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Abstract

The blow-up construction arose originally to deal with extension problems. For
example, the obvious map A2 − O � P1 does not extend to A2, but we may regard
A2−O as an open subset of its blow-up at the origin and extend the map to the blow-up.
Despite this different initial motivation, the blow-up became gradually a very important
tool to resolve singularities. In 1964 it was proven by Hironaka that any algebraic variety
in characteristic zero can be resolved by a finite sequence of blow-ups.

We will start studying the blow-up of algebraic varieties, where this construction will
be more explicit. Some examples will be computed by hand in this context. Then we
will move forward to schemes, where we will lose a bit of explicitness in exchange for a
greater generality. We will discuss the main properties of the blow-up and three different
ways to define it, namely with the gluing, with the Proj of a graded sheaf of algebras and
by universal property. To conclude we will talk about blow-ups of regular varieties along
regular subvarieties, computing their Picard groups and their canonical invertible sheaves.



To all my teachers and professors.
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Chapter 1

The blow-up construction for
algebraic varieties

In this chapter we will give a quick overview of the blow-up construction in the context
of classical algebraic geometry. Some properties will already be treated here, but most of
them will be stated and proven in the next chapter in the more general setting of schemes.

We will use the term affine (resp. projective) algebraic set for closed subsets of
affine (resp. projective) space. We will use the term affine (resp. projective) variety
for irreducible algebraic sets of affine (resp. projective) space. A quasi-affine (resp.
quasi-projective) variety is a non-empty open subset of an affine (resp. projective) variety.
If we don’t specify, by (algebraic) variety we mean a quasi-projective variety. We will work
over a fixed algebraically closed field k of characteristic zero. Since we are working on
noetherian topological spaces, we can always decompose algebraic sets in their irreducible
components. For this reason we will mainly work with algebraic varieties.

To define the blow-up we need to talk about the product of varieties. The usual
cartesian product is a product in the category of affine varieties with the usual set
theoretical projections. On the other hand, to define a product in the category of varieties
we have to be more careful. We need to use the Segre embedding (product of coordinates in
lexicographic order) to endow the cartesian product of projective spaces with a structure
of projective variety (see [12] Chapter 5 Section 5.1. for a complete discussion on this
regard). The conclusion is the following: if X ⊂ Ank and Y ⊂ Amk are both affine varieties,
the closed subsets of X×Y are the common zero loci of sets of polynomials in the variables
x1, ..., xn, y1, ..., ym; if X ⊂ Ank is affine and Y ⊂ Pmk is projective, then the closed subsets of
X × Y are the common zero loci of sets of polynomials in the variables x1, ..., xn, y0, ..., ym
which are homogeneous in the variables y0, ..., ym; and if X ⊂ Pnk and Y ⊂ Pmk are both
projective varieties, then the closed subsets of X × Y are the common zero loci of sets of
polynomials in the variables x0, ..., xn, y0, ..., ym which are homogeneous separately in each
set of variables x0, ..., xn and y0, ..., ym.
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Blowing up points

Consider the affine space Ank with coordinate ring k[x1, ..., xn] and the projective space
Pn−1
k with homogeneous coordinate ring k[y1, ..., yn].

We define the blow-up of Ank at the origin O to be the closed subset Ãnk of Ank × Pn−1
k

defined by the equations

xiyj = xjyi (1.1)

for i, j = 1, ..., n. The inclusion Ãnk ↪→ Ank × Pn−1
k and the projection Ank × Pn−1

k � Ank
are algebraic morphisms, so their composition gives rise to a morphism π : Ãnk → Ank . The

restriction of π to Ãnk − π−1(O) is an isomorphism onto its image Ank − O, for we have an
inverse morphism

ψ : Ank −O → Ãnk − π
−1(O)

(a1, ..., an) 7→ (a1, ..., an)× (a1, ..., an)

given by the universal property of the product and well defined (with image in Ãnk−π−1(O))
because it satisfies the equations 1.1.

Since the equations 1.1 become trivial for the point O ∈ Ank , we also have π−1(O) ∼=
Pn−1
k . In particular, points of π−1(O) are in bijection with the set of lines passing through
O in An. We call π−1(O) the exceptional divisor 1, denoted by E.

Now, Ãnk − π−1(O) ∼= Ank − O is irreducible. Moreover, every point in π−1(O) is in

the closure (in Ãnk) of the image by ψ of the corresponding line in Ank without the origin.

Therefore, Ãnk−π−1(O) is dense in Ãnk . Since irreducibility passes to the closure, we deduce

that Ãnk is irreducible.

Remark. We may interpret geometrically this construction bearing in mind the original
purpose of the blow-up: the extension of morphisms. We can think of what we did as
replacing the origin by the set of directions through it, but with some care: we deform
the affine space without the origin giving to every point the “height” in the new axis Pn−1

k

corresponding to the line passing through that point and the origin in the affine space.
In this way, we can extend the quotient map Ank − O � Pn−1

k to a morphism Ãnk → Pn−1
k

sending a point in the Pn−1
k axis to the same point in Pn−1

k .

This extension property will become more clear later on when we generalize our first
definition and regard the blow-up as the closure of the graph of the original map inside
the product, allowing us to blow up more than just points.

1Because of the universal property of the blow-up (see last section of Chapter 2).
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Definition. Let Y be an affine variety in Ank passing through the origin2. We define the

blow-up of Y at O to be the closure in Ãnk of π−1(Y −O). We denote it by Ỹ , and we also

denote by π : Ỹ → Y the restriction of π to Ỹ .

As we saw before, π : Ỹ → Y induces an isomorphism of Ỹ − π−1(O) = Ỹ − Ỹ ∩ E to

Y − O. Since Ỹ ∩ E is a proper closed subset of Ỹ (as long as Y 6= O), π is a birational
morphism.

Example. Let Y be the cuspidal cubic curve given by the polynomial f(x, y) = y2 − x3

in A2
k, which has only one singular point (the origin).

Denote by X = Ã2
k and consider the blow-up of the affine plane at the origin

π : X → A2
k

(x, y, t, u) 7→ (x, y)

Denote Ωt = {(t, u) ∈ P1
k | t 6= 0} and Ωu = {(t, u) ∈ P1

k | u 6= 0}. Denote also

Xt = X ∩ (A2
k × Ωt), Xu = X ∩ (A2

k × Ωu), Ỹt = Ỹ ∩ Xt and Ỹu = Ỹ ∩ Xu. With this

notations we have X = Xt ∪Xu and therefore Ỹ = Ỹt ∪ Ỹu.

First we observe that Xt
∼= A2

k through (x, y, 1, u) 7→ (x, u) 7→ (x, xu, 1, u) and Xu
∼= A2

k

through (x, y, t, 1) 7→ (y, t) 7→ (ty, y, t, 1).

Now Ỹt = Ỹ ∩Xt = π−1(Y −O)
X
∩Xt = π−1(Y −O) ∩Xt

Xt
. Inside Xt we can take

t = 1 and we get the equations for π−1(Y −O) ∩Xt:

y = xu and y2 = x3 = x2u2

and therefore, since x 6= 0,
x = u2 and y = u3

To take the closure inside Xt we use the isomorphism given before, which sends π−1(Y −
O) ∩Xt to {(u2, u) ∈ A2

k | u 6= 0}, whose closure inside A2
k is {(u2, u) ∈ A2

k | u ∈ k}, and

therefore π−1(Y −O) ∩Xt

Xt
= {(u2, u3, 1, u) ∈ Xt | u ∈ k}.

We proceed in a similar way with Ỹu. In this case, π−1(Y − O) ∩Xu = {( 1
t2
, 1
t3
, t, 1) ∈

Xu | t 6= 0}, which corresponds to {( 1
t3
, t) ∈ A2

k | t 6= 0} = Z(y3x − 1), which is already

closed in A2
k. Hence π−1(Y − O) ∩Xu was already closed in Xu and Ỹu = {( 1

t2
, 1
t3
, t, 1) ∈

Xu | t 6= 0}.

In particular, Ỹu ∩ (X −Xt) = ∅, so we finally obtain

Ỹ = Ỹt = {(u2, u3, 1, u) ∈ X | u ∈ k}
2We may assume that Y passes through the origin without loss of generality, because we can always

perform a translation, which is an automorphism of An
k .
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This shows also that Ỹ is non-singular, as Ỹ ∼= A1
k through (x, y, t, u) 7→ u 7→

(u2, u3, 1, u). Since Ỹ is isomorphic through π : Ỹ → Y to Y outside of the point

π−1(O) = Ỹ ∩ E = {(0, 0, 1, 0)}, π is a birational morphism and we have resolved the
singularity of Y .

Figure 1.1: The cuspidal cubic curve, in red (dashed), and its blow-up at the origin, in
blue.

As Harris suggests (see [5] Example 7.17.), we may regard Ãnk as the closure in Ank×Pn−1
k

of the graph of the quotient map Ank − O � Pn−1
k . Indeed, we saw in order to prove

irreducibility of Ãnk that Ãnk − π−1(O) (which is precisely the graph of the quotient map)

is dense in Ãnk .

This has a natural generalization. Consider the projection from the point
p = (1, 0, ..., 0) ∈ Pnk onto Pn−1

k

ϕ : Pnk − p→ Pn−1
k

(a0, a1, ..., an) 7→ (a1, ..., an)

We define the blow-up of Pnk at p to be the closure in Pnk × Pn−1
k of the graph of ϕ,

denoted P̃nk . As before, we have a morphism π : P̃nk → Pnk obtained from the restriction of
Pnk × Pn−1

k → Pnk to the first factor.

This construction coincides with the one given by Shafarevich (see [12] Chapter 2
Section 4.1). Moreover, if we take Ω0 = {(a0, a1, ..., an) ∈ Pnk | a0 6= 0} ∼= Ank and we
restrict ϕ to Ω0, projecting onto H∞ = {(a0, a1, ..., an) ∈ Pnk | a0 = 0} ∼= Pn−1

k , we obtain
the same quotient map Ank − O � Pn−1

k as before. Thus, the closure of the graph of the
restriction of ϕ to Ω0 inside Ω0×H∞ ∼= Ank×Pn−1

k coincides with our previous construction

for Ãnk .

Hence, we can give the following generalization of our first construction:

Definition. Let X ⊂ Pnk be a variety passing through p (recall footnote 2). The blow-up

of X at p ∈ X, denoted X̃, is the closure in X×Pn−1
k of the graph of ϕ restricted to X−p,

together with the morphism π : X → Pnk obtained as before.
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The exceptional divisor of the blow-up is E = π−1(p) ⊂ X̃. Since E is a proper closed

subset of X̃ (as long as X 6= p) and π induces an isomorphism X̃ − E ∼= X − p (arguing
as we did at the beginning of this section), π is a birational morphism.

We know that singular points in a variety are a proper closed subset (see [6] Theorem
I.5.3 or [12] Chapter 2 Corollary to Theorem 2.9). Therefore curves have only finitely
many singularities and we can deal with them just by blowing up points. But already for
surfaces we may have whole lines of singular points: consider for example the surface given
in space by the equation of any singular plane curve, which will have then singular vertical
lines over the singular points of the curve.

Blowing up subvarieties

Our last definition is easy to generalize to blow up entire subvarieties:

Definition. Let X ⊂ An be an affine variety3 and Y ⊂ X a subvariety. Let f1, ..., fr ∈
A(X) be a set of generators for the ideal of Y in X and set U = X−Y = X−Z(f1, ..., fr).
Consider the well-defined morphism

ϕ : U → Pr−1
k

a 7→ ϕ(a) = (f1(a), ..., fn(a))

obtained by composition with the quotient morphism Ark −O � Pr−1
k .

Let Γϕ = {(a, ϕ(a)) | x ∈ U} ⊂ X × Pr−1
k be its graph. We define the blow-up of X

along Y , denoted X̃Y , to be the closure of Γϕ inside X × Pr−1
k , together with the natural

projection π : X̃ → X. We call Y the center of the blow-up. The exceptional divisor of
the blow-up is E = π−1(Y ) ⊂ X̃Y . If Z ⊂ X is another subvariety, Z̃Z∩Y ⊂ X̃Y is called
the strict transform of Z in the blow-up of X along Y .

As before, we have an induced isomorphism U ∼= Γϕ. Since X is irreducible and
Y 6= X, U is a non-empty open subset of an irreducible space, U is also irreducible. Thus,
Γϕ is also irreducible, and so is X̃Y . So π is a birational morphism, because it induces an
isomorphism on a non-empty (dense) oepn subset.

The trivial case Y = X gives X̃X = ∅
3The irreducibility assumption is again not necessary in this definition. Indeed, if we drop it and we

blow up arbitrary algebraic sets, we can consider the strict transforms of the irreducible components in
the blow-up of our algebraic set. Since taking closures commutes with finite unions, the strict transforms
of the irreducible components are precisely the irreducible components of the blow-up. So we can compute
the blow-up component-wise and we get the same result (see [2] Chapter 9 Remark 9.12).

About the affine assumption, we may define in an analogous way (with homogeneous polynomials) the
blow-up of projective varieties along subvarieties. But we will see that the blow-up is a local construction,
so we can restrict our attention to the affine case.
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We should check now that the previous construction is well-defined, meaning that it is
independent of the choice of generators for the ideal of Y in X.

Proposition 1. If we choose a different set of generators for the ideal IX(Y ) ⊂ A(X),

we obtain a variety X̃ ′Y which is isomorphic to X̃Y through an isomorphism φ making the
following diagram commute:

X̃Y X̃ ′Y

X

π

φ

π′

Proof. (from [2] Chapter 9 Lemma 9.16) Let f ′1, ..., f
′
s ∈ IX(Y ) be another set of generators.

Since both sets generate the ideal, we can find g11, ..., grs ∈ A(X) and h11, ..., hsr ∈ A(X)
such that

fi =
s∑
j=1

gijf
′
j in A(X) for each i = 1, ..., r, and (1.2)

f ′j =
r∑

k=1

hjkfk in A(X) for each j = 1, ..., s. (1.3)

Now define

φ : X̃Y −→ X̃ ′Y

(a, b) = (a; b1, ..., br) 7−→ (a, b′) =

(
a;

r∑
k=1

h1k(a)bk, ...,
r∑

k=1

hsk(a)bk

)
We check that φ is well-defined. Let (a, b) ∈ Γϕ. Since (b1, ..., br) = (f1(a), ..., fr(a)) ∈ Pr−1

k ,
we can find λ ∈ k − 0 such that bi = λfi(a) for all i = 1, ..., r, one of them at least being
non-zero. Plugging equations 1.3 into equations 1.2, we obtain the new equations

fi(a) =
s∑
j=1

gij(a)

(
r∑

k=1

hjk(a)fk(a)

)
for each i = 1, ..., r.

We can multiply the previous equations by λ and obtain the relations

bi =
s∑
j=1

gij(a)

(
r∑

k=1

hjk(a)bk

)
=

s∑
j=1

gij(a)b′j

So if b′ = 0, then b = 0, which is a contradiction with b ∈ Pr−1
k . And since the equations

remain valid in the closure, the same holds for any (a, b) ∈ X̃Y . Moreover, by construction

we have that φ(a, b) ∈ X̃ ′Y for all points (a, b) ∈ Γϕ, and therefore for all points (a, b) in

the closure X̃Y . Hence, φ is well-defined. To check that it is an isomorphism, we construct
φ−1 in the same way (changing the roles of the sets of generators). The commutativity of
the diagram is straightforward.
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From our definition, it follows immediately that for points (a, b) = (a; b1, ..., br) ∈ Γϕ
we have bi = fi(a) for all i = 1, ..., r, and therefore bifj(a) = bjfi(a) for all i, j = 1, ..., r.

Since this equations also hold on the closure X̃Y of Γϕ, we get the inclusion

X̃Y ⊂ {(a, b) ∈ X × Pr−1
k | bifj(a) = bjfi(a) for all i, j = 1, ..., r} (1.4)

In particular, if we take Y to be the blow-up of the affine space at the origin according
to our first definition 1.1, we can take the generators x1, ..., xn in k[x1, ..., xn]. It follows that

ÃnkO ⊂ Y . It is in fact a closed subset, since they are both closed in the product Ank×Pn−1
k .

But Y and ÃnkO are both irreducible and they share the non-empty open subset U , so they

are birationally equivalent. By irreducibility of Y , this implies that Y = ÃnkO, for otherwise

we could write Y = ÃnkO ∪ (Y − U) as a union of two proper closed subsets. Therefore,
this construction generalizes the previous one in a very natural way (the constructions are
equal, not only isomorphic).

Theorem 1. The blow-up is a local construction, i.e. if X is an arbitrary variety, Y ⊂ X
is a subvariety, U ⊂ X is a non-empty open subset and π : X̃Y → X is the blow-up of X
along Y , then π−1(U) ⊂ X̃Y is the blow-up of U along Y ∩ U .

Proof. By irreducibility of Y , U ∩ Y is dense in Y . If a polynomial vanishes in a set of
points, then it also vanishes in its closure. This gives the inclusion IX(U ∩ Y ) ⊂ IX(Y ).
And since U ∩ Y ⊂ Y , we also have the other inclusion IX(Y ) ⊂ IX(U ∩ Y ). So they are
actually equal.

Let f1, ..., fr ∈ A(X) be a set of generators of IX(Y ) = IX(U ∩ Y ). The corresponding

map ϕU to construct ŨY ∩U is then just the restriction of the map ϕ to construct X̃Y to
the open subset U − U ∩ Y .

Hence, ΓϕU
= Γϕ∩(U×Pr−1

k ). But π−1(U) is precisely the set of points (a, b) ∈ Γϕ
X×Pr−1

k

such that a ∈ U . So we get

π−1(U) = Γϕ
X×Pr−1

k ∩ (U × Pr−1
k ) = Γϕ ∩ (U × Pr−1

k )
U×Pr−1

k
= ΓϕU

U×Pr−1
k = ŨY ∩U

Example. Let X be the surface given by the polynomial f(x, y, z) = x3−y2z in A3
k, whose

singular locus is the z-axis (its intersection with the z-axis).

We compute its blow-up X̃ along (its intersection with) the z-axis.

Denote U = X − Z(x, y) and consider
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Figure 1.2: The surface given by x3 = y2z in A3
k.

ϕ : U → P1
k

(x, y, z) 7→ (x, y)

Let Γ = {(x, y, z, t, u) ∈ X × P1
k | t = x, u = y} ⊂ X × P1

k be its graph. Recall that

X̃ = Γ
X×P1k .

Denote again Ωt = {(t, u) ∈ P1
k | t 6= 0} and Ωu = {(t, u) ∈ P1

k | u 6= 0}. Denote also

X̃t = X̃ ∩ (X × Ωt) and X̃u = X̃ ∩ (X × Ωu).

Then X̃t = Γ ∩ (X × Ωt)
X×Ωt

and X̃u = Γ ∩ (X × Ωu)
X×Ωu

, as in the previous
example.

We start for example with X̃t:

Γ ∩ (X × Ωt) = {(x, y, z, 1, y
x

) ∈ X × Ωt | x3 = y2z, x 6= 0}

In particular, y 6= 0 and z = x3

y2
. So Γ∩(X×Ωt) = {(x, y, x3

y2
, 1, y

x
) ∈ X×Ωt | xy 6= 0} ∼=

{(z, u) ∈ A2
k | z 6= 0} through (x, y, z, 1, u) 7→ (z, u) 7→ (zu2, zu3, z, 1, u). This shows that

Γ∩ (X×Ωt) has dimension 2. But if we see Γ∩ (X×Ωt) inside A4
k through (x, y, z, 1, u) 7→

(x, y, z, u), it is contained in Z(y − xu, x − zu2), which is a 2-dimensional affine variety
because its coordinate ring is k[z, u]. Hence, its closure in A4

k is Z(y − xu, x − zu2) and

X̃t = {(x, y, z, 1, u) ∈ X × Ωt | y = xu, x = zu2}.

We do the same now for X̃u:
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Γ ∩ (X × Ωu) = {(x, y, z, x
y
, 1) ∈ X × Ωu | x3 = y2z, y 6= 0}

= {(x, y, x
3

y2
,
x

y
, 1) ∈ X × Ωu | y 6= 0}

Again, Γ ∩ (X × Ωu) ∼= A2
k through (x, y, z, t, 1) 7→ (y, t) 7→ (ty, y, t3y, t, 1), so it has

dimension 2. If we see it inside A4
k through (x, y, z, t, 1) 7→ (x, y, z, t), it is contained in

Z(x − ty, z − t3y), which is a 2-dimensional affine variety because its coordinate ring is

k[y, t]. Hence, its closure in A4
k is Z(x − ty, z − t3y) and X̃u = {(x, y, z, t, 1) ∈ X × Ωu |

x = ty, z = t3y}.

Notice finally that X̃t
∼= X̃u

∼= A2
k through the previously mentioned mappings. Since

X̃ = X̃t ∪ X̃u and both X̃t and X̃u are open in X̃, we deduce that X̃ is non-singular.
And the blow-up morphism π : X̃ → X is a birational morphism, so we have successfully
resolved the singularities of X.

Remark. In the previous example, we managed to resolve the singularities by only one
blow-up with appropiate center. The choice of the center plays an important role in the
resolution problem. For example, the Whitney-umbrella, given by the equation x2 = y2z
in A3

k, has also its intersection with the z-axis for singular locus. As Hauser points out in
[7] (Section 2 Exercise 9), if we blow-up along the z-axis, we resolve the singularity. But
if we decide to blow-up the origin first, we will obtain still a singular variety and we will
need to do more blow-ups to resolve it.

How to choose the center is not a trivial question. In fact, all existing resolution
algorithms choose for the Whitney-umbrella the origin as the first center of blow-up. More
about this discussion can be found in [7].



Chapter 2

The blow-up construction for
schemes

In this chapter we will study the blow-up construction using the language of schemes. We
will use the term scheme1 for any ringed space which is locally isomorphic to a ringed space
of the form (SpecA,OSpecA), for some ring A (all rings are assumed to be commutative
and unitary). If S is a scheme, we will use the term S-scheme for an object in the category
of schemes over S (see [11] slice category). For affine schemes S = SpecA we will use the
term A-scheme instead of SpecA-scheme.

If k is an algebraically closed field, every variety over k can be seen as a k-scheme:
there is a fully faithful functor from the category of varieties over k to the category of
k-schemes (see [6] Proposition II.2.6.). A fully faithful functor induces bijections on the
hom-sets. In particular, fully faithful functors are injective on objects up to isomorphism:
the identity on F (X) = F (Y ) comes from unique morphisms f : X → Y and g : Y → X
whose compositions map also to the identity on F (X) = F (Y ), and by injectivity on the
hom-sets they must be respectively equal to the identity on X and the identity on Y .
So we may safely regard every variety over k as a k-scheme. Moreover, we know which
k-schemes represent varieties over k: the image of this functor is precisely the subcategory of
integral quasi-projective k-schemes (see [6] Proposition II.4.10.). These are always integral
separated finite type k-schemes, so from now on we will use the term variety to refer to an
integral separated scheme of finite type over k. Hence we will achieve a greater generality
with this setting and every result that we prove will also apply to the previous setting.

For a ring A and an ideal I of A we will denote by V (I) the set of prime ideals of A
which contain I. For an element f ∈ A we will denote by D(f) the set of prime ideals of
A which do not contain f .

1This nomenclature differs from the original nomenclature used by Grothendieck in [3], where he used
the term prescheme to refer to locally affine ringed spaces and reserved the term scheme for separated
preschemes.
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The Proj construction

Similarly to what happened on the previous chapter with the product of varieties, the Proj
construction will be a key ingredient in the definition of the blow-up. But unlike in the
case of varieties, we need a bit more than a smart embedding to define it, so we will devote
this section to its study.

Let S =
⊕

n>0 Sn be an N-graded ring. Then S0 is a subring of S and S+ =
⊕

n>0 Sn
is an ideal of S. Denote by Sh the set of homogeneous elements of S.

As a set, we define Proj(S) to be the set of prime ideals p of S that are homogeneous
(p =

⊕
n>0(p ∩ Sn)) and such that S+ * p.

For every homogeneous ideal a of S, denote Vh(a) = {p ∈ Proj(S) | a ⊆ p}. The sets
of this form are the closed subsets of a topology on Proj(S). This topology is also called
the Zariski topology, because it is the topology induced in Proj(S) by the Zariski topology
on SpecS. For every f ∈ S homogeneous, denote Dh(f) = {p ∈ Proj(S) | f /∈ p}. These
sets form a basis for the Zariski topology, because Proj(S)−Vh(a) = Proj(S)−∩iVh(fi) =
∪iDh(fi), where the fi are a set of homogeneous generators of a. In particular, Proj(S) is
covered sets of the form Dh(fi) for fi a set of homogeneous generators of S+.

For p ∈ Proj(S), denote Tp = {f ∈ Sh | f /∈ p}. This is a multiplicative subset of S,
because 1 ∈ Tp and if f, g ∈ Tp, then by primality of p it follows that fg ∈ Tp. Therefore
we may consider the ring of fractions T−1

p S of S with respect to Tp. This is a Z-graded ring
through the formula deg( g

f
) = deg(g)− deg(f). Denote by S(p) its subring on degree zero,

explicitly given by S(p) = (T−1
p S)0 = { s

t
| s ∈ Sh, t ∈ Tp, and deg(s) = deg(t)}. We will

now define a sheaf of rings O on Proj(S) whose stalk at the prime ideal p will be precisely
S(p).

Call π : tS(p) −→ Proj(S) the projection sending every element in S(p) to p. For every
open subset U ⊆ Proj(S), let O(U) be the set of sections of π defined on U (i.e. functions
s : U −→

⊔
p∈Proj(S) S(p) whose composition with π is just the inclusion) such that for all

p ∈ U there exists an open neighbourhood V ⊆ U of p and homogeneous elements of S with
the same degree f and g such that V ⊆ Dh(f) and for all q ∈ V we have s(q) = g

f
∈ S(q).

The restriction maps are just the usual restrictions. With this, we have defined a
presheaf of sets on Proj(S). But a couple of observations will show that it is indeed a
sheaf of rings. First note that O(U) is the set of functions defined on U which locally
look like a quotient of homogeneous elements of S of the same degree (analogous to the
sheaf of regular functions on a projective variety). It makes sense therefore to define their
addition and product pointwise, just adding and multiplying the corresponding fractions,
and in this way we get a presheaf of rings and not just sets. And second note that the
gluing axiom is satisfied because we are talking about actual functions defined on the open
subsets of the topological space and their restrictions. So we have defined a sheaf of rings
on Proj(S).
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We should check now that the stalk at every p ∈ Proj(S) is indeed S(p) as we wanted.
So let p ∈ Proj(S). Define a ring homomorphism from Op to S(p) sending the germ of a
section s defined in some neighborhood of p to the fraction s(p) ∈ S(p). This is well defined,
as two germs are equal if and only if they agree on a neighborhood of p, so in particular
they must agree on p. It is also a ring homomorphism because of the way we defined the
addition and multiplication in Op. To see that it is surjective, take an element g

f
∈ S(p).

Then Dh(f) is an open neighborhood of p and the germ of the section sending q ∈ Dh(f) to
g
f
∈ S(q) maps to g

f
∈ S(p). To see that it is injective, take two germs sp, tp ∈ Op mapping to

the same element in S(p). Then we can find sections s and t defined on a sufficiently small
neighborhood V of p such that s(q) = g1

f1
∈ S(q) and t(q) = g2

f2
∈ S(q) for all q ∈ V . It follows

that g1
f1

= g2
f2

in S(p). This means that there is some h ∈ Tp such that h(g1f2 − g2f1) = 0

in S. But then again g1
f1

= g2
f2

in every S(q) such that q ∈ V ∩Dh(f1) ∩Dh(f2), so s and t
agree on this open neighborhood of p and they define the same germ in Op.

We will check now that for every homogeneous f of positive degree, there is a canonical
isomorphism of ringed spaces from (Dh(f),O �Dh(f)) to Spec(S(f)), where S(f) denotes again
the subring of degree zero of the Z-graded ring Sf obtained by inverting the powers of f
in S.

First define the continuous map ϕ : Dh(f) −→ Spec(S(f)) by p 7−→ (pSf ) ∩ S(f). Note
that (pSf ) ∩ S(f) is the prime ideal of S(f) formed by fractions with numerators in p and
hence ϕ is well defined. By properties of the localization (see [1] Proposition 3.11.) the map
ϕ is a bijection. Moreover, since p ⊆ q if and only if ϕ(p) ⊆ ϕ(q) (just by set theoretical
contemplation), the map ϕ is a homeomorphism for the Zariski topology.

Now we will see that the natural transformation ϕ# of sheaves of rings on Spec(S(f))
induced by ϕ is an isomorphism. For each V ⊆ Spec(S(f)) open subset, the component at
V of ϕ# induced by ϕ is given by

ϕ#(V ) : O(Spec(S(f))(V ) −→ ϕ∗(O �Dh(f))(V ) = O �Dh(f) (ϕ−1(V ))

s 7−→ ϕ#(V )(s)

To explicitly describe ϕ#(V )(s), notice first that S(p) and (S(f))ϕ(p) are isomorphic for
every p ∈ Dh(f) (in fact they are practically equal), because in the end we are inverting
the same elements and then taking the subring in degree zero of the result. And since ϕ
is a homeomorphism, we may write every q ∈ Spec(S(f)) as the image of some p ∈ Dh(f).
Now, let q = (pSf ) ∩ S(f) ∈ V . Then s(q) ∈ (S(f))q = (S(f))ϕ(p) can be seen as an element
of S(p) through the previously mentioned isomorphism, and hence we may safely define
ϕ#(V )(s)(q) = s(q) ∈ S(p). Then ϕ# is an isomorphism at every component, so it is an
isomorphism of sheaves on Spec(S(f)) and (ϕ, ϕ#) is an isomorphism of ringed spaces.

Since Dh(fi) are an open cover of Proj(S) for a family {fi}i∈I of homogeneous
generators of S+, we conclude that Proj(S) is a scheme. Furthermore, Proj(S) is an
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S0-scheme. Indeed, for each i ∈ I there is a natural S0-algebra structure on S(f) induced
by S0 ⊆ S → Sf . Hence every Dh(fi) is an S0-scheme, and this S0-scheme structure agrees
on the intersections Dh(fi) ∩ Dh(fj) = Dh(fifj): the restriction of the respective scheme
morphisms to the intersection is induced by the ring morphisms S0 −→ S(fi) −→ (S(fi))(fj)

and S0 −→ S(fj) −→ (S(fj))(fi). But by the same argument that we gave before, the two
rings (S(fi))(fj) and (S(fj))(fi) are the same as Dh(fifj). Thus the corresponding scheme
morphisms are equal in the intersections. Since for any schemes X and Y the functor
Hom Sch(−, Y ) is a sheaf of sets on X, we obtain with the gluing axiom a unique morphism
Proj(S) −→ Spec(S0).

Example. Let A be a ring and let S = A[T0, ..., Tn] be the polynomial ring over A in
n + 1 variables. Then S is an N-graded ring with the usual degree of polynomials and
PnA = Proj(S) is called the projective n-space over A. The ideal S+ is generated by the
variables Ti, so if we denote Ωi = Dh(Ti), we get an open cover of PnA by n+1 affine n-spaces
over A: indeed, Ωi

∼= Spec(A[T0, ..., Tn](Ti)) = Spec(A[X0, ..., Xi−1, Xi+1, ..., Xn]) = AnA,

with Xj =
Tj
Ti

.

Proposition 2. Let S be an N-graded ring and let S0 −→ B be an S0-algebra. Then
S ⊗S0 B is an N-graded ring through the formula deg(s ⊗ b) = deg(s) and we have an
isomorphism

Proj(S ⊗S0 B) ∼= Proj(S)×SpecS0 SpecB

Proof. Since the sets of the form Dh(f) for homogeneous elements of positive degree
f ∈ S cover Proj(S), the sets of the form Dh(f) ×SpecS0 SpecB cover the fiber product
Proj(S) ×SpecS0 SpecB. But we have seen already that Dh(f) ∼= Spec(S(f)), so the fiber
product is covered by sets of the form Spec(S(f))×SpecS0 SpecB ∼= Spec(S(f) ⊗S0 B).

By the way we defined the degree on S ⊗S0 B, the images f ⊗ 1 ∈ S ⊗S0 B of the
homogeneous f ∈ S with positive degree generate the ideal (S ⊗S0 B)+. So for the same
reason as before Proj(S ⊗S0 B) is covered by sets of the form Spec((S ⊗S0 B)(f⊗1)) for
homogeneous elements f ∈ S of positive degree. Hence it suffices to prove that for any
such f ∈ S the rings S(f) ⊗S0 B and (S ⊗S0 B)(f⊗1) are isomorphic. But we know that
Sf ⊗S0 B

∼= (S ⊗S0 B)f⊗1 as rings, and this isomorphism preserves the grading. So the
subrings on degree zero are also isomorphic.

Since Z is an initial object in the category of rings, we obtain as a consequence of the
previous proposition that for every ring A there is an isomorphism PnA ∼= PnZ×SpecZ SpecA.
This motivates the definition of the projective n-space over an arbitrary scheme X as
PnX = PnZ ×SpecZ X.

In the affine case, we already checked that PnA is an A-scheme. It is still true in general

that PnX is an X-scheme, because the fiber product projects to the second factor: PnX
πX−→ X.
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Definition. We will say that a scheme morphism f : X → Y is projective2 if it factors as

PnY

X Y

πYi

f

for some n ∈ N, where i : X PnY is a closed immersion.

We will say that a scheme morphism f : X → Y is quasi-projective if it factors as

X ′

X Y

gj

f

where j : X X ′ is an open immersion and g : X ′ → Y is a projective morphism.

Theorem 2. Projective morphisms are proper.

Hartshorne proves the noetherian case in [6] (Theorem II.4.9.). A more general proof
(using the same definition as Hartshorne of projective morphism) is given by Liu in [9]
(Theorem 3.30.).

Blowing up affine schemes

As in the case of varieties (cf. Theorem 1), the blow-up construction for schemes will be
a local construction. Therefore we will define it for affine schemes and then define it for
general schemes by gluing the blow-ups of an open affine cover along the intersections in
the separated case (and with a bit more of work in the general case).

Let A be a ring, I an ideal of A and Z = Spec(A�I) the corresponding closed subscheme
of SpecA (there is a bijection between closed subschemes of an affine scheme and the ideals
of the ring). The direct sum

⊕
n>0 I

n is an N-graded ring, where we adopt the convention
I0 = A.

Definition. The blow-up of SpecA along Z is defined as the scheme Proj(
⊕

n>0 I
n),

denoted by SpecA
:

Z , together with the corresponding morphism

SpecA
:

Z SpecAπ

2This definition of projective morphism is the one given by Hartshorne in [6]. Grothendieck gave a
more general definition of projective morphism in [3]. A complete discussion about this can be found in
the Stacks Project (see [14, Tag 01W7]).

http://stacks.math.columbia.edu/tag/01W7
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We also say that SpecA
:

Z is the blow-up of Z in SpecA. We call Z the center of the
blow-up and π−1(Z) the expectional divisor. Sometimes we may say that we are blowing

up the ideal instead of the corresponding closed subscheme and use the notation SpecA
:

I .

There are again some trivial cases, namely I = 0 (which gives the empty scheme) and
I = A (which gives again SpecA).

If A is reduced, then A[T ] is also reduced (a polynomial is nilpotent if and only if all its
coefficients are nilpotent). Every localisation of a reduced ring is again reduced (because
if fn = 0 ∈ S−1A then sfn = 0 ∈ A for some s ∈ S, hence sf = 0 ∈ A and f = 0 ∈ S−1A).

Since A
:
I can be covered by the affine opens Dh(f) ∼= Spec(⊕n>0I

n)(f) for f ∈ I (on degree

1) and Spec(⊕n>0I
n)(f) is a subring of A[T ]f , we get that A

:
I is a reduced scheme whenever

A is reduced.

Since
⊕

n>0 I
n is a subring of

⊕
n>0A = A[T ], which is an integral domain whenever A

is an integral domain, we get that SpecA
:

I is an integral scheme whenever A is an integral
domain and I 6= 0 (reduced because of our previous observation and irreducible because
the Proj in this case is the closure of the zero ideal).

Proposition 3. If I is a finitely generated ideal of A, then π is projective (and in particular
proper).

Proof. Let I = (f1, ..., fr) and consider φ : A[T1, ..., Tr] −→
⊕

n>0 I
n sending Ti to the

element fi on degree 1. This is a surjective morphism of N-graded A-algebras. Therefore
φ induces a closed immersion (see [15] Exercise 8.2.B.)

SpecA
:

I PrA

SpecA

Proj(φ)

π

which makes the triangle commute, because locally it is given by A-algebra morphisms
and the category of affine schemes is equivalent to the the category of rings with reversed
arrows (see [4] Theorem 2.35.). Therefore π is projective, and by Theorem 2, π is also
proper.

So in the affine case the blow-up of a variety is again a variety: an integral domain
finite type k-algebra is noetherian, so π is a proper morphism and the blow-up is an integral
separated finite type k-scheme.

Now we will check that the blow-up is indeed a local construction, as we wanted it
to be. To prove this, we will prove a more general statement. Let A be a ring and I an
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ideal of A. Let ϕ : A → B be an A-algebra and J the ideal generated by ϕ(I) in B. By
Proposition 2 we have an isomorphism

SpecA
:

I ×SpecA SpecB ∼= Proj((⊕n>0I
n)⊗A B) = Proj(⊕n>0(In ⊗A B)) (2.1)

In general we have a surjective N-graded A-algebra homomorphism
⊕

n>0(In⊗AB) −→⊕
n>0 J

n, because on degree zero it is an isomorphism and on degree one it is surjective.

This means that SpecB
:

J is a closed subscheme of Proj(
⊕

n>0(In ⊗A B)) (cf. proof of
Proposition 3). But in general they are not isomorphic because the N-graded A-algebra
homomorphism fails to be injective, so in general we cannot say that blow-ups commute
with pullbacks. But we can already say the following:

Proposition 4. The blow-up is functorial, i.e. if Specϕ : SpecB → SpecA is an affine

scheme morphism, then there is a unique scheme morphism Specϕ
:

such that making the
following square commutative:

SpecB
:

J SpecA
:

I

SpecB SpecA

Specϕ
:

πB π

Specϕ

(2.2)

Proof. Indeed, the composition with the mentioned closed immersion with the projection

from the fiber product above gives us a unique morphism Specϕ
:

making the diagram 2.2
commutative.

In the case where SpecB SpecA we have that SpecB
:

J SpecA
:

I ,

because the pullback of a closed immersion is a closed immersion and the composition of

closed immersions is a closed immersion. In this case we call SpecB
:

J the strict transform
of SpecB under the blow-up of SpecA at I.

Coming back to our main thread of argumentation, let us see now under what
conditions blow-ups commute with pullbacks:

Proposition 5. If B is a flat A-module, then the diagram 2.2 is cartesian.

Proof. We check that in this case
⊕

n>0(In⊗AB) −→
⊕

n>0 J
n is indeed an isomorphism.

Consider the inclusion of A-algebras
⊕

n>0 I
n ↪→

⊕
n>0A = A[T ]. Tensor it over A with the

flat A-module B to obtain an inclusion of A-algebras (
⊕

n>0 I
n)⊗AB =

⊕
n>0(In⊗AB) ↪→

A[T ] ⊗A B = B[T ] =
⊕

n>0B. The image of this inclusion is precisely
⊕

n>0 J
n where J

is the ideal generated in B by ϕ(I).
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Lemma 1. A ring morphism ϕ : A → B is flat if and only if the corresponding affine
scheme morphism Specϕ : SpecB → SpecA is flat.

Proof. This lemma follows from the fact that flatness is a local property (see [1] Proposition
3.10.) and from the following result: for any ring morphism ϕ : A→ B and any B-module
N (which in this case we take to be B itself), N is a flat A-module if and only if for
every prime ideal q ∈ SpecB the localization Nq is a flat Aϕ−1(q)-module (see [10] Theorem
7.1.).

Proposition 6. The blow-up is a local construction, i.e. if SpecB SpecA
Specϕ

is an

open immersion, then the diagram 2.2 is cartesian.

Proof. By the Proposition 5 we only have to prove that the corresopnding ring morphism
ϕ : A → B is flat. By the previous lemma, it suffices to prove that j is a flat morphism.
But j is an open immersion, so it induces an isomorphism on every stalk and therefore j
is flat.

Now we can obtain one of the main features of the blow-up as a consequence of this
proposition, namely that the blow-up induces an isomorphism outside of the center. Indeed,
if U = SpecA− V (I), we have a cartesian square

π−1(U) SpecA
:

I

U SpecA

π

And then π−1(U) ∼= Ũ∅. But we already noted that this trivial case gives Ũ∅ = U ,
hence π−1(U) ∼= U . In particular, if A is integral and I 6= 0, then π is a birational
morphism.

The blow-up construction for general schemes

Most of the work was already done in the previous section. Now we have to generalize
our construction by gluing the local pictures together and prove the analogous results for
general schemes reducing to the affine case.

Let us see first that we can glue the local affine blow-ups together to define a global
blow-up.

Lemma 2. Let X be a scheme and let Z X be a closed subscheme. There exists

a unique X-scheme π : X̃Z → X such that its corestriction to each open affine subscheme
is isomorphic to the corresponding affine blow-up.
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Proof. Uniqueness follows from the definition, so let us prove existence. Let X be a
separated scheme. Let {Xi}i∈I be an affine open cover and for each i ∈ I denote by
Zi the (scheme theoretical) intersection of Z with Xi given by Z ×X Xi. Furthermore, for
each (i, j) ∈ I2 denote by Xij the intersection of Xi and Xj and by Zij the intersection of
Z and Xij. Observe that Zij = Zi ∩ Xj = Zj ∩ Xi (they are not equal, but canonically
isomorphic, so we may safely identify them). In this situation, each Xij is affine (because
X is separated) and Zij is a closed subscheme of the affine scheme Xij, hence also affine.
We may then apply the affine case (Proposition 6) to obtain a cartesian square

X̃ij X̃i

Xij Xi

(2.3)

where we omit the centers of the blow-ups to simplify the notation (the center is always the
intersection of Z with the corresponding subscheme of X). By existence and uniqueness

of the affine case, we may glue the X̃i along X̃ij and we are done (for details on the gluing
construction see [13] Chapter 5 Section 3.2 or [4] Proposition 3.10.).

If X is not separated, the gluing still works, but in this case one has to be a bit more
careful: the interesction of two open affines is not affine in general. The way we solve this
obstacle is by covering the intersections with basic affine open sets, which will then glue
together by the same argument as above. Again, covering with the basic affine opens of
one of the affine schemes or the other will yield the same result, so we can glue again along
these glued pieces.

Definition. The scheme X̃Z together with the morphism π : X̃Z −→ X is called the
blow-up of X along the closed subscheme Z (or with center Z). If the center is clear we
will omit it to simplify the notation. We call π−1(Z) the exceptional divisor of the blow-up,

where π−1(Z) denotes the scheme theoretical preimage Z ×X X̃Z .

With this description, the blow-up construction is automatically local.

Theorem 3. The blow-up is a local construction, i.e. it is compatible with open immersions

meaning that for all U X we have the following cartesian square:

ŨZ∩U X̃Z

U X

πU πX
(2.4)

where Z ∩ U denotes the scheme theoretical intersection Z ×X U .
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Proof. We may check that the diagram is cartesian on an open cover of the base. Hence
we can reduce to the affine case, where the result was already proven.

We have again the same trivial cases as before, namely X̃X = ∅ and X̃∅ = X. In what
follows we will ignore such trivial cases. For example, we will say that any blow-up of a
variety is a variety (which is false if we blow up the whole variety, for the empty scheme is
not integral).

Corollary 1. The blow-up induces an isomorphism outside of the center, i.e. X − Z ∼=
X̃Z − π−1(Z).

Proof. The same as in the affine case.

Theorem 4. The blow-up is functorial, i.e. if f : Y → X is a scheme morphism, then
there is a unique scheme morphism f̃Z such that making the following square commutative:

Ỹf−1(X) X̃Z

Y X

f̃Z

πY πX

f

(2.5)

Moreover, if f is flat, then the square 2.5 is cartesian.

Proof. Functoriality follows from the affine case, since we can always take an affine open
neighborhood of the image of a point and an affine open neighborhood of the point intself
mapping to the neighborhood of the image. We get a map between the affine local blow-ups
making the square commute and then we glue all of them together to obtain f̃Z .

The second part of the theorem follows also from the affine case: if the morphis f : Y →
X is flat, then for all open subschemes V ⊆ Y and U ⊆ X such that f(V ) ⊆ U , the
restriction f �V : V → U is flat (see [14, Tag 01U2] Lemma 28.24.3).

If Y X
f

is a closed immersion, then f̃ is also a closed immersion. Indeed, if
Ui is an affine open cover of X, then each corestriction f−1(Ui) −→ Ui is also a closed

immersion. By the affine case, the corestriction f̃−1(Ũi) −→ Ũi is also a closed immersion.

Since being a closed immersion is local on the target and the Ũi cover X̃, we get the result.

Definition. Let X be a scheme, Z X a closed subscheme of X and X̃Z the

blow-up of X along Z. Let Y X be another closed subscheme of X. Then the

closed subscheme ỸZ∩Y X̃Z of X̃Z is called the strict transform of Y under the

blow-up.

Our next goal is to show that the blow-up of a variety is again a variety.

http://stacks.math.columbia.edu/tag/01U2
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It follows immediately from the affine case that the blow-up of a reducible scheme is
reducible. Irreducibility and finite type need a bit more work.

Lemma 3. If X = SpecA is an affine scheme and Z = Spec(A�I) is a closed subscheme

of X, then the open subscheme X̃Z − π−1(Z) of the blow-up X̃Z is dense.

Proof. First note that if f ∈ A is not a zero divisor, then D(f) is dense in SpecA. Indeed, if
f is not a zero divisor then the localisation A→ Af is injective. Hence the corresponding
affine scheme morphism D(f) = SpecAf → SpecA is dominant and D(f) is dense in
SpecA.

Let us call S = ⊕n>0I
n. We can cover X̃Z by affine open subschemes of the form

Dh(fT ) for f generators of the ideal I (the notation fT means that we refer to the element
f ∈ S on degree 1, we reserve f to denote the element f ∈ S on degree 0). To show

that X̃Z − π−1(Z) is dense in X̃Z it suffices to show that each Dh(fT ) ∩ (X̃Z − π−1(Z))
is dense in Dh(fT ) = SpecS(fT ). We may compute the exceptional divisor using the

formula 2.1, which gives π−1(Z) = Proj(⊕n>0(In ⊗A A�I)) = Proj(⊕n>0
In�In+1). Hence

π−1(Z) is covered by the open subschemes Dh(fT + I2) and inside SpecS(fT ) the closed

subscheme π−1(Z) ∩ Dh(fT ) is then Dh(fT + I2) = Spec((⊕n>0
In�In+1)(ft+I2)). The

canonical surjective morphism φ : S(fT ) → (⊕n>0
In�In+1)(ft+I2) has fS(fT ) ⊆ Kerφ,

because if xT n ∈ In, then fxT n ∈ In+1 (still on degree n) and therefore f xTn

fnTn 7→ 0

(recall that f denotes f ∈ S on degree 0). Conversely, if xT n ∈ In+1 ⊆ In then
xTn

fnTn = fTxTn

fn+1Tn+1 = f xTn+1

fn+1Tn+1 in S(fT ). Hence x ∈ fS(fT ) and Kerφ ⊆ fS(fT ). This

shows that the closed subscheme π−1(Z)∩ Spec(S(fT )) of Spec(S(fT )) is given by the ideal
fS(fT ). Hence its complement is D(f) and by our first observation we only have to prove
that f is not a zero divisor in S(fT ). But S(fT ) is a subring of SfT , where fT is invertible
(and therefore f is not a zero divisor in SfT ). So f is also not a zero divisor in S(fT ) and
we are done.

With this lemma we see that blow-ups preserve irreducibility: every non empty open
subset of an irreducible space is irreducible. The blow-up induces an isomorphism outside
of the center, so the complement of the exceptional divisor is also irreducible. By the
lemma, it is dense in the blow-up. Since irreducibility is preserved by the closure, we
conclude that the blow-up is irreducible.

Unlike in the affine case, we cannot guarantee that blow-ups are Hartshorne-projective
in general: in the proof of Proposition 3, we had to make a choice of generators of the ideal
I. The embedding to projective space is not canonical because of this choice, and therefore
the local embeddings to projective space (we could take them all to the same projective
space with the Segre embedding) will not necessarily glue to a global embedding of the
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whole blow-up3.

But we can say that locally noetherian schemes have proper blow-ups, because
properness is local on the target and we already know it for the affine case:

Theorem 5. Blow-ups of locally noetherian schemes are proper.

In fact there is a more general statement which says that blow-ups of locally noetherian
schemes are Grothendieck-projective (see [4] Proposition 13.96.).

We can finally conclude that any blow-up of a variety is a variety. Indeed, we saw
that irreducibility and reducedness are preserved (hence integrality). Since composition of
finite type morphisms is again finite type, the blow-up of a variety is again a finite type
k-scheme. And the same argument implies that it is separated over k. Therefore:

Theorem 6. Any blow-up of a variety is again a variety.

In particular, blow-ups are birational morphisms in the category of varieties. But not
every birational morphism is a blow-up. For example normalizations, which are the best
way to deal with curve singularities.

Proj description of the blow-up

LetX be a scheme. We will start with some quick overview of the basic definitions regarding
sheaf of modules. We will give two equivalent descriptions of sheaves of modules. The first
description, although slightly more abstract, is much more natural (due to the analogy
with the category of modules over a ring). This description uses some category theory,
which will not be explained here in detail. We refer to [8] in this regard.

The category Ab(X) of sheaves of abelian groups on X is abelian (see [6] Section II.1
for the details) and monoidal with the tensor product (over Z), which is defined as the
sheaf associated to the naive tensor product presheaf

⊗ : Ab(X)× Ab(X)→ Ab(X)

(M ,N ) 7→ [U 7→M (U)⊗Z N (U)]

The unit object is the sheaf Z, which is the sheafification of the constant sheaf Z.
Moreover, sheaves of rings O on X are monoids in this category with multiplication
µ : O ⊗O → O induced by the presheaf morphism which for an open U of X is given
by µ(U) : O(U) ⊗Z O(U) → O(U), a ⊗ b 7→ ab, and with unit η : Z → O induced by the
only presheaf morphism between Z and O.

3Not everything glues, just as not every diagram commutes! One has to be careful when dealing with
non canonical morphisms.
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Definition. An OX-module M is a pair (M , λ) where M is a sheaf of abelian groups
on X and λ : OX ⊗M → M is a morphism of sheaves of abelian groups such that the
following diagrams commute:

(OX ⊗OX)⊗M OX ⊗ (OX ⊗M ) OX ⊗M

OX ⊗M M

∼=

µ⊗id

id⊗λ

λ

λ

Z⊗M OXM

M M

η⊗id

∼= λ

Definition. Equivalently, an OX-module M is a sheaf of abelian groups such that for
every open U in X, M (U) is an OX(U)-module and for every open immersion V ⊆ U the
restriction map M (U) →M (V ) is OX(U)-linear, where the OX(U)-module structure on
M (V ) is given by the restriction OX(U)→ OX(V ).

In this case we get the morphism λ : OX ⊗M →M by taking the sheafification of the
presheaf morphism λ(U) : OX(U)⊗Z M (U)→M (U) sending a⊗ x 7→ ax.

We denote the tensor product in the category of OX-modules by M ⊗OX
N . We

define sheaves of OX-algebras the same way (changing the word module for algebra in the
previous definition).

If X = SpecA is an affine scheme and M is an A-module we define the sheaf of modules
M̃ associated to M in an analogous way to the sheaf of rings on the Proj of an N-graded
ring or the sheaf of rings on the spectrum of a ring, namely associating to every open U
of X the module of functions defined on U which locally look like fractions x

s
with x ∈M

and s ∈ A.

Definition. A sheaf of OX-modules M is called quasi-coherent if X can be covered by
open affines Ui = SpecAi, such that each M |Ui

is the sheaf of modules M̃i associated to an
Ai-module Mi. If furthermore each Mi can be taken to be a finitely generated Ai-module,
then we say that M is coherent.

Over an affine scheme X = SpecA the functor M 7→ M̃ induces an equivalence
of categories between the category of quasi-coherent OX-modules and the category of
A-modules with inverse the functor “taking global sections” M 7→M (X) (see [6] Corollary
II.5.5). In particular both functors are exact, because the categories are abelian, and being
an abelian category is a property and not an extra structure4.

4It is common to find in the literature definitions of abelian category which start from preadditive
categories, because every abelian category is indeed preadditive. But preadditive categories are categories
with some extra structure on the hom-sets, whereas being an abelian category is just a property: an abelina
category is one in which finite coproducts (sums) and products exist and coincide (in particular, the empty
product and coproduct gives us the zero object and the zero map between any two objects obtained by
composition of the corresponding morphisms to and from the zero object), kernel and cokernel of any
morphism exist (equalizer and coequalizer of the morphism and the zero morphism) and the factorization
theorem holds ([8] Proposition VII.3.1). If a category is abelian, there is a canonical induced abelian group
structure on the hom-sets (hint: given M ⇒ N , use the universal properties of the product of M and N
to define the sum of the morphisms).
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Given a scheme morphism f : X → Y and a OX-module M we may define its
pushforward or direct image to be just the usual pushforward of sheaves f∗M , which
is naturally a OY -module through f# : OY → f∗OX . On the other hand, if N is a
OY -module we cannot endow f−1N with anOX-module structure in the same way, because
the map that we obtain from f# with the pullback of sheaves goes in the wrong direction
(f−1OY → f−1f∗OX → OX). For this reason we define its pullback or inverse image as
f ∗N = OX ⊗f−1OY

f−1N , which is naturally a OX-module. This two constructions are
functorial. Moreover, we have an adjunction f ∗ a f∗ (in particular f ∗ is right exact and f∗
is left exact).

Definition. A graded OX-algebra S is a quasi-coherent sheaf of OX-algebras with a
grading S = ⊕n>0Sn, where the Sn are quasi-coherent sub-OX-modules. We say
that S is a homogeneous OX-algebra if S1 is coherent and generates S as a sheaf of
algebras. In this case, for any affine open subscheme U of X, S (U) is then a homogeneous
OX(U)-algebra.

The main example that we should keep in mind for our purposes is the case of I
being a quasi-coherent sheaf of ideals on X. In this case S = ⊕n>0In is naturally a
homogeneous OX-algebra.

Let us now check that we can define the global Proj of a graded OX-algebra by gluing
up the affine pieces.

Lemma 4. For any scheme X and graded OX-algebra S there is a unique X-scheme
f : Proj S → X such that for any affine open subscheme U of X, we have an isomorphism
of U-schemes f−1(U) ∼= Proj S (U) that is compatible with the restriction to any affine open
subscheme V of U .

Proof. The uniqueness follows from the definition itself, so let us show the existence.
Assume first that X is affine. Then set Proj S = Proj S (X). Let V be an affine open
subscheme of X. Then Proj S (V ) ∼= Proj(S (X) ⊗OX

OX(V )) ∼= (Proj S (X)) ×X V by
Proposition 2, so Proj S (V ) ∼= f−1(V ).

Let us now consider an arbitrary separated 5 scheme X and cover it by affine open
subschemes Xi. Then Proj S |Xi

glue by the existence and uniqueness of the Proj S |Xi∩Xj
.

Definition. The resulting X-scheme is called Proj S (we omit the morphism Proj S → X
when clear or when not needed).

For any scheme X there is a bijection between closed subschemes and quasi-coherent

sheaves of ideals on X. This bijection sends a closed subscheme Y Xi to its ideal
sheaf IY , which is defined as the kernel of the morphism i# : OX → i∗OY (which is
quasi-coherent because this property is preserved by pullback of quasi-coherent sheaves of

5Again we assume without much loss of generality that we are working on a separated base scheme for
simplicity.
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modules and by kernels of maps between quasi-coherent sheaves of modules). Conversely,
given a quasi-coherent sheaf of OX-ideals I denote by V (I ) the set of points x ∈ X such
that Ix 6= OX,x (which is a closed subspace of X) and by j : V (I ) → X the inclusion
(which is a continuous map). The ringed space (V (I ), j−1(OX/I )) is a closed subscheme
of X, and these two constructions are inverse of each other (see [6] Proposition II.5.9). This
correspondence is the key to define the blow-up of a scheme along a closed subscheme.

Definition. Let X be a scheme, Z Xi be a closed subscheme and let I ⊆ OX
be the corresponding quasi-coherent sheaf of ideals. The blow-up of X along Z is the
X-scheme X̃Z = Proj(⊕n>0I n).

By construction of the Proj (cf. Lemma 4) this last definition of blow-up verifies
the defining property of our previous blow-up (cf. Lemma 2), so the two definitions are
equivalent.

Remark. Although this second definition of blow-up is more natural and elegant in the
sense that it is analogous to the construction of the affine case, it requires more theory to
be studied6. For this reason we proved all the properties that we have seen so far with our
first definition.

It follows from the affine case (cf. proof of Lemma 3) that the exceptional divisor is
given by the formula

E = Proj⊕n>0I
n/I n+1 (2.6)

Universal property of the blow-up

We will close this chapter with the universal property of blow-ups. This universal property
can be taken also as a starting point to define the blow-up, but in that case existence has
to be proven afterwards. What we will do is state this universal property and check that
our definition of blow-up verifies it. This will constitute also a proof of its existence, so we
will have given then 3 different equivalent definitions of the blow-up.

Definition. Let X be a scheme and E be a closed subscheme of X. Then E is an effective
Cartier divisor 7 in X if for any x ∈ X we can find an affine open neighbourhood SpecA
of x in X such that E ∩ SpecA is the closed subscheme V (f) of SpecA defined by a non
zero divisor f ∈ A.

Reading this definition should immediately evoque the proof of Lemma 3. Indeed,
what we proved there is that the preimage of the center is an effective Cartier divisor. We
proved only the affine case, but being an effective Cartier divisor is a local property, so the
general case follows from the affine case.

6The theory of queasi-coherent sheaves, which we can only sketch here.
7This definition (from [7] Section 4) is not the best definition from the conceptual point of view, for we

didn’t define what a Cartier divisor is. But it keeps things more elementary (cf. [6] Section II.6).
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Theorem 7. Let X be a scheme and Z a closed subscheme. Let π : X̃Z → X be the
blow-up of X along Z. Then π−1(Z) is an effective Cartier divisor and every X-scheme
π′ : Y → X with the same property factors uniquely through π:

Y X̃Z

X

π′

∃!

π

Proof. It remains to show that every other X-scheme π′ with this property factors uniquely
through π.

As usual, the general case follows from the affine case: being an effective Cartier divisor
is a local property and the uniqueness of the factorization implies that we can glue the
local factorizations to a globally defined morphism.

It suffices then to prove the affine case X = SpecA. Recall the local description that
we made of the blow-up in Lemma 3. If we blow up the ideal I ⊆ A, then the blow-up

X̃Z = SpecA
:

I is covered by the affine open subschemes Dh(fT ) when the f run along a
generating system of I. In each of the Dh(fT ) = SpecS(fT ) the center (image of I under
A → S(fT )) is given by the ideal fS(fT ), where f is a regular element (not a zero divisor)
in the A-algebra S(fT ). Moreover, if ϕ : A → C is another A-algebra such that ϕ(f) is
a regular element and generates ϕ(I)C, then there exists a unique A-algebra morphism
S(fT ) → C sending each xT

fT
to the unique element c ∈ C such that ϕ(f)c = ϕ(x), which is

the factorization that we were looking for.

In the case of noetherian and locally noetherian schemes we have many results involving
effective Cartier divisors, so the universal property turns out to be especially useful (we
refer to the Stacks Project in this regard, see [14, Tag 0B3Q]). The following is a good
example:

Corollary 2. Let X be a regular noetherian scheme and Z be a closed integral subscheme
of codimension 1 in X. Then the blow-up is an isomorphism.

Proof. If X is a noetherian scheme and Z is a closed integral subscheme of codimension 1
in X such that OX,x is a UFD for all x ∈ Z, then Z is an effective Cartier divisor (see [14,
Tag 0B3Q] Lemma 30.15.7.). But X is regular, so each OX,x is a regular local ring, hence
UFD (see [14, Tag 0AG0] Lemma 15.96.7.). Thus Z is an effective Cartier divisor and the
identity on X satisfies the universal property.

http://stacks.math.columbia.edu/tag/0B3Q
http://stacks.math.columbia.edu/tag/0B3Q
http://stacks.math.columbia.edu/tag/0AG0


Chapter 3

Blowing up regular varieties along
regular subvarieties

In this last chapter we study the blow-up of regular varieties over an algebraically closed
field k along regular subvarieties1. Recall that by a variety we mean an integral separated
finite type k-scheme. And by subvariety we will always mean closed subvarieties.

Our goal will be to express the Picard group of the blow-up in terms of the Picard
group of the variety and to compute the canonical invertible sheaf on the blow-up. To get
there, we need some preliminary notions and results. Just as with sheaves of modules, these
notions are not that central to our main discussion and they are fairly common notions, so
we will go quickly over them giving enough references for further details. We will also use
some facts without proving them, such as the fact that the blow-up of a regular variety
along a regular subvariety is again regular (see [6] Theorem II.8.24.).

Invertible sheaves, Weil divisors and the Picard group

Let X be a scheme. An OX-module E is called locally free of finite type (or rank) if X can
be covered by open subschemes U such that each restriction E |U is isomorphic to ⊕ri=1OU as
an OU -module for some r ∈ N. Note that locally the rank is well-defined and in particular
if X is irreducible we may define rk(E ) ∈ N (by looking at the stalks it boils down to the
fact that isomorphic finite dimensional vector spaces have the same dimension). If r is the
same in each element of the cover we say that E is a locally free sheaf of rank r.

A locally free OX-module of rank 1 is called an invertible sheaf on X. The name is
justified as follows. The set of (isomorphism classes of) invertible sheaves on X is closed

1One could ask at this point how many subvarieties of a regular variety are again regular. In projective
space, Bertini’s Theorem tells us that there are plenty (see [6] Theorem II.8.18.).
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with respect to the tensor product, because the tensor product commutes with restriction
to open substets and OX ⊗ OX = OX . For any OX-modules M and N , define the
hom-sheaf as the sheafification of the presheaf sending every open U of X to the abelian
group HomOU

(M |U ,N |U), and denote it by HomOX
(M ,N ). With this definition we get

the usual adjunction M ⊗ (−) a HomOX
(M ,−). For an OX-module M , define its dual

as M ∨ = HomOX
(M ,OX). Since hom-sheaf commutes with restriction to open subsets,

if a sheaf of modules is locally free of finite type then so is its dual. And since free modules
of finite type are reflexive, the canonical morphism E → (E ∨)∨ (adjoint to the evaluation
morphism E ⊗OX

E ∨ → OX) is an isomorphism. Thus, if L is an invertible sheaf on X,
its dual is again an invertible sheaf on X and their tensor product is isomorphic to OX .
Hence the name invertible.

Since the tensor product is associative and commutative (when considered on
isomorphism classes), the previous discussion shows that the set of (isomorphism classes
of) invertible sheaves on X forms a group with the tensor product.

Definition. The group of invertible sheaves on a scheme X with the tensor product is
called the Picard group of X, denoted by Pic(X).

The Picard group is functorial: every morphism of schemes f : X → Y induces a
canonical group homomorphism f ∗ : Pic(Y ) → Pic(X), sending the equivalence class of
L to the equivalence class of f ∗L . The pullback of an inverse sheaf is an inverse sheaf,
because pullbacks commute with restriction to open subsets and f ∗OY = OX (unlike
with the pushforward, sheaves of modules behave good with pullbacks, see [6] Proposition
II.5.8.).

Remark. Invertible sheaves on a smooth variety X correspond to classical line bundles
through the usual correspondence: invertible sheaves are sheaves of sections of line bundles
and line bundles are global sections of invertible sheaves. The philosophy is as usual to
understand the geometric object via the functions on it, which are algebraic objects easier
to deal with. The tensor product of invertible sheaves corresponds then to multiplication
of transition functions. For this reason it is also common to refer to invertible sheaves as
line bundles and more generally to locally free of finite type sheaves as vector bundles.

Let now X be a regular variety and K its fraction field. A prime divisor or irreducible
divisor on X is an integral closed subscheme Z of codimension 1.

Definition. A Weil divisor on X is a formal Z-linear combination of prime divisors on
X. The group of Weil divisors is denoted by Div(X). A Weil divisor is called effective if
all its coefficients are non-negative.

Since X is regular, every prime divisor is an effective Cartier divisor (cf. proof of
Corollary 2). If Y is a prime divisor on X, then the local ring at its generic point is a
discrete valuation ring of K. The corresponding discrete valuation is called valuation of
Y , and denoted by vY . Since X is separated, Y is uniquely determined by its valuation.
For every nonzero rational function f ∈ K×, we say that f has a zero along Y (resp. a
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pole along Y ) of order vY (f) (resp. of order −vY (f)) if the integer vY (f) is positive (resp.
negative). This can only be the case for finitely many prime divisors (which are called the
support of the divisor). Hence it makes sense to define the divisor of f , denoted by (f),
as (f) =

∑
vY · Y ∈ Div(X). A divisor which is equal to the divisor of a function is called

a principal divisor. Note that, by the properties of valuations, sending a function to its
divisor gives a group homomorphism K× → Div(X), and in particular principal divisors
form a subgroup of Div(X). Hence we may consider the quotient group called the divisor
class group of X and denoted by Cl(X). Two divisors in the same equivalence class are
said to be linearly equivalent. See [6] Section II.6. for more details.

Proposition 7. Let X be a regular variety, Z be a proper closed subet of X and U =
X − Z. If Z has codimension at least 2, then Cl(X) ∼= Cl(U). If Z is irreducible and has
codimension 1, we have an exact sequence Z→ Cl(X)→ Cl(U)→ 0 (where the maps are
defined in the proof below).

Proof. First we define the surjective homomorphism Cl(X) → Cl(U) as follows. Let Y
be a prime divisor on X. Then Y ∩ U is either empty or a prime divisor on U . Send
D =

∑
niYi to

∑
ni(Yi ∩ U), ignoring those indices for which Yi ∩ U is empty. This gives

a surjective map Div(X) → Div(U), because every divisor on U is the restriction of its
closure in X. Now if f ∈ K× has (f) =

∑
niYi, then f as a rational function on U has

(f)U =
∑
ni(Yi ∩ U), hence we have a well-defined surjective map Cl(X)→ Cl(U).

By definition, the groups Div(X) and Cl(X) depend only on subsets of codimension
1, so removing a closed subset Z of codimension at least 2 does not change them and the
previous map is an isomorphism.

Finally, if Z has codimension 1, the kernel of the previous map consists precisely of
those divisors whose support is contained in Z. So if Z is also irreducible, the kernel is
just the subroup of Cl(X) generated by 1 · Z, and we get the map Z → Cl(X) defined as
1 7→ 1 · Z making the sequence exact.

For regular varieties X we have a natural isomorphism Cl(X) ∼= Pic(X) (see [6]
Corollary II.6.16.). This isomorphism sends (the class of) a Weil divisor D to (the class
of) the sheaf OX(D) which sends an open subset U of X to the ring of rational functions
defined on U that are either zero or have poles and zeros “constrained by D”, meaning that
the corresponding divisor plus the restriction of D to the open U is effective: a positive
coefficient in D allows a pole of that order, a negative coefficient demands a zero of that
order and without any restrictions away from the support of D (see [15] Definition 14.2.2.).
In particular, if D is an effective Cartier divisor on X, it follows that the corresponding
ideal sheaf I is precisely OX(−D).

Let S be a graded ring which is generated by S1 as an S0-algebra and let X = Proj(S).
Analogous to the functor M 7→ M̃ defined for affine schemes, we define a functor from
the category of graded S-modules to the category of quasi-coherent OX-modules: given
a graded S-module M there exists a unique quasi-coherent OX-module M̃ such that
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M̃(Dh(f)) = M(f) for every homogeneous element f ∈ S+ and the restriction maps are
the S(f)-linear maps M(f) →M(g) induced by the corresponding Sf -linear map Mf →Mg.

This generalizes the Proj construction, as S̃ = OX .

For a graded S-module M and an integer n ∈ Z, define a new graded S-module M(n)
by M(n)d = Mn+d, which is just M “shifted”. We define now Serre’s twisting sheaf on

X as S(n)
:

, and denote it by OX(n). This sheaf is invertible, as for every f ∈ S1 we
have an isomorphism OX(n)|Dh(f)

∼= OX |Dh(f) given by multiplication with fn. And a
similar argument shows that more generally for any pair of integers n,m ∈ Z we have an
isomorphism OX(n) ⊗ OX(m) ∼= OX(n + m). Using Serre’s twisting sheaf we may define
the twist of any OX-module F as F ⊗OX(n), and denote it by F (n).

Now consider X = Pnk . We study the twisting sheaf OX(m) on X. This sheaf
corresponds to the bundle which is trivial on the usual open cover of Pnk by affine
n-spaces Ui and has “multiplication by ( xi

xj
)m” as transition function from Ui to Uj.

A global section consists then of a family of polynomials fi ∈ k[x0
xi
, ..., xn

xi
] such that

fi(
x0
x1
, ..., xn

xi
) · ( xi

xj
)m = fj(

x0
xj
, ..., xn

xj
). Then f = fix

m
i ∈ k(x0, ..., xn) is a rational function

independent of i such that, divided by xmi , gives a polynomial in the variables x0
xi
, ..., xn

xi
. So

the denominator of f has to be a power of xi. But there are at least two indices, hence the
denominator of f is a unit and f ∈ k[x0, ..., xn]. Since f divided by xmi is in k[x0

xi
, ..., xn

xi
],

if m > 0, every global section of OX(m) corresponds to a homogeneous polynomials f of
degree m, and if m < 0, there are no global sections. This bijection for m > 0 gives us
that dimk(OX(m)(X)) =

(
n+m
n

)
, because the vector space of homogeneous polynomials of

degree m in n+ 1 variables has dimension
(
n+m
n

)
.

We compute now the Picard group of X using the isomorphism with Cl(X). Define
the degree of a Weil divisor D on X = Pnk as deg(D) =

∑
ni deg(fi), where the fi are

the corresponding irreducible homogeneous polynomials of k[x0, ..., xn]. The degree then
defines a group homomorphism Div(X)→ Z. Since a rational function on Pnk is an element
of k(x0, ..., xn) on degree zero, the degree of any principal divisor is zero and we have an
induced map Cl(X) → Z. Conversely, a degree zero divisor has to be principal: given
any divisor D =

∑
ni(fi), if deg(D) = 0, then

∏
fni
i is a rational function of degree zero

inducing D. This shows that Cl(X) ∼= Z, hence Pic(X) ∼= Z.

By the previous discussion, the image of OX(1) is 1 and therefore OX(1) generates the
Picard group of X. In particular, every invertible sheaf on X is of the form OX(m) for
some m ∈ Z. Also note that we didn’t use that k is algebraically closed, so everything
remains true over arbitrary fields.

Definition. Let X be a variety and E be a locally free sheaf of finite type on X. Let
S = S(E ) be the symmetric algebra of E (the sheafification of U 7→ SOX(U)(E (U)), see
[6] Exercise II.5.16.). Then S = ⊕d>0S

d(E ) is a sheaf of graded OX-algebras and we can
consider its Proj as defined on the previous chapter. We define the associated projective
space bundle as the X-scheme P(E ) = Proj(S ), which comes together with the morphism
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π : P(E )→ X and an invertible sheaf O(1) as in projective space.

Lemma 5. Let X be a regular variety and E be a locally free sheaf of finite type and rank
r at least 2 on X. Then Pic(P(E )) ∼= Pic(X)⊕ Z.

Proof. Consider the morphism α : Pic(X)⊕Z→ Pic(P(E )) defined by (L , n) 7→ (π∗L )⊗
O(n). Let us check that this is an isomorphism. Let i : x ↪→ X be a point with residue field
κ(x). Consider an open affine neighbourhood U of x on which E is free. Then on U the
symmetric algebra is the polynomial algebra on r variables, hence π−1(U) = Pr−1

U and we
obtain an embedding Pr−1

κ(x) → Pr−1
U → P(E ). Since OP(E )|U ∼= OU(n) and Pic(Pr−1

κ(x)) = Z,

we get a left inverse to Z→ Pic(P(E )). So it remains to show that α is surjective and that
Pic(X)→ Pic(P(E )) is injective.

For the injectivity, suppose that π∗L ⊗O(n) ∼= OP(E ). Then π∗(π
∗L ⊗O(n)) ∼= OX

(using [6] Proposition II.7.11.) and by the projection formula (see [6] Exercise II.5.1.(d)) we
get that L ⊗π∗O(n) ∼= OX . Now π∗O(n) is the degree n part of the symmetric algebra on
E (again [6] Proposition II.7.11.) and since rk(E ) > 2 we obtain that n = 0 and L ∼= OX .

Let us check that α is also surjective, which is slightly more delicate. Let Ui be an affine
open cover by integral affine (hence separated) schemes (X is integral) on which E is free
(of rank r). Define Vi = P(E |Ui

) ∼= Ui × Pr−1 = Pr−1
Ui

= π−1(Ui), which form an open cover
of P(E ). It is easier to see for this Vi that Pic(Vi) ∼= Pic(Ui × Z) (see [6] Exercise II.6.1.
The two morphisms in the exact sequence of Proposition 7 split, so we get an isomorphism
between the divisor class groups which are isomorphic to the Picard groups).

Now if L ∈ Pic(P(E )), we consider its restriction for each element of the cover to get
an element Oi(ni)⊗ π∗iLi ∈ Pic(Vi) ∼= Pic(Ui × Z) together with transition isomorphisms
αij : (Oi(ni) ⊗ π∗iLi)|Vi∩Vj → (Oj(nj) ⊗ π∗jLj)|Vj∩Vi verifying the cocycle conditions. We
consider the pushforward by π of these isomorphisms and use the projection formula again
to get isomorphisms αij : π∗(Oi(ni)|Vi∩Vj)⊗Li → π∗(Oj(nj)|Vj∩Vi)⊗Lj. Then we get that
ni = nj is an integer n independent of the index (by [6] Proposition II.7.11. looking at
the ranks). But the sheaf O(n) is compatible with restriction to opens, and so we can
rewrite the previous isomorphism as Oij(n) ⊗ π∗iLi|Vi∩Vj → Oij(n) ⊗ π∗jLj|Vi∩Vj . Tensor
with the inverse sheaf Oij(−n) to get isomorphisms Oij ⊗ π∗iLi|Vi∩Vj → Oij ⊗ π∗jLj|Vi∩Vj .
Finally, use the projection formula together with Proposition II.7.11. to get isomorphisms
Li|Ui∩Uj

∼= Lj|Ui∩Uj
verifying the cocycle conditions (because αij verifies them). So we can

glue them together to obtain a sheaf on X mapping to L .

Using this lemma we can proof the first main result of this chapter.

Theorem 8. Let X be a regular variety and let Y be a regular subvariety of codimension2

r at least 2. Let π : X̃ → X be the blow-up of X along Y and let E = π−1(Y ) be the

exceptional divisor. Then the map π∗ : Pic(X) → Pic(X̃) given by functorialtiy of the

2If it has codimension 1, nothing happens: Corollary 2.
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Picard group and the map Z→ Pic(X̃) defined by n 7→ nE define an isomorphism Pic(X)⊕
Z ∼= Pic(X̃).

Proof. Let U = X − Y . By Proposition 7 we have an exact sequence Z → Cl(X̃) →
Cl(U) → 0 and an isomorphism Cl(U) ∼= Cl(X). The composition Pic(X) → Pic(X̃) →
Pic(U) is the same as Pic(X)→ Pic(U) (which is an isomorphism) and therefore Pic(X)→
Pic(X̃) → Pic(X) is the identity. Moreover, the composition Z → Pic(X̃) → Pic(X) is

zero (because the sequence is exact). So it suffices to find a splitting for Z→ Pic(X̃).

Consider the closed immersion E X̃ and the corresponding morphism

Pic(X̃) → Pic(E). We know (by [6] Theorem II.8.24.(b)) that E is a projective bundle
over Y . By the previous Lemma, we deduce that Pic(E) ∼= Pic(Y ) ⊕ Z. Consider the

composition Z→ Pic(X̃)→ Pic(E)→ Pic(Y )⊕ Z→ Z. Through the first map, 1 is sent

to OX̃(E) ∈ Pic(X̃). Since E is an effective Cartier divisor (by the universal property of
the blow-up), we noted already that the corresponding sheaf of ideals IE is the inverse of
OX̃(E). But we also know that IE

∼= OX̃(1) (cf. proof of [6] Proposition II.7.13.), so we
get that OX̃(E) ∼= OX̃(−1). Through the next map, OX̃(−1) is sent to OE(−1), which is
then sent to −1. Although this is not the identity on Z, it is an isomorphism, so composing
with 1 7→ −1 we obtain the desired splitting.

Kähler differentials and the canonical invertible sheaf

Definition. Let A be a ring, B be an A-algebra and M be a B-module. An A-derivation
of B into M is an A-linear map d : B → M such that the Leibniz rule is verified: for all
b1, b2 ∈ B we have d(b1b2) = b1db2 + b2db1 (in particular da = 0 for all a ∈ A).

We denote the set of these derivations by DerA(B,M). The module of relative
differential forms of B over A or module of Kähler differentials is a B-module ΩB/A

together with an A-derivation d : B → ΩB/A with the following universal property: for any
B-module M and for any A-derivation d′ : B → M there exists a unique homomorphism
of B-modules φ : ΩB/A →M such that d′ = φ ◦ d.

If it exists, it is unique up to unique isomorphism (because it solves a universal
problem). To see that it exists, consider the free B-module given by linear combinations
of the symbols db, b ∈ B and quotient out by the submodule generated by appropiate
elements.

Given a morphism of schemes f : X → S, we can as usual glue the differential forms on
affine open subsets to define the unique quasi-coherent sheaf of relative differentials ΩX/S

on X such that for each open affine V of S and each open affine U contained in f−1(V ),
the restriction ΩX/S|U is (isomorphic to) the sheaf of modules associated to the module of
relative differential forms of OX(U) over OS(V ), and for each x ∈ U the stalk of Ω1

X/S at
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x is (isomorphic to) the module of differential forms of OX,x over OS,f(x) (see [9] Chapter
6 Proposition 1.26.).

Let f : X → Y and g : Y → Z be morphisms of schemes. The first fundamental exact
sequence of sheaves on X

f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0

follows from the first fundamental exact sequence for rings (see [10] Theorem 25.1). If
f : X → Y is a scheme morphism and Z is a closed subscheme of X with ideal sheaf I ,
then the second fundamental exact sequence of sheaves on Z

I /I 2 → ΩX/Y ⊗OZ → ΩZ/Y → 0

follows from the second fundamental exact sequence for rings (see [10] Theorem 25.2).

In the case which occupies us (the base being an algebraically closed field k) the
previous description simplifies (for V is either empty or Spec k) and we have the following
result (see [6] Theorem II.8.15. for the proof):

Theorem 9. Let X be an irreducible separated scheme of finite type over k. Then ΩX/k

is a locally free sheaf of rank dimX if and only if X is a regular variety over k.

Let X be a regular variety of dimension n. The previous theorem allows us to define
the canonical invertible sheaf on X as det ΩX/k = ∧nΩX/k (the sheafification of U 7→
∧nOX(U)ΩX/k(U), see [6] Exercise II.5.16.), and we denote it by KX . Moreover, if Y is a
nonsingular irreducible closed subscheme of X of codimension r given by the ideal sheaf
I , then the second fundamental exact sequence is also exact on the left (plugging 0 on the
left) and I /I 2 is a locally free sheaf of rank r on Y (see [6] Theorem II.8.17.). Thus for a
regular subvariety Y of X we may define the conormal sheaf of Y in X as the locally free
sheaf I /I 2, and the normal sheaf of Y in X as its dual NY/X = HomOY

(I /I 2,OY ).

If Y is a codimension r regular subvariety of X, then we have the adjunction formula
for KX (see [6] Proposition II.8.20. or [15] Exercise 21.5.B.):

KY
∼= KX ⊗ (∧rNY/X)⊗OY

which follows by taking highest exterior powers (determinants) in the second fundamental
(short) exact sequence and using that forming highest exterior powers commutes with
taking the dual sheaf. In the particular case of a divisor (r = 1) we get the nicer formula

KY
∼= KX ⊗OX(Y )⊗OY (3.1)

We compute now the canonical invertible sheaf of the projective space3 X = Pnk . We
know that it has to be of the form OX(mn) for some mn ∈ Z. The right mn, as we will see

3There is a cleaner way to do this (see [6] Example II.8.20.1.) using the Euler sequence (the exact
sequence in [6] Theorem II.8.13.).
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now, is −n− 1. For notational convenience, we do the case n = 2, so let X = P2
k, and U0,

U1 and U2 the usual affine open cover. The sections of KX over U0 are p(u1, u2)du1 ∧ du2.
We look at the section du1 ∧ du2 over U0 and we look for its zeros and poles outside U0

(since x0 = 0 is the only divisor outside U0, we only have to check this divisor). We look
over U1 with coordinates v0 = 1

u1
and v2 = u2v0, so that (1 : u1 : u2) = (v0 : 1 : v2). Then

our section is

du1 ∧ du2 =

(
− 1

v2
0

dv0

)
∧
(
v0dv2 − v2dv0

v2
0

)
= − 1

v3
0

dv0 ∧ dv2

So along x0 = 0 we have a pole of order 3 and m2 = −3. Now for every n ∈ N the divisor
Pn−1
k = V (xn) in Pnk is given by a homogeneous polynomial of degree 1. On each element of

the usual affine open cover Ui, we have an isomorphism OPnk (1)(Ui)→ OPnk (Pn−1
k )(Ui) given

by x1
ih 7→ h

x0
. Thus OPnk (Pn−1

k ) = OPnk (1) and we may inductively apply the adjunction
formula 3.1 to obtain for n = 3 the integer −3 = m2 + 1, and in general for any n > 2
the integer −mn−1 = mn + 1. And for n = 1 we get m1 = m2 + 1. So we have that the
canonical sheaf of X = Pnk is OX(−n− 1).

Observe also that the previous argument works the same way if we replace x0 by any
homogeneous polynomial of degree d and we replace the occurences of 1 by d. Hence, if Y
is a hypersurface of Pnk given by a homogeneous polynomial of degree d, then

OPnk (Y ) = OPnk (d) (3.2)

Moreover, we didn’t use that k is algebraically closed, so the result still holds over any
field.

Lemma 6. Let X and Y be regular varieties of dimensions n and m respectively. Then
the canonical sheaf of their product is p∗1KX ⊗ p∗2KY (where p1 and p2 are the projections
from the fiber product).

Proof. We start by proving that if X and Y are S-schemes, then ΩX×Y/S ∼= p∗1ΩX/S ⊕
p∗2ΩY/S.

We have ΩX×Y/X ∼= p∗2ΩY/S and ΩX×Y/Y ∼= p∗1ΩX/S (by [6] Proposition II.8.10.). Apply
this to the first fundamental sequence we get two exact sequences ΩX×Y/X → ΩX×Y/S →
ΩX×Y/Y → 0 and ΩX×Y/Y → ΩX×Y/S → ΩX×Y/X → 0. So now we need to see that ΩX×Y/S
decomposes into p∗1ΩX/S ⊕ p∗2ΩY/S. It suffices to consider the affine case, so let A and B be
C-algebras. We check that the composition ΩA⊗CB/A

∼= ΩB/C ⊗B (B⊗C A)→ ΩA⊗CB/C →
ΩA⊗CB/A is the identity. The first module is generated by elements of the form dx for
x ∈ A⊗C B. Since d is a morphism of abelian groups and d(a⊗ b) = d(a⊗ 1) + d(1⊗ b) =
d(1 ⊗ b), it is enough to consider elements of the form d(1 ⊗ b). Such an element is sent
through the first map to (1 ⊗ 1) ⊗ db, which then is sent to d(1 ⊗ b), and finally back to
d(1⊗ b). So the composition is the identity and we get what we wanted (see [10] Chapter
25 for the definitions of these maps).
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Now back to our varieties X and Y . By definition, KX×Y = ∧nmΩX×Y . We apply
what we just proved to this case and get ∧nm((p∗1ΩX)⊕ (p∗2ΩY )). But by properties of the
exterior product this is isomorphic to (∧np∗1ΩX)⊗ (∧mp∗2ΩY ), which is also isomorphic to
(p∗1(∧nΩX))⊗ (p∗2(∧mΩY )) (see [6] Exercise II.5.16. (d) and (e) respectively). And this last
expression is again by definition p∗1(KX)⊗ p∗2(KY ), which is what we wanted.

We are redy now to prove the second main result of this chapter.

Theorem 10. Let X be a regular variety and let Y be a regular subvariety of codimension4

r at least 2. Let π : X̃ → X be the blow-up of X along Y and let E = π−1(Y ) be the
exceptional divisor. Then KX̃

∼= π∗KX ⊗OX̃((r − 1)E).

Proof. Let U = X−Y . According to Theorem 8, we may write KX̃ as π∗M ⊗OX̃(qE) for

some M ∈ Pic(X) and some q ∈ Z. Outside the center we have an isomorphism U ∼= X̃−E
and therefore KX̃ |X̃−E ∼= KU

∼= KX |U . And by Proposition 7 we have an isomorphism
Pic(X) ∼= Pic(U), so from M |U ∼= KX |U we deduce M ∼= KX . By the adjunction formula
3.1 we obtain KE

∼= KX̃⊗OX̃(E)⊗OE ∼= π∗KX⊗OX̃((q+1)E)⊗OE. Since E is an effective
Cartier divisor (by the universal property of the blow-up), if IE is the corresponding ideal
sheaf, we have that OX̃(−E) ∼= IE, and so OX̃((q + 1)E) ∼= I −q−1

E . But we also know
that IE

∼= OX̃(1) (cf. proof of [6] Proposition II.7.13.), hence KE
∼= π∗KX ⊗OE(−q− 1).

Now let y ∈ Y be a closed point and let Z = y ×Y E be the fiber of E over y.
We apply our previous Lemma to get KZ

∼= p∗1Ky ⊗ p∗2KE. We substitute KE to get
p∗1Ky ⊗ p∗2(π∗KX ⊗ OE(−q − 1)). Note that Ky is just Oy, so we get OZ ⊗ p∗2(π∗KX ⊗
OE(−q − 1)) = p∗2(π∗KX ⊗OE(−q − 1)). And now we can pull back KX to Z through y
where it becomes trivial:

Z E X̃

y Y X

p1

p2

π π

Therefore we obtain OZ(−q − 1). But Z is a projective space of dimension r − 1 (cf. [6]
Theorem II.8.24.), so by the computations we did previously in projective space q = r− 1
and KX̃

∼= π∗KX ⊗OX̃((r − 1)E).

4Again, if it has codimension 1 nothing happens.
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