 and 𝑐 is algebraic over 𝑅, implies that 𝑐
is algebraic over the �eld of constants𝐶 of 𝑅. Hint: Let 𝑃 (𝑋 ) be the
minimal monic polynomial of 𝑐 over 𝑅. Di�erentiate the expression
𝑃 (𝑐) = 0 and use Q ⊆ 𝑅.
Solution. Let 𝑐 ∈ 𝐾 be such a constant. We may again assume that
𝑐 ≠ 0. We need to �nd a non-zero polynomial 𝑄 ∈ 𝐶 [𝑋 ] such that
𝑄 (𝑐) = 0. Let 𝑃 ∈ 𝑅 [𝑋 ] be the minimal monic polynomial of 𝑐 over
𝑅 as in the hint, say 𝑃 =

∑𝑚
𝑖=0 𝑎𝑖𝑋

𝑖 with 𝑎𝑖 ∈ 𝑅. We consider again
the induced derivaton on 𝑅 [𝑋 ] with the property that 𝜕(𝑋 ) = 1.
Using again the formulas in the solution to the previous exercise
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and the assumption that 𝜕(𝑐) = 0 we have

𝜕(𝑃 (𝑐)) = 0 +
(
𝑚∑︁
𝑖=0

𝜕(𝑎𝑖)𝑋 𝑖
)
= 0.

This implies that 𝜕(𝑎𝑖) = 0 for all 𝑖 , so 𝑃 ∈ 𝐶 [𝑋 ]. Since 𝑐 ≠ 0, 𝑃 ≠ 0.
Hence 𝑐 is algebraic over 𝐶 . �

Exercise 3 (Derivations on �eld extensions). Let 𝐹 be a �eld (of character-
istic 0) and let 𝜕 be a derivation on 𝐹 . Prove the following statements.

(a) Let 𝐹 ⊆ 𝐹 (𝑋 ) be a transcendental extension of 𝐹 . Choose an 𝑎 ∈
𝐹 (𝑋 ). There is a unique derivation 𝜕 of 𝐹 (𝑋 ), extending 𝜕, such
that 𝜕(𝑋 ) = 𝑎.
Solution. By de�nition, 𝐹 (𝑋 ) is the smallest �eld containing 𝐹 and
𝑋 . Therefore 𝐹 (𝑋 ) is also the �eld of fractions of the polynomial
ring 𝐹 [𝑋 ]. The claim follows then from part (𝑒) of the �rst exercise.

�

(b) Let 𝐹 ⊆ 𝐹 be a �nite extension, then 𝜕 has a unique extension to a
derivation of 𝐹 . Hint: 𝐹 = 𝐹 (𝑎), where 𝑎 satis�es some irreducible
polynomial over 𝐹 . Use the �rst exercise and Q ⊆ 𝐹 .
Solution. Let us show uniqueness �rst. Since Q ⊆ 𝐹 , the extension
is separable. By the primitive element theorem there exists some
𝑎 ∈ 𝐹 such that 𝐹 = 𝐹 (𝑎) and such that there exists some monic
irreducible polynomial 𝑃 =

∑𝑚
𝑖=0 𝑎𝑖𝑋

𝑖 ∈ 𝐹 [𝑋 ] such that 𝑃 (𝑎) = 0 in
𝐹 . Therefore we must have

0 = 𝜕(𝑃 (𝑎)) = 𝜕(𝑎)
(
𝑚∑︁
𝑖=1

𝑖𝑎𝑖𝑎
𝑖−1

)
+

𝑚∑︁
𝑖=0

𝜕(𝑎𝑖)𝑎𝑖,

and since Q ⊆ 𝐹 and 𝑃 is the minimal polynomial of 𝑎 we must
also have

∑𝑚
𝑖=1 𝑖𝑎𝑖𝑎

𝑖−1 ≠ 0. The value of 𝜕(𝑎) is therefore uniquely
determined as

𝜕(𝑎) = −
∑𝑚
𝑖=0 𝜕(𝑎𝑖)𝑎𝑖∑𝑚
𝑖=1 𝑖𝑎𝑖𝑎

𝑖−1 .

This proves the uniqueness.
For the existence, we use part (e) of the �rst exercise with

𝑆 ⊆ 𝐹 [𝑋 ] the set of powers of the non-zero polynomial 𝑄 :=∑𝑚
𝑖=1 𝑖𝑎𝑖𝑋

𝑖−1. We can then de�ne a derivation on 𝑆−1𝐹 [𝑋 ] with the
property that

𝜕(𝑋 ) = −
∑𝑚
𝑖=0 𝜕(𝑎𝑖)𝑋 𝑖

𝑄
.

We have 𝐹 = 𝐹 [𝑋 ]/(𝑃) and the image of𝑄 is invertible in 𝐹 , so we
have

𝑆−1𝐹 [𝑋 ]/𝑆−1(𝑃) = 𝑆−1𝐹 = 𝐹 .
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By parts (b) and (c) of the �rst exercise, it su�ces to show that
𝜕(𝑃) ∈ 𝑆−1(𝑃) in 𝑆−1𝐹 [𝑋 ]. But replacing 𝑎 by 𝑋 in the formula
above shows that 𝜕(𝑃) = 0, thus we have a well-de�ned derivation
on 𝐹 extending the given derivation on 𝐹 . �

(c) Prove that 𝜕 has a unique extension to any �eld 𝐹 that is algebraic
over 𝐹 (and, in particular, to the algebraic closure of 𝐹 ).

Solution. We can write any algebraic extension as the union of all
�nite subextensions. The uniqueness in part (b) of this exercise
allows us to extend 𝜕 to each such �nite subextension in a way that
glues together to a well-de�ned 𝜕 on their union. �

(d) Show that (b) and (c) are, in general, false if 𝐹 has characteristic
𝑝 > 0. Hint: Let F𝑝 be the �eld with 𝑝 elements and consider the
�eld extension F𝑝 (𝑥𝑝) ⊆ F𝑝 (𝑥), where 𝑥 is transcendental over F𝑝 .

Solution. We consdier 𝜕 = 0 on F𝑝 and use part (a) of this exercise
to extend 𝜕 to F𝑝 (𝑥) in two di�erent ways: 𝜕0 = 0 and 𝜕1 such that
𝜕1(𝑥) = 1. For all 𝑗 ∈ {1, 2}, all 𝑎 ∈ F𝑝 and all 𝑖 ∈ N>0 we have

𝜕 𝑗 (𝑎𝑥𝑖𝑝) = 𝑝𝑖𝑎𝑥𝑖𝑝−1𝜕 𝑗 (𝑥) = 0,

so both 𝜕0 and 𝜕1 are extensions of 𝜕 = 0 on F𝑝 (𝑥𝑝) to F𝑝 (𝑥). But
𝜕0 ≠ 𝜕1, so the uniqueness in part (b) fails. �

(e) Let 𝐹 be a perfect �eld of characteristic 𝑝 > 0 (i.e., 𝐹𝑝 =: {𝑎𝑝 |𝑎 ∈
𝐹 } is equal to 𝐹 ). Show that the only derivation on 𝐹 is the zero
derivation.

Solution. Let 𝜕 be a derivation on 𝐹 and let 𝑎 ∈ 𝐹 . We want to show
that 𝜕(𝑎) = 0. Since Frobenius is surjective, we can write 𝑎 = 𝑏𝑝 for
some 𝑏 ∈ 𝐹 . Then we have

𝜕(𝑎) = 𝜕(𝑏𝑝) = 𝑝𝑏𝑝−1𝜕(𝑏) = 0,

hence 𝜕 = 0. �

(f) Suppose that 𝐹 is a �eld of characteristic 𝑝 > 0 such that [𝐹 : 𝐹𝑝] =
𝑝 . Give a construction of all derivations on 𝐹 . Hint: Compare with
the beginning of [PS03, Sect. 13.1].

Solution. Let 𝜕 : 𝐹 → 𝐹 be a derivation. Let 𝑎 = 𝑏𝑝 be an element
in 𝐹𝑝 . Then 𝜕(𝑎) = 𝑝𝑏𝑝−1𝜕(𝑏) = 0. So 𝜕 : 𝐹 → 𝐹 is 𝐹𝑝-linear,
and in particular it is uniquely determined by the values of 𝜕 at
the elements of a basis of 𝐹 over 𝐹𝑝 . Since [𝐹 : 𝐹𝑝] = 𝑝 is prime,
every 𝑥 ∈ 𝐹 \ 𝐹𝑝 generates the �eld extension 𝐹𝑝 ⊆ 𝐹 . We consider
the basis 1, 𝑥, . . . , 𝑥𝑝−1 of 𝐹 over 𝐹𝑝 . Since 1 ∈ 𝐹𝑝 , we must have
𝜕(1) = 0. We have

𝜕(𝑥 𝑗 ) = 𝑗𝑥 𝑗−1𝜕(𝑥)



18 PEDRO NÚÑEZ

for all 𝑗 ∈ {1, . . . , 𝑝 − 1}, so 𝜕 is uniquely deterined by the value
𝜕(𝑥) ∈ 𝐹 . So every derivation 𝜕 : 𝐹 → 𝐹 has the form

𝜕

(
𝑝−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

)
= 𝜕(𝑥)

(
𝑝−1∑︁
𝑖=1

𝑖𝑎𝑖𝑥
𝑖−1

)
for some 𝜕(𝑥) ∈ 𝐹 , where 𝑎𝑖 ∈ 𝐹𝑝 for all 𝑖 ∈ {0, . . . , 𝑝 − 1}. Con-
versely, given any 𝑓 ∈ 𝐹 , we can de�ne an 𝐹𝑝-linear derivation
𝜕 : 𝐹 → 𝐹 by setting 𝜕(𝑥) = 𝑓 . Such a derivation is by de�nition
additive, so we only need to check that the Leibniz rule holds. We
start by checking the Leibniz rule on temrs of the form 𝑎𝑥 with
𝑎 ∈ 𝐹𝑝 . In that case we have

𝜕(𝑎𝑥𝑏𝑥) = 2𝑎𝑏𝑥𝜕(𝑥) = 𝑏𝑥𝜕(𝑎𝑥) + 𝑎𝑥𝜕(𝑏𝑥).
In general we can use induction on the number of terms and the
additivity of 𝜕 to conclude that the Leibniz rule holds in general as
in part (e) of the �rst exercise. �

Exercise 4 (Lie algebras and derivations). A Lie algebra over a �eld 𝐶 is a
𝐶-vector space 𝑉 equipped with a 𝐶-bilinear map [ , ] : 𝑉 × 𝑉 → 𝑉 that
satis�es [𝑢,𝑢] = 0 for all 𝑢 ∈ 𝑉 and satis�es the Jacobi identity.

(a) Let 𝐹 be any �eld and let𝐶 ⊆ 𝐹 be a sub�eld. Let Der(𝐹/𝐶) denote
the set of all derivations 𝜕 on 𝐹 such that 𝜕 is the zero map on 𝐶 .
Prove that Der(𝐹/𝐶) is a vector space over 𝐹 . Prove that for any
two elements 𝜕1, 𝜕2 ∈ Der(𝐹/𝐶), the map 𝜕1𝜕2 − 𝜕2𝜕1 is again in
Der(𝐹/𝐶). Conclude that Der(𝐹/𝐶) is a Lie algebra over 𝐶 .
Solution. The Leibniz rule and the assumption that Q ⊆ 𝐹 imply
that 𝜕 |𝐶 = 0 if and only if 𝜕 : 𝐹 → 𝐹 is 𝐶-linear. So Der(𝐹/𝐶) is the
set of 𝐶-linear derivations on 𝐹 . The zero derivation is 𝐶-linear, so
this set is non-empty. Let 𝜕1 and 𝜕2 be two𝐶-linear derivations. We
check that 𝜕1 + 𝜕2 is a𝐶-linear derivation. For any 𝑎, 𝑏 ∈ 𝐹 we have

(𝜕1 + 𝜕2) (𝑎 +𝑏) = 𝜕1(𝑎) + 𝜕1(𝑏) + 𝜕2(𝑎) + 𝜕2(𝑏) = (𝜕1 + 𝜕2) (𝑎) + (𝜕1 + 𝜕2) (𝑏),
so 𝜕1 + 𝜕2 is additive. Moreover, we also have

(𝜕1 + 𝜕2) (𝑎𝑏) = 𝜕1(𝑎𝑏) + 𝜕2(𝑎𝑏)
= 𝑏𝜕1(𝑎) + 𝑎𝜕1(𝑏) + 𝑏𝜕2(𝑎) + 𝑎𝜕2(𝑏)
= 𝑏 ((𝜕1 + 𝜕2) (𝑎)) + 𝑎((𝜕1 + 𝜕2) (𝑏)),

so the Leibniz rule is also satis�ed by 𝜕1+ 𝜕2. And for 𝑐 ∈ 𝐶 we have
(𝜕1 + 𝜕2) (𝑐) = 𝜕1(𝑐) + 𝜕2(𝑐) = 0, so 𝜕1 + 𝜕2 is𝐶-linear as well. If 𝜕 is a
𝐶-linear derivation, then so is −𝜕. Pointwise addition of functions
is associative and commutative, so Der(𝐹/𝐶) is an abelian group.
We de�ne a scalar multiplication pointwise as well, i.e., (𝜆𝜕) (𝑎) :=
𝜆(𝜕(𝑎)) for 𝜕 ∈ Der(𝐹/𝐶), 𝜆, 𝑎 ∈ 𝐹 . This de�nes again a 𝐶-linear
derivation on 𝐹 and endowsDer(𝐹/𝐶) with the structure of a vector
space over 𝐹 .
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For 𝜕1, 𝜕2 ∈ Der(𝐹/𝐶) we de�ne
[𝜕1, 𝜕2] := 𝜕1 ◦ 𝜕2 − 𝜕2 ◦ 𝜕1.

We check that [𝜕1, 𝜕2] is again a𝐶-linear derivation on 𝐹 . For 𝑎, 𝑏 ∈
𝐹 we have

[𝜕1, 𝜕2] (𝑎 + 𝑏) = 𝜕1 ◦ 𝜕2(𝑎 + 𝑏) − 𝜕2 ◦ 𝜕1(𝑎 + 𝑏)
= 𝜕1 ◦ 𝜕2(𝑎) + 𝜕1 ◦ 𝜕2(𝑏) − 𝜕2 ◦ 𝜕1(𝑎) − 𝜕2 ◦ 𝜕1(𝑏)
= [𝜕1, 𝜕2] (𝑎) + [𝜕1, 𝜕2] (𝑏)

and also

[𝜕1, 𝜕2] (𝑎𝑏) = 𝜕1 ◦ 𝜕2(𝑎𝑏) − 𝜕2 ◦ 𝜕1(𝑎𝑏)
= 𝜕1(𝑏𝜕2(𝑎) + 𝑎𝜕2(𝑏)) − 𝜕2(𝑏𝜕1(𝑎) + 𝑎𝜕1(𝑏))
= 𝜕2(𝑎)𝜕1(𝑏) + 𝑏 (𝜕1 ◦ 𝜕2(𝑎)) + 𝜕2(𝑏)𝜕1(𝑎) + 𝑎(𝜕1 ◦ 𝜕2(𝑏))
− 𝜕1(𝑎)𝜕2(𝑏) − 𝑏 (𝜕2 ◦ 𝜕1(𝑎)) − 𝜕1(𝑏)𝜕2(𝑎) − 𝑎(𝜕2 ◦ 𝜕1(𝑏))

= 𝑏 (𝜕1 ◦ 𝜕2(𝑎)) + 𝑎(𝜕1 ◦ 𝜕2(𝑏)) − 𝑏 (𝜕2 ◦ 𝜕1(𝑎)) − 𝑎(𝜕2 ◦ 𝜕1(𝑏))
= 𝑏 [𝜕1, 𝜕2] (𝑎) + 𝑎[𝜕1, 𝜕2] (𝑏),

so [𝜕1, 𝜕2] is a derivation. If 𝜕1 and 𝜕2 vanish on 𝐶 , then so does
[𝜕1, 𝜕2], so it is a 𝐶-linear derivation, as we wanted to show. Since
derivations are group homomorphisms, the bracket [−,−] is Z-
bilinear. If 𝜕1, 𝜕2 ∈ Der(𝐹/𝐶), 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐹 , then

[𝑐𝜕1, 𝜕2] (𝑎) = 𝑐 (𝜕1(𝜕2(𝑎))) − 𝜕2(𝑐 (𝜕1(𝑎))) = 𝑐 [𝜕1, 𝜕2] (𝑎) = [𝜕1, 𝑐𝜕2] (𝑎),
so the bracket is in fact 𝐶-bilinear. For any derivation 𝜕 we have
𝜕 ◦ 𝜕 − 𝜕 ◦ 𝜕 = 0, so it is also antisymmetric. It remains to show the
Jacobi identity. So let 𝑥,𝑦, 𝑧 ∈ Der(𝐹/𝐶). We have

[[𝑥𝑦]𝑧] + [[𝑦𝑧]𝑥] + [[𝑧𝑥]𝑦] = (𝑥𝑦 − 𝑦𝑥)𝑧 − 𝑧 (𝑥𝑦 − 𝑦𝑥) + (𝑦𝑧 − 𝑧𝑦)𝑥
− 𝑥 (𝑦𝑧 − 𝑧𝑦) + (𝑧𝑥 − 𝑥𝑧)𝑦 − 𝑦 (𝑧𝑥 − 𝑥𝑧)

= 0,

because composition of group homomorphisms is associative and
Z-bilinear. Therefore Der(𝐹/𝐶) is a Lie algebra over 𝐶 . �

(b) Assume now that the �eld 𝐶 has characteristic 0 and that 𝐹/𝐶 is a
�nitely generated �eld extension. One can show that there is an in-
termediate �eld𝑀 = 𝐶 (𝑧1, . . . , 𝑧𝑑) with𝑀/𝐶 purely transcendental
and 𝐹/𝑀 �nite. Prove, with the help of the third exercise, that the
dimension of the 𝐹 -vector space Der(𝐹/𝐶) is equal to 𝑑 .
Solution. We argue by induction on 𝑑 . For 𝑑 = 0 we have
Der(𝐹/𝐶) = 0 by the second exercise, because the elements of 𝐶
are constants and �nite extensions are algebraic. Suppose the res-
ult is true for some 𝑑 ∈ N and assume 𝐹/𝐶 is such that there ex-
ists an intermediate �eld 𝑀 = 𝐶 (𝑧1, . . . , 𝑧𝑑 , 𝑧𝑑+1) with 𝑀/𝐶 purely
transcendental and 𝐹/𝑀 �nite. Let 𝑁 := 𝐶 (𝑧1, . . . , 𝑧𝑑), so that
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𝑀 = 𝑁 (𝑧𝑑+1) is a transcendental extension. From the third exer-
cise we know that

dim𝐹 (Der(𝐹/𝐶)) = dim𝑀 (Der(𝑀/𝐶)) .
From the third exercise we also know that

dim𝑀 (Der(𝑀/𝐶)) = dim𝑁 (Der(𝑁 /𝐶)) + 1,
because every derivation on 𝑀 = 𝑁 (𝑧𝑑+1) is uniquely determined
by a derivation on 𝑁 and an element 𝑓 ∈ 𝑀 . By induction hypo-
thesis we have dim𝑁 (Der(𝑁 /𝐶)) = 𝑑 , therefore dim𝐹 (Der(𝐹/𝐶)) =
𝑑 + 1. �
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