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1 Recollections and preliminaries

Recall from the previous talk:

De�nition 1.1. The pro-étale site of a point, denoted ∗proét, consists of:

• The category whose objects are pro�nite sets S (topological spaces
homeomorphic to an inverse limit of �nite discrete topological spaces,
or equivalently totally disconnected compact Hausdor� spaces) and
whose morphisms are continuous maps.

• The coverings of a pro�nite set S are all �nite families of jointly sur-
jective maps, i.e. all families of morphisms {Sj → S}j∈J indexed by
�nite sets J such that

⊔
j∈J Sj � S is surjective.

∗I would like to thank Brad Drew for answering some questions that came up while
preparing these notes!
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It is easy to check that the axioms of a covering family are satis�ed
(see [Sta19, Tag 00VH]), so we have a well-de�ned site. Let us start by
characterizing sheaves on this site:

Lemma 1.2. A presheaf1 of abelian groups F on ∗proét is a sheaf if and only
if the following three conditions hold:

a) F(∅) = 0.

b) For all pro�nite sets S1 and S2, the inclusions i1 : S1 → S1 t S2 and
i2 : S2 → S1 t S2 induce a group isomorphism

F(S1 t S2)
F(i1)×F(i2)−−−−−−−−→ F(S1)⊕F(S2).

c) Every surjection f : S′ � S induces a group isomorphism

F(S)
F(f)−−−→ {g ∈ F(S′) | F(p1)(g) = F(p2)(g) ∈ F(S′ ×S S′)},

where p1, p2 : S′ ×S S′ → S′ denote the projections.

Proof. By de�nition, a presheaf of abelian groups F is a sheaf on ∗proét if and
only if for every �nite family {Si → S}i∈I of jointly surjective morphisms
the diagram

F(S)→
∏
i∈I
F(Si)

p∗1
⇒
p∗2

∏
(i,j)∈I2

F(Si ×S Sj)

is exact, meaning that the left arrow is an equalizer of the two arrows on
the right, which are explicitly described below. Since we are in Ab and I is
a �nite set, we can reformulate this as the sequence

0→ F(S)→
⊕
i∈I
F(Si)

p∗1−p∗2−−−−→
⊕

(i,j)∈I2
F(Si ×S Sj) (1)

being exact.
So assume �rst that 1 is exact. The empty set is covered by the empty

family, so the F(∅) must be a subgroup of 0, hence 0 itself. The natural
inclusions Si → S1 t S2 = S cover S for i ∈ I = {1, 2}, so it su�ces to

1Recall that a presheaf of abelian groups on a category C is just a functor F : Cop → Ab.
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show that F(p1) = F(p2) to verify b). Since i1(S1) ∩ i2(S2) = ∅, we have
S1 ×S S2 = S2 ×S S1 = ∅. So if (g, h) ∈ F(S1)⊕F(S2), then

p∗1(g, h) = (F(pS1×SS1
1 )(g),F(pS1×SS2

1 )(g),F(pS2×SS1
1 )(h),F(pS2×SS2

1 )(h))

= (F(pS1×SS1
1 )(g), 0, 0,F(pS2×SS2

1 )(h))

= (F(pS1×SS1
2 )(g),F(pS1×SS2

2 )(h),F(pS2×SS1
2 )(g),F(pS2×SS2

2 )(h)) = p∗2(g, h).

To show c), note that S′ � S is already a cover, so the exactness of 1
immediately implies the result.

For the converse, suppose that {fj : Sj → S}j∈J is a collection of jointly
surjective morphisms indexed by J = {1, . . . ,m}. We have then a surjection
f : S � S, where S′ := tmj=1Sj and f := tmj=1fj . By c) we can write

F(S) = {g ∈ F(S′) | F(pS
′×SS′

1 )(g) = F(pS
′×SS′

2 )(g)}. But S′ ×S S′ =

t(a,b)∈J2Sa ×S Sb and pS
′×SS′

ε = t(a1,a2)∈J2iaε ◦ p
Sa1×SSa2
ε for ε ∈ {1, 2} and

for ia : Sa → S′ the inclusions, so condition b) allows us to rewrite this as

F(S) =
⋂

(a,b)∈J2

{(g1, . . . , gm) ∈ F(S1)⊕ · · · ⊕ F(Sm) | Pa,b(ga, gb)}

with Pa,b(ga, gb) :≡ F(pSa×SSb1 )(ga) = F(pSa×SSb2 )(gb), which is what we
wanted.

De�nition 1.3. A condensed abelian group is a sheaf of abelian groups on
∗proét. We denote the category of condensed abelian groups by Cond(Ab).

Remark 1.4. Barwick and Haine have developed independently a notion very
similar to the condensed objects of Clausen and Scholze in their recent paper
[BH19]. This is the notion of Pyknotic2 object, which di�ers from the notion
of condensed object on set theoretical matters. Since we are not discussing
set theoretical issues, we will also not discuss the di�erences between these
two notions here.

From lemma 1.2 we deduce:

Example 1.5. Let G be a topological abelian group. Then the functor
G = HomTop(−, G) : ∗proét → Ab is a condensed abelian group. Conditions
a) and b) in lemma 1.2 are clear. For condition c), let f : S′ � S be a
surjection. We want to show that f∗ : G(S)→ G(S′) induces an isomorphism
between the set of continuous maps g : S → G and the set of continous maps

2This name comes from the greek word pykno, which means dense, compact or thick.
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h : S′ → G such that h ◦ p1 = h ◦ p2. The image of f∗ is indeed contained
in the set of all such maps, because f ◦ p1 = f ◦ p2. Moreover, since f is
an epimorphism, f∗ is injective. So it only remains to show surjectivity.
Let h : S′ → G be a map such that h ◦ p1 = h ◦ p2. For each s ∈ S, let
g(s) := h(s′) for some s′ ∈ f−1({s}). This is well-de�ned in Set, because if
f(s′) = f(s′′) = s, then (s′, s′′) ∈ S′ ×S S′, and thus we can write

g(s) = h(s′) = h ◦ p1(s′, s′′) = h ◦ p2(s′, s′′) = h(s′′).

But in fact it is a morphism in Top. Indeed, S carries the quotient topology
induced by f , so f−1(g−1(U)) = h−1(U) being open in S′ for all U open in
G implies that g−1(U) is open in S for all U open in G.

Sometimes it will be necessary to consider shea��cation of presheaves:

De�nition 1.6. Let C be a site and let Sh(C) ↪→ PSh(C) be the inclusion of
the category of sheaves to the category of presheaves on C. A shea��cation
functor is a left adjoint (−)a : PSh(C)→ Sh(C) to this inclusion.

We can explicitly describe the shea��cation of a presheaf F as follows.
For a covering family U = {fj : Uj → U}j∈J with J = {1, . . . ,m} we de�ne
the zero �ech cohomology of F with respect to U as

Ȟ0(U ,F) =
⋂

(a,b)∈J2

{(g1, . . . , gm) ∈
m⊕
j=1

F(Uj) | Pa,b(ga, gb)}

with the notation from lemma 1.2. If U ′ → U is a morphism of covering
families of U , then we obtain a pullback morphism Ȟ0(U ,F) → Ȟ0(U ′,F)
between zero �ech cohomology groups which does not depend on the partic-
ular morphism of covering families but only on the covering families them-
selves. De�ne then a presheaf F+ by setting

F+(U) := lim−→
U
Ȟ0(U ,F)

where the direct limit runs over all covering families of U with U 6 U ′ if and
only if we have a morphism of covering families U ′ → U (we can think of U ′
being �ner U). This construction takes presheaves into separated presheaves
and separated presheaves into sheaves, so taking Fa := (F+)+ we obtain
the desired shea��cation. See [Sta19, Tag 03NQ] for the precise statements
and proofs.
Remark 1.7. Since (−)a has a right adjoint, it preserves all colimits, in par-
ticular all �nite colimits. And since �nite limits commute with direct limits
in Ab, it follows from the previous description that (−)a also preserves �nite
limits. Hence shea��cation is exact.
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2 A nicer description of our category

The main goal of this talk is to show that Cond(Ab) has many nice categor-
ical properties. This will be much easier after we express Cond(Ab) as the
category of sheaves of abelian groups on a simpler site.

De�nition 2.1. A compact Hausdor�3 topological space is called extremally
disconnected if the closure of every open set is again open.

We will denote by CHaus the full subcategory of Top whose objects are
compact Hausdor� spaces and by ED the full subcategory of CHaus whose
objects are extremally disconnected sets. We also consider ED as a site with
covering given by �nite families of jointly surjective continuous functions.

Equivalently, a compact Hausdor� topological space is extremally dis-
connected if the closures of every pair of disjoint open sets are also disjoint.
Therefore extremally disconnected spaces are totally disconnected compact
Hausdor� spaces, hence pro�nite spaces. The converse is not true:

Example 2.2. In an extremally disconnected space every convergent se-
quence is eventually constant (see [Gle58, Theorem 1.3]), so the p-adic in-
tegers are pro�nite but not extremally disconnected, because (pn)∞n=1 con-
verges to 0.

Extremally disconnected spaces are precisely the projective objects in the
category CHaus of compact Hausdor� spaces (see [Gle58, Theorem 2.5]).
Since pullbacks exist and preserve epimorphisms (i.e. surjective continuous
functions4) in CHaus, a compact Hausdor� space S is extremally disconnec-
ted if and only if any surjection S′ � S from a compact Hausdor� space
admits a section:

S′

S S

The inclusion functor U : CHaus → Top has a left adjoint β : Top →
CHaus called the Stone-�ech compacti�cation. If X is a discrete topological

3If we do not require Hausdor�ness, an extremally disconnected space could be very
connected, e.g. any irreducible topological space.

4Urysohn's lemma implies that epimorphisms in the category of compact Hausdor�
spaces are precisely surjective continuous functions, which is not true in the whole category
of Hausdor� spaces (e.g. the inclusion of the complement of a point in the real line).
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space, then βX is extremally disconnected. Indeed, if S � βX is a con-
tinuous surjection from a compact Hausdor� topological space, we may �rst
lift the canonical map X → βX to S and then extend it to a section from
βX by its universal property. In particular, every compact Hausdor� space
admits a surjection β(Xdisc) � X from an extremally disconnected space.
This has the following consequence:

Proposition 2.3. Cond(Ab) is equivalent to the category of sheaves of abelian
groups on the site of extremally disconnected spaces via the restriction from
pro�nite sets.

Proof. Let F ∈ Cond(Ab) and let S be a pro�nite set. Let f : S̃ � S

and g : ˜̃S � S̃ ×S S̃ be continuous surjections from extremally disconnected
spaces. By lemma 1.2 we have F(S) = ker(F(p1)−F(p2)), where p1, p2 : S̃×S
S̃ denote the projections from the �ber product. Since F(S̃×S S̃)

F(g)−−−→ F( ˜̃S)

is injective, the kernel of F(S̃)
F(p1)−F(p2)−−−−−−−−→ F(S̃ ×S S̃) is the same as the

kernel of the composition F(S̃)
F(p1◦g)−F(p2◦g)−−−−−−−−−−−→ F( ˜̃S). Therefore the value

of F at the pro�nite set S is completely determined by the value of F at the
extremally disconnected sets S̃ and ˜̃S.

Corollary 2.4. Cond(Ab) is equivalent to the category of contravariant func-
tors F from the category of extremally disconnected sets to the category of
abelian groups such that:

a) F(∅) = 0.

b) For all extremally disconnected sets S1 and S2, the inclusions i1 : S1 →
S1 t S2 and i2 : S2 → S1 t S2 induce a group isomorphism

F(S1 t S2)
F(i1)×F(i2)−−−−−−−−→ F(S1)⊕F(S2).

Proof. We need to show that condition c) in lemma 1.2 is automatically
satis�ed. So let f : S′ � S be a continuous surjection of extremally discon-
nected spaces. Then we can �nd a section σ : S → S′ with f ◦ σ = idS .
This implies that F(σ) ◦ F(f) = idF(S), so F(f) is injective. The im-
age of F(f) is contained in {g ∈ F(S̃) | F(p1)(g) = F(p2)(g)}, because
f ◦ p1 = f ◦ p2. And conversely if g ∈ F(S̃) is such that F(p1)(g) =
F(p2)(g), then F((σ ◦ f)×S idS̃)(F(p1)(g)) = F((σ ◦ f)×S idS̃)(F(p2)(g)),
so F(f)(F(σ)(g)) = g and g is in the image of F(f).
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Remark 2.5. The following formal consequence of b) will be useful later.
Let η : F1 → F2 be a morphism in Cond(Ab) and let S1 and S2 be two
extremally disconnected sets. Then under the isomorphisms of corollary 2.4
b) the component of η at S1 t S2 is given by ηS1 ⊕ ηS2 , i.e. by

F1(S1)⊕F1(S1)

ηS1 0
0 ηS2


−−−−−−−−−→ F2(S1)⊕F2(S2).

Indeed, ηS1 ⊕ ηS2 = (ηS1 ◦ pF1(S1))× (ηS2 ◦ pF1(S2)), so this follows from the
commutativity of the following diagram

F1(S1) F2(S1)

F1(S1 t S2) F2(S1 t S2)

F1(S1)⊕F1(S2) F2(S1)⊕F2(S2)

ηS1

F1(i1)

ηS1tS2

F1(i1)×F1(i2)

F2(i1)

F2(i1)×F2(i2)

pF1(S1) pF2(S1)

and the analogous diagram for the second projections.

Corollary 2.6. Limits and colimits exist in Cond(Ab) and can be construc-
ted pointwise.

Proof. In corollary 2.4 we have described Cond(Ab) as the category of con-
travariant functors from extremally disconnected spaces to Ab sending �nite
disjoint unions to �nite products. The idea is to use this description to see
that we can construct limits and colimits pointwise. Once we have shown
that pointwise limits and colimits are sheaves, checking the necessary uni-
versal properties is reduced to checking the corresponding statements in Ab
pointwise, so we will not mention these computations explicitly.

Let us do the case of limits, for example. Let F : J → Cond(Ab) be a
diagram in Cond(Ab), i.e. a functor from some indexing category J. For an
extremally disconnected set S, applying the evaluation functor at S yields a
diagram of abelian groups. Let L(S) be the limit of this diagram, i.e. L(S) =
lim(evS ◦ F ) ∈ Ab. For all α ∈ Ob(J) let Fα ∈ Cond(Ab) denote its image
F (α) and denote also by εSα : L(S) → Fα(S) the corresponding canonical
group homomorphism. If f : S → S′ is a continuous map of extremally
disconnected sets, we have a cone to evS ◦ F given by the compositions

L(S′) → Fα(S′)
Fα(f)−−−−→ Fα(S) for all α ∈ Ob(J), so we get a canonical
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homomorphism to the terminal cone L(S′) → L(S) making the resulting
diagram commute. This is what we de�ne as the image L(f) of f under L.

To show that L is a sheaf on our site we use now corollary 2.4. Condition
a) is veri�ed because ev∅ is the constantly zero functor. For condition b) let
i1 : S1 → S1 t S2 and i2 : S2 → S1 t S2 be the inclusion of two extremally
disconnected sets in their disjoint union and consider the following diagram:

L(S1 t S2) L(S1)⊕ L(S2)

Fα(S1 t S2) Fα(S1)⊕Fα(S2)

Fβ(S1 t S2) Fβ(S1)⊕Fβ(S2)

L(i1)×L(i2)

ε
S1tS2
α

ε
S1
α ⊕ε

S2
α ε

S1
β ⊕ε

S2
β

Fα(i1)×Fα(i2)

ηS1tS2 ηS1⊕ηS2

ε
S1tS2
β

Fβ(i1)×Fβ(i2)

Since limits commute with �nite direct sums, the right triangle is the cone
corresponding to the limit of the direct sum of diagrams. The left triangle
is by de�nition the cone corresponding to the limit of the diagram at its
base. The bottom square commutes by remark 2.5, so the universal property
of the limit L(S1) ⊕ L(S2) induces a unique group homomorphism L(S1 t
S2) → L(S1) ⊕ L(S2) making everything commute. Since all arrows going
right at the bottom are isomorphisms, this unique morphism is a group
isomorphism by a standard universal property argument (put a copy of the
prism above to its right and left with the inverses of the isomorphisms at
the bottom, then use uniqueness of the universal property). So it su�ces
to show that L(i1) × L(i2) makes the whole diagram commute. Let us see
for example that the β square commutes. By the universal property of
the product, it su�ces to show commutativity after composing with each
projection. Composing with the �rst projection pFβ(S1) we further reduce
our problem to the commutativity of the following square:

L(S1 t S2) L(S1)

Fβ(S1 t S2) Fβ(S1)

L(i1)

ε
S1tS2
β ε

S1
β

Fβ(i1)

But this square commutes by construction of L(i1), so we are done proving
that L is a sheaf.
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3 Abelianity and compact-projective generation

A category C is called abelian if it satis�es the following properties:

i) There exists a zero object 0 ∈ Ob(C).

ii) For all A,B ∈ Ob(C), their product A
pA←− A × B pB−−→ B and their

coproduct A
iA−→ A t B iB←− B exist in C and the canonical morphism

A tB (idA×0)t(0×idB)−−−−−−−−−−−→ A×B is an isomorphism5 in C.

iii) Every morphisms has a kernel and a cokernel in C.

iv) Every monomorphism in C is a kernel and every epimorphism in C is
a cokernel.

In particular, C is naturally an additive category and all �nite limits and
colimits exist in C.

Remark 3.1. Note that these are properties that C may or may not have, but
in any case they do not depend on any extra structure on C. This is a priori
not so clear from the other most commond de�nition of abelian category
which starts by assuming that C has a preadditive structure, beacuse being
preadditive is indeed an extra structure (we may put two di�erent preadditive
structures on a same category). The reason why preadditivity combined with
the other properties is not an extra structure anymore is that this preadditive
structure is completely determined by properties i) and ii) above6.

In addition to these properties, Grothendieck introduced a series of extra
axioms in his Tôhoku paper [Gro57]. The ones that we will be considering
are (AB3) [all colimits exist ], (AB3*) [all limits exist ], (AB4) [all colimits
exist and coproducts are exact ], (AB4*) [all limits exist and products are
exact ], (AB5) [all colimits exist and �ltered colimits are exact ] and (AB6)
[all colimits exist and for any family {Ij}j∈J of �ltered categories indexed by
a set J with functors Fj : Ij → C the canonical morphism

lim−→
(ij∈Ij)j

∏
j∈J

Fj(ij)→
∏
j∈J

lim−→
ij∈Ij

Fj(ij)

is an isomorphism in C].
5We identify AtB with A×B via this isomorphism and call the result the direct sum

of A and B, denoted A⊕B.
6More precisely, on a category C with properties i) and ii) there is a unique commutative

monoid structure on the hom-sets which makes composition bilinear. The category C is
then additive precisely when this commutative monoids are all honest abelian groups.
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Remark 3.2. To check (AB3) on an abelian category it su�ces to show that
arbitrary coproducts exist, since we can build any colimit from coproducts
and coequalizers, and similarly for the dual statement (AB3*). Colimits
preserve colimits because the colimit functor is left adjoint to the diagonal
functor. In particular coproducts are always right exact, so to check (AB4)
on an abelian category satisfying (AB3) it su�ces to check that coproducts
preserve monomorphisms, and similarly for the dual statement (AB4*).

Except for axioms (AB4*) and (AB6), this is a general fact which holds
on any category of sheaves of abelian groups on a site, but we will give a
proof speci�c to our situation.

Theorem 3.3. Cond(Ab) is an abelian category satisfying axioms (AB3),
(AB3*), (AB4), (AB4*), (AB5) and (AB6). Moreover, it is generated7 by
compact8 projective objects.

Proof. All statements except for the last one follow at once from corollary 2.6
and the corresponding statements in Ab, so let us see that Cond(Ab) is gener-
ated by compact projective objects. The forgetful functor U : Cond(Ab) →
Cond(Set) preserves all limits. This follows from the pointwise construc-
tion of limits in both cases and for the corresponding statement for the
forgetful functor Ab → Set. Both Cond(Ab) and Cond(Set) satisfy the ne-
cessary conditions for the adjoint functor theorem, so we have a left adjoint
functor Z[−] : Cond(Set) → Cond(Ab). This functor attaches to a con-
densed set M the shea��cation of the presheaf which sends an extremally
disconnected set S to the free abelian group generated byM(S), hence the
notation. For an extremally disconnected set S consider the condensed set
S = HomTop(S,−). A morphism between two sheaves in Cond(Set) is just
a natural transformation between them, so by the Yoneda lemma we have
a natural bijection HomCond(Set)(S,U(F)) ∼= F(S) for all condensed abelian
groups F . Combining this with the previous adjunction we obtain natural
bijections HomCond(Ab)(Z[S],F) ∼= F(S) for all condensed abelian groups F .
Since limits and colimits are constructed pointwise in Cond(Ab), the eval-
uation functor evS commutes with all limits and colimits, which implies by
the previous natural bijection that Z[S] is both compact and projective.

7A category C is said to be generated by a set S ⊆ Ob(C) if for all pairs of distinct
parallel arrows f 6= g : A⇒ B we can �nd some h : S → A with S ∈ S such that fh 6= gh.
As Mac Lane points out, the word separated would have been a better choice (see [ML78,
Section V.7]).

8An object M on a category C is called compact if HomC(M,−) commutes with �ltered
colimits.
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Let us prove now that these objects generate Cond(Ab), for which it
su�ces to �nd for all condensed abelian group F a surjection

∐
α∈Λ Z[Sα]�

F for some collection of extremally disconnected sets {Sα}α∈Λ. So let F ∈
Ob(Cond(Ab)). By Zorn's lemma, there is a maximal subsheaf F ′ of F
such that F ′ admits a surjection f :

∐
α∈Λ Z[Sα] � F ′ for some collection

of extremally disconnected sets {Sα}α∈Λ. Suppose F ′ 6= F , i.e. suppose
F/F ′ 6= 0. Then we can �nd some extremally disconnected set S such that
(F/F ′)(S) 6= 0. By Yoneda this means that we can �nd at least one non-zero
morphism ḡ : Z[S]→ F/F ′, which by projectivity of Z[S] can be lifted to a
morphism g : Z[S]→ F such that im(g) 6⊆ F ′. Let then F ′′ be the smallest
subsheaf of F containing F ′ and im(g), so that F ′ ( F ′′ ⊆ F . Then we can

�nd a surjection (
∐
α∈Λ Z[Sα]) ⊕ Z[S]

ftg
� F ′′ contradicting maximality of

F ′. This implies that F ′ = F and �nishes the proof.

Categories nice enough to have some of the previous properties deserve
a name of their own. We say that C is a Grothendieck category if it is an
(AB5) abelian category with a generator. By de�nition G ∈ Ob(C) is a
generator precisely when the functor HomC(G,−) : C→ Set is faithful. Note
that if {Gi}i∈I is a set of generators and arbitrary coproducts exist in C,
then G =

∐
i∈I Gi is a generator.

Corollary 3.4. Cond(Ab) is a Grothendieck category with generator given
by

∐
S∈ED Z[S].

Corollary 3.5. Cond(Ab) has enough injectives and enough projectives.

4 Closed symmetric monoidal structure

Roughly speaking, a (symmetric)monoidal structure on a category C consists
of a functor (−) ⊗ (−) : C × C → C which turns C into a (commutative up
to natural isomorphism) monoid with associativity and unit up to natural
isomorphism (see [nLa19] for the precise de�nition). When C is considered
endowed with this extra structure we call it a (symmetric)monoidal category.

Example 4.1. Ab is a symmetric monoidal category with respect to the
usual tensor product and with unit object Z.

Let us see now that Cond(Ab) is also a symmetric monoidal category:

Proposition 4.2. The functor ⊗ : Cond(Ab)×Cond(Ab)→ Cond(Ab) with
F ⊗ G := (S 7→ F(S) ⊗ G(S))a makes Cond(Ab) a symmetric monoidal
category with unit given by the constant sheaf Z := (S 7→ Z)a.
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Proof. Note that the pointwise tensor product induces a symmetric mon-
oidal structure on the category PSh(Ab) of presheaves of abelian groups in
which associator, unitors and braiding are given pointwise by the correso-
pnding associator and unitors from Ab. We can write the tensor product on
Cond(Ab) as the composition (−)a ◦ ⊗PSh(Ab) ◦ i where i denotes the inclu-
sion Cond(Ab) × Cond(Ab) → PSh(Ab) × PSh(Ab), which shows that ⊗ is
indeed a functor. Associator, unitors and braiding are obtained by apply-
ing (−)a componentwise. Since functors preserve commutative diagrams, all
coherence diagrams are still commutative.

The category Cond(Set) is also symmetric monoidal with respect to
cartesian product. Relating these two symmetric monoidal categories we
have the following:

Proposition 4.3. The functor Z[−] : Cond(Set)→ Cond(Ab) is symmetric
monoidal, i.e. it sends cartesian products to tensor products.

Proof. Recall from the proof of theorem 3.3 that Z[−] sends a condensed
set M to the shea��cation of the presheaf S 7→ Z[M(S)]. Hence we only
have to show that Z[(M1 × M2)(S)] ∼= Z[M1(S)] ⊗ Z[M2(S)]. But the
cartesian product is formed pointwise, so the result follows from the functor
Z[−] : (Set,×)→ (Ab,⊗) being monoidal. The word symmetric can be added
since the isomorphisms Z[M1×M2] ∼= Z[M1]⊗Z[M2] are compatible with
the braiding natural transformations M1 ×M2

∼= M2 ×M1 and Z[M1] ⊗
Z[M2] ∼= Z[M2]⊗ Z[M1].

It is also worth pointing out that the objects Z[M] are �at for all con-
densed setsM. Indeed, since shea��cation is exact it su�ces to check that
tensoring pointwise with the presheaf S 7→ Z[M(S)] is exact, which follows
from all Z[M(S)] being free abelian groups.

One last natural step is to check that our symmetric monoidal category
Cond(Ab) is closed:

Proposition 4.4. For all F ∈ Ob(Cond(Ab)) the functor F ⊗ (−) has a
right adjoint [F ,−] : Cond(Ab) → Cond(Ab), called the internal hom in
Cond(Ab).

Proof. Pointwise tensor product preserves pointwise colimits, because the
tensor product of abelian groups has a right adjoint. Shea��cation also has
a right adjoint, hence F ⊗ (−) preserves colimits. This implies the existence
of a right adjoint functor [F ,−] by the adjoint functor theorem.
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To get an explicit description of the internal-hom we can use the Yoneda
isomorphisms in the proof of theorem 3.3 again. More precisely, let F and
G be condensed abelian groups and let S be an extremally disconnected
set. Then we have a natural isomorphism [F ,G](S) ∼= Hom(Z[S], [F ,G]) by
Yoneda and the free-forgetful adjunction, so by the tensor-hom adjunction
we get a natural isomorphism

[F ,G](S) ∼= Hom(Z[S]⊗F ,G).

5 The derived category of condensed abelian groups

Grothendieck categories are a particularly nice setting for homological al-
gebra, e.g. because they have enough injectives. But in our case it gets even
better, because Cond(Ab) also has enough projectives and is generated by
its compact projective objects. So let us say a few words about the derived
category of condensed abelian grouops.

Let D? = D?(Cond(Ab)) be the derived categroy of Cond(Ab), where
? ∈ { ,b,+,−} stands for unbounded, bounded above and below, bounded
below and bounded above complexes. This can be constructed as usual,
passing �rst to the homotopy category and then inverting the remaining
quasi-isomorphisms with roofs (see e.g. [GM03]). We will see these things
in detail in Tanuj's seminar this semester, and it does not seem necessary to
get into these details now, so we will postpone them for future talks. The
upshot is that the objects in D are cochain complexes of condesned abelian
groups and we identify two complexes whenever they are quasi-isomorphic,
i.e. whenever there is a morphism from one to the other inducing isomorph-
isms in cohomology.

The category D is not abelian anymore9, but it does carry a natural
triangulated structure. A triangulated structure on an additive category
consists of an additive automorphism Σ, called the suspension functor, and
a collection of distinguished triangles, which are diagrams of the form

A→ B → C → Σ(A)

satisfying some axioms (TR1) to (TR4) (see e.g. [GM03]). In our case the
suspension functor is the shift F• 7→ F•[1], de�ned on degree n as Fn+1

and with di�erential equal to −dF• . Moreover, in our case every such dis-
tinguished triangle comes from a short exact sequence of complexes, and

9D(A) is abelian if and only if A is semisimple, meaning that every short exact sequence
splits.
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conversely, every short exact sequence of complexes gives rise to a distin-
guished triangle in D.

Remark 5.1. Triangulated categories are not a very good notion, and this
will be our main reason to introduce ∞-categories later on. Philosophically
they are not good because they are an extra structure on the category, unlike
being an abelian category which is a property that any given category may
or may not have. This already has real life consequences, for instance, any
equivalence between abelian categories is automatically exact, whereas an
equivalence between triangulated categories need not be triangulated. But
triangulated categories are also very inconvenient because of their lack of
stability with respect to many usual categorical constructions, which in turn
usually goes back to the non-functoriality of cones. For instance, categories
of functors on a triangulated category are usually not triangulated. This
implies that D is probably not equivalent to Cond(D(Ab)), because one of
them is triangulated and the other one probably is not10.

The main point of derived categories is to compute derived functors, so
let us see how to do it in our situation. Let's say we want to derive a left
exact functor F : Cond(Ab) → B �rst. Since F is additive, it induces a
triangulated functor F : K(Cond(Ab)) → D(B), which is given by applying
F on each degree and then regarding the resulting complex as an object
in the derived category. Since Cond(Ab) has enough injectives and enough
projectives, we can identify

D− ' K−(P) and D+ ' K+(I),

where P and I are the full subcategories of projective and injective objects re-
spectively. Using a triangulated quasi-inverse of the equivalence of categories
ι−1 : D+ '−→ K+(I) we obtain the desired functor

RF = F ◦ ι−1 : D+ → D(B)

So in practice we just replace a bounded below complex F• by an injective
resulution I•, apply F on each degree to obtain a new complex FI• and
then regard this as an object in the derived category D(B).

10Since triangulated categories are an extra structure, this should not strike as a valid
reason for them not to be equivalent at �rst glance. But admitting a triangulated structure
has very strong consequences on the category, for instance, all monomorphisms and all
epimorphisms split on triangulated categories, and with such properties we can discard
equivalences between them.

14



Example 5.2. Let F ∈ Ob(Cond(Ab)). The functor Hom(−,F) is a con-
travariant left exact functor. We need to use injective resolutions in the
opposite category Cond(Ab)op to compute its right derived functor, i.e. we
need to use projective resolutions in Cond(Ab) to compute its right derived
functor. In particular, if P is a projective condensed abelian group, the
RHom(P,F) = Hom(P,F).

Note how we did not really need to start from a left exact functor on the
level of abelian categories. Hence we can generalize the previous example a
bit:

Example 5.3 (Hom-complex). Let F• and G• be two complexes of con-
densed abelian groups. De�ne a new complex Hom•(F•,G•) by setting the
degree n part to be

∏
i∈Z Hom(F i,Gi+n) and by setting the di�erential11 on

degree n to be

(dn(fi)i∈Z)j = dj+nG• ◦ fj − (−1)nfj+1 ◦ djF•

This induces a functor Hom•(−,F•) on the homotopy category which we
can derive on D−, and if P is a projective condensed abelian group then
RHom•(P,F•) = Hom•(P,F•), which is the complex that on degree n is
given by Hom(P,Fn) and whose di�erential on degree n is given by (dnF•)∗.

But in fact, thanks to Spaltenstein's resolutions of unbounded com-
plexes, we can de�ne the previous right derived functors in the whole D and
not just on D−. A complex F• is called K-projective (resp. K-injective)
if for all acyclic complexes G• the hom-complex Hom•(F•,G•) is acyclic
(resp. Hom•(G•,F•) is acyclic). By [Spa88, Corollary 3.5], every complex of
condensed abelian groups has a K-projective resolution. Hence by [Sta19,
Tag 06XN] we can extend RHom•(−,F•) to the whole derived category D.
We denote Exti(F•,G•) = H i(RHom•(F•,G•)), called the classical derived
functor of the internal hom, and by [Spa88, Proposition 1.4] we have the
useful formula

HomD(F•,G•[i]) = Exti(F•,G•).

In the previous section we have seen that the tensor-hom adjunction
F ⊗ (−) a [F ,−], which turns Cond(Ab) into a closed symmetric monoidal
category. From this adjunction we deduce that F ⊗ (−) commutes with all
colimits and that [F ,−] commutes with all limits. Hence we can form the
derived functors F ⊗L (−) : D → D and R[F ,−] : D → D. These still form

11With this di�erential we get Hi(Hom•(F•,G•)) = HomK(F•,G•[i]).
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an adjoint pair F ⊗L (−) a R[F ,−] (see [Sta19, Tag 09T5]). We can again
extend these functors to an adjunction F• ⊗L (−) a R[F•,−], turning D

into a closed symmetric monoidal category as before.
Let us close this section with a few words on compact generation. This is

particularly relevant in the context of triangulated categories. As Thomason
said to Neeman (see [Nee01]), �compact objects are as necessary to this
theory as air to breathe�.

Let P ∈ Cond(Ab) be a compact projective object as in the proof of
theorem 3.3, i.e. P = Z[S] for some extremally disconnected set S. We re-
gard P ∈ D as a complex concentrated on degree 0. Then P is a compact12

object in the derived category, because HomD(P,F•) = H0(Hom•(P,F•))
(see [Spa88, Proposition 1.4]) and cohomology commutes with coproducts in
Ab by (AB4). To see that D is a compactly generated triangulated category
(see nLab), let F• ∈ D such that HomD(P[n],F•) = 0 for all compact pro-
jective objects P and all n ∈ Z. A cochain complex is zero in D precisely
when it is acyclic. Let us see for instance that H0(F•) = 0. Pick a surjec-
tion f : P =

∐
i∈I Pi � ker d0

F ⊆ F•, where all Pi are compact projective
objects with the form above. Since HomD(−,F•) commutes with colimits
and all HomD(Pi,F•) are zero, we deduce that HomD(P,F•) = 0. But P
is still projective in Cond(Ab), hence HomD(P,F•) = H0(Hom•(P,F•)) =
HomK(P,F•), so we deduce that f is null-homotopic. This means that we
can �nd a commutative diagram:

P ker d0
F

F−1

s

f

d−1
F

In particular, im d−1
F = ker d0

F , so F• is acyclic and F• = 0 in D. Hence
our triangulated category D is compactly generated. This has the following
advantage:

Theorem 5.4 (Brown Representability). Let T be a compactly generated
triangulated category and let F : T → S be a triangulated functor which pre-
serves coproducts. Then F has a right adjoint.

12In the context of additive categories C, an object C is called compact if
HomC(C,−) : C → Ab preserves coproducts, i.e. for every set {Ai}i∈I ⊆ Ob(C) such
that

∐
iAi exists in C, the canonical map

∐
iHomC(C,Ai)→ HomC(C,

∐
iAi) is a group

isomorphism.
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