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Helical edge channels in two-dimensional topological insulator (2DTI)
• Gapped 2D bulk and gapless 1D edges

• Topologically protected helical edge channels in time-reversal-invariant materials:
electrons with opposite spins flow in the opposite directions

• Predictions and experimental realizations:
• HgTe quantum wells Bernevig et al., Science 2006; Konig et al., Science 2007

• InAs/GaSb heterostructures Liu et al., PRL 2008; Knez et al., PRL 2011

• monolayer 1T′-WTe2 Tang et al., Nat. Phys. 2017

• bismuthene on SiC Reis et al., Science 2017

• twisted bilayer MoTe2 Kang et al., Nature 2024
...



Hinge channels in higher-order topological insulators (HOTI)
• Gapped bulk and surfaces in 3D 2nd-order topological insulator

• Surface gap changes its sign with the surface orientation
⇒ surface-dependent Dirac mass: m(n̂)
⇒ gapless states at the hinges between two surfaces with the opposite signs

• Candidate materials:
• Bi (theory/exp: Schindler et al., Nat. Phys. 2018; Murani et al., PRL 2019; Jäck et al., Science 2019)

• Bi4Br4 (theory/exp: Noguchi et al., Nat. Mater. 2021)

• multilayer WTe2 in Td structure (theory/exp: Choi et al., Nat. Mater. 2021)

• SnTe, Bi2TeI, BiSe, BiTe (theory: Schindler et al., Sci. Adv. 2018)



Helical liquid formed by interacting electrons in helical channels

• Electrons in 2DTI edges or HOTI hinges: Hhl = Hkin + Hee

• Kinetic energy term:
Hkin = −iℏvF

∫
dr
(

R†
↓∂rR↓ − L†

↑∂rL↑

)
• e-e interaction (g2, g4: interaction strength):

Hee = g2

∫
dr R†

↓R↓L†
↑L↑ +

g4

2

∫
dr
[(

R†
↓R↓

)2
+
(

L†
↑L↑

)2
]

• 1D confinement geometry enhances interaction effects
⇒ helical liquids: unconventional matters distinct from usual Fermi liquids in higher dimension



Nanoscale platforms for topological superconductivity

• Synthesizing nanoscale systems with nontrivial topology + superconductivity

• Proposals based on helical channels formed at 2DTI edges and HOTI hinges

CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)

• Proximity-induced pairing in helical channels

• When two helical channels are in contact with s-wave superconductor:
Cooper pairs tunnel into the channel(s) while conserving momentum and spin
⇒ two types of pairing: local and nonlocal



Proximity-induced pairing in helical channels
- local pairing or intrachannel pairing

• Pairing process in a single channel allowed by momentum and spin conservation

Ln,↑ Rn,↓

μ

Δn

• Local pairing ∆n (hinge index n):
both Cooper-pair partners tunnel into the same channel



Proximity-induced pairing in helical channels
- nonlocal pairing or interchannel pairing

• Nonlocal (crossed Andreev) pairing:
Cooper-pair partners tunnel into different channels

L1,↑ L2,↑R1,↓ R2,↓

same helicity

channel 1

μ
Δ1

  channel 2   

Δ2

Δc

Δc

L1,↑ R2,↑R1,↓ L2,↓

opposite helicity
channel 1 channel 2

μ

Δ1 Δ2

• Restriction due to momentum and spin conservation:
nonzero pairing ∆c allowed for two channels of the same helicity with the same µ



Proposals exploiting double helical liquids in 2DTI and HOTI

• Proximity effect allows nonlocal and local pairings in 2DTI/HOTI edges

Klinovaja, Yacoby and Loss, PRB 90, 155447 (2014); CHH et al., Phys. Rev. Lett. 121, 196801 (2018)

• 2DTI setup: local gates required for adjusting local chemical potential µ1 = µ2

• HOTI setup: covering two side surfaces with a superconducting layer

• Local vs nonlocal pairings in two parallel helical channels
⇒ competition between two gap opening mechanisms

• Band inversion takes place upon varying the relative strength of the local and nonlocal pairings



Criterion for Majorana zero mode (MZM) in proximitized HOTI and 2DTI

• Solving Bogoliubov-de Gennes equation in the single-particle description
⇒ MZM solutions at zero energy satisfying self-conjugate property

• Band-inverted regime: Kramers pairs of MZM emerge at the corners of HOTI or 2DTI

• Topological criterion:
⇒ nonlocal pairing dominates over local pairing

∆2
c > ∆1∆2

• In noninteracting systems, local pairing prevails
⇒ ∆n > ∆c in the absence of e-e interactions

Reeg et al., PRB 2017

• Reversing the ratio of ∆n/∆c through Coulomb interaction between electrons in the channels:
the process where Cooper-pair partners tunnel into one channel costs higher energy than the
process where they tunnel into different channels



MZM stabilized by intrachannel Coulomb interaction
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CHH et al., Phys. Rev. Lett. 121, 196801 (2018); CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)

• Renormalization-group (RG) analysis to examine e-e interaction effects on ∆n and ∆c

• e-e interactions can stabilize MZM in double helical liquids
⇒ suitable MZM platform without magnetic fields and local voltage gates

• Questions to be explored:
• generality: topological criterion for generic interacting systems?
• tunability: how to induce the transition between topological and trivial phases?
• stability: how MZM survive under broader conditions (low-energy excitations)?
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Double helical liquids

• Helical liquids formed by interacting electrons in edge channels
• bosonization:

Rn,↓(r) =
UR√
2πa

ei[−ϕn(r)+θn(r)], Ln,↑(r) =
UL√
2πa

ei[ϕn(r)+θn(r)]

• Double helical liquids:

Hdh =
∑

δ∈{s,a}

∫
dr

ℏuδ
2π

[ 1
Kδ

(
∂rϕδ

)2
+ Kδ

(
∂rθδ

)2
]
, [ϕδ(r), θδ′(r′)] = iδδδ′

π

2
sign(r′ − r)

• interaction parameters Ks, Ka:

Kδ =
[
1 +

2
πℏvF

(
Uee + δVee

)]−1/2

• δ ∈ {s ≡ +, a ≡ −}: symmetric/antisymmetric combination of the two channels
• Uee (Vee): intrachannel (interchannel) interaction strength
• repulsive interaction: Uee, Vee > 0 ⇒ Ks ⩽ Ka ⩽ 1



Proximity-induced pairings in double helical liquids
• Local (intrachannel) pairing:

Vloc =

∫
dr

∆1

2
(R†

1L†
1 − L†

1R†
1) +

∆2

2
(R†

2L†
2 − L†

2R†
2) + H.c.

=

∫
dr

2∆+

πa
cos(

√
2θs) cos(

√
2θa)−

∫
dr

2∆−

πa
sin(

√
2θs) sin(

√
2θa), ∆± = (∆1 ±∆2)/2

• Nonlocal (interchannel) pairing:

Vcap =

∫
dr

∆c(r)
2

[
(R†

1L†
2 − L†

2R†
1) + (R†

2L†
1 − L†

1R†
2)
]
+ H.c.

=

∫ L

0
dr

2∆c

πa
cos(

√
2θs) cos(

√
2ϕa)

• Criterion for band inversion and topological phase (noninteracting limit):

∆2
c +∆2

− > ∆2
+

• identical pairing configuration ∆− = 0: dominant nonlocal pairing ∆c > ∆+

• here we revisit the topological criterion in interacting systems



Spin difference parity conservation of the pairing processes

• Pairing processes in proximitized double helical liquids in the channels n ∈ {1, 2}
• local pairing: R†

n,↓L†
n,↑ + H.c. ∝ ∆+ cos(

√
2θs)cos(

√
2θa)

• nonlocal pairing: R†
1,↓L†

2,↑ + R†
2,↓L†

1,↑ + H.c. ∝ ∆c cos(
√

2θs)cos(
√

2ϕa)

• Nonlocal pairing can change the spin difference between channels by two
⇒ spin quantum number sn not conserved for individual channel n ∈ {1, 2}

• Spin difference only changed by an even number
⇒ conservation of “spin difference parity”: (−1)s1−s2



Ground-state degeneracy protected by the parity conservation
• Spin density ∝

(
L†

n,↑Ln,↑ − R†
n,↓Rn,↓

)
∝ ∂rθn for channel n

• Spin difference parity operator Psp (θa field in the antisymmetric sector)

Psp ≡ (−1)s1−s2 = e−
√

2i
∫

dr∂rθa

⇒ PspϕaP−1
sp = ϕa −

√
2π

• From the compactness of ϕa field: ϕa ∼ ϕa ± 2
√

2π

Psp(ϕa −
√

2π)P−1
sp = ϕa − 2

√
2π ∼ ϕa

• Ground states for nonlocal pairing ∝ cos(
√

2ϕa) given by eigenstates of Psp:

|e/o⟩a =
1√
2

(
|ϕa = ϕ0⟩a ± |ϕa = ϕ0 −

√
2π⟩a

)
, Psp|e/o⟩a = ±|e/o⟩a

• ground-state degeneracy protected by spin difference parity conservation
⇒ nonlocal pairing term characterizes topologically nontrivial phase

• No degeneracy protected for local pairing ∝ cos(
√

2θa)



Interaction effects on the phase diagram in the absence of phonons

Δ

+(l*)

0.

0.2

0.4

0.6

0.8

1.0

Δ

c(l*)

0.

0.2

0.4

0.6

0.8

1.0

• Various phases: topological/trivial SC (top/tr SC) & double helical liquid (DH)

• Intrachannel interaction Uee favors nonlocal pairing over local pairing:
consistent with CHH et al., Phys. Rev. Lett. 121, 196801 (2018)

• Interchannel interaction Vee reduces nonlocal pairing:
sufficiently large Vee induces phase transition towards trivial superconductivity
⇒ suppressing topological zero modes

• Tunability provided by controlling the ratio of Vee/Uee



Electron-phonon-coupled system
• Phonon contribution to the Hamiltonian:

Hph + Hep

• Phonon subsystem:

Hph =
∑

n

∫
dr
2ρ

[
π2

n + ρ2c2 (∂rdn)
2
]

• c: phonon velocity • ρ: mass density of lattice
• dn: displacement field due to phonons • πn conjugate field of dn

• Electron-phonon coupling (strength g): coupling of deformation potential to charge density

Hep =
∑

n

g
∫

dr (∂rϕn) (∂rdn)

• Phonons couple to ϕ field but not to θ field
⇒ breakdown of self duality (ϕ↔ θ, K ↔ 1/K)

• Previous perturbative analysis: phonons have no leading-order effects on helical liquids
Budich et al., PRL 2012



Influence of electron-phonon coupling: excitation velocities
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vg
2/(c vF) ∝ g

u δ
,±
(g

)/
u δ

,±
(g

=
0
) us,-

ua,-

us,+
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• Nonperturbative analysis on Hdh + Hph + Hep

• Hybridization of electron and phonon modes leads to modifications of excitation velocity:

uδ,η =

√
u2
δ + c2

2
+
η

2

√
(u2

δ − c2)2 + 4v4
g,with δ ∈ {s, a}, η ∈ {+,−} and vg ∝ g1/2

⇒ quantifying how electron-phonon coupling alters excitation dynamics

• Phonon-induced modifications can be so significant that us/a,− → 0
⇒ Wentzel-Bardeen singularity Wentzel 1951; Bardeen 1951; Loss & Martin PRB 1994



Influence of electron-phonon coupling: scaling dimensions

0 0.5 1
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Δ
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Δ
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• Electron-phonon coupling g ∝ v2
g influences the scaling dimensions of various operators

• Larger g values lower the scaling dimension of eiθδ and raise that of eiϕδ

⇒ equivalent to attractive interactions
⇒ enhancing both local and nonlocal pairings

• Electron-phonon coupling alters the scaling dimensions of pairing operators
⇒ expecting effects on phase diagram through scaling dimensions



RG flow without phonons vs RG flow with phonons
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• Direct comparison of the RG flows: observing how phonons modify the flows

• Similar RG flows of Ks with and without phonons
⇒ supporting both types of pairings

• Distinct behaviors in the RG flows of Ka: flowing to larger values with phonons
⇒ favoring local over nonlocal pairing

• Opposite outcomes for topological properties despite identical initial parameters



Phonon-induced topological phase transition

0 2 4 6 l*
0

0.2

0.4

0.6

0.8

1

l

flow IIa
(no phonon)

0 2 4 6 l*

l

flow IIb
(with phonons)

Δ

+

Δ

c

Ks

Ka

• Phase diagrams for a range of parameters v2
g/(cvF) ∝ g and Vee/Uee

• Phonons effectively mediate attractive interactions within each channel
⇒ electron-phonon coupling enhances local pairing

• In terms of the RG flow, a nonzero vg increases Ks and Ka

⇒ enhancing ∆̃n and suppressing ∆̃c

• Electron–phonon coupling can push the system from a topological phase to a trivial phase

• Reaching the WB singularity in a non-monotonic way



Electrically tunable topological phase transition
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• Intrachannel interaction Uee:
tunable by screening length Dsc and dielectric constant ϵr of insulating layers

• Interchannel-to-intrachannel interaction strength ratio Vee/Uee:
tunable by Dsc, ϵr and interlayer separation d

• One can induce phase transitions by varying the strengths of Uee and Vee

⇒ monitoring the presence/absence of topological zero modes

• Our results indicate electrically tunable topological phase transitions in double helical liquids



Conclusion

• Electrically tunable topological phase transitions
• Omnipresence of e-e interactions and phonons
⇒ practical constraints in utilizing helical channels

to realize topological zero modes
CHH, Nanoscale Horiz. DOI : D4NH00254G (2024), in press;

CHH et al., Phys. Rev. Lett. 121, 196801 (2018);

topical review: CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)

• Open positions in Condensed Matter Theory
• https://sites.google.com/view/qmtheory
• contact: chenhsuan@gate.sinica.edu.tw
• welcome highly motivated postdocs, assistants and students!
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Nanoscale platforms for topological superconductivity

• Majorana zero modes (MZM) in nanoscale systems with nontrivial topology + superconductivity

• Intensively investigated setup in proximitized 1D wires with strong spin-orbit coupling
Sato PLB 2003; Sato et al., PRL 2009; Sato & Fujimoto, PRB 2009; Lutchyn et al., PRL 2010; Oreg et al., PRL 2010 ...

• typically chemical potential µ away from the Zeeman (partial) gap
⇒ fine-tuning µ required

• external magnetic field is necessary
⇒ applying B field is detrimental to MZM

• Alternative setups proposed to avoid external B fields or fine-tuning µ

• Proposals based on helical channels formed at 2DTI edges and HOTI hinges



Self-duality point in the electronic subsystem
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• Both local and nonlocal pairings tend to increase Ks, promoting ordering of θs

• Assuming ordering of θs, the low-energy model is governed by

V =

∫
dr
a

[gϕ cos(λϕΦ) + gθ cos(λθΘ)] , Φ =
1√
πKa

ϕa, Θ =

√
Ka

π
θa

⇒ self-dual sine-Gordon Hamiltonian (self-duality point: Ka = 1, gϕ = gθ, λϕ = λθ)
Lecheminant et al., Nucl. Phys. B 2002

• For certain initial parameters, RG flows tend to converge to Ka → 1 and gϕ/gθ → 1
⇒ a hierarchy of self-dual sine-Gordon model with different λϕ, λθ (fractional regime)



Total fermion parity conservation in proximitized double helical liquids

• With local and nonlocal pairing, the fermion number itself is not conserved
⇒ the fermion number parity is conserved

• With the fermion number q1,2 in channel 1, 2, the total fermion parity operator can be defined

Pf = (−1)q1+q2 = e−
√

2i
∫

dr∂rϕs

⇒ PfθsP−1
f = θs −

√
2π

• From the compactness of θs field: θs ∼ θs ± 2
√

2π

Pf(θs −
√

2π)P−1
f = θs − 2

√
2π ∼ θs

• The ground states for cos(
√

2θs) are given by eigenstates of Pf: Pf|e/o⟩s = ±|e/o⟩s

|e/o⟩s =
1√
2

(
|θs = θ0⟩s ± |θs = θ0 −

√
2π⟩s

)



RG flow analysis for with phonon contributions
• RG flow equations with the cutoff a(l) = a(0)el and channel index n ∈ {1, 2}:

d∆̃+

dl
=

[
2 − 1

2

∑
η=±

(
usγ

θ
s,η

Ksus,η
+

uaγ
θ
a,η

Kaua,η

)]
∆̃+

d∆̃c

dl
=

[
2 − 1

2

∑
η=±

(
usγ

θ
s,η

Ksus,η
+

uaKaγ
ϕ
a,η

ua,η

)]
∆̃c

dKs

dl
= 2∆̃2

+ + 2∆̃2
c

dKa

dl
= 2∆̃2

+ − 2K2
a∆̃

2
c

with ∆̃+ = ∆+/∆a, ∆̃c = ∆c/∆a, and (η ∈ {+,−})

γϕδ,η = η

(
u2
δ,η − c2

u2
δ,+ − u2

δ,−

)
, γθδ,η =

η

u2
δ

(
u2
δu2

δ,η − u2
δc2 + v4

g

u2
δ,+ − u2

δ,−

)



More numerical analysis - I

• Phase diagrams for different initial values of the local-to-nonlocal gap ratio ∆̃n(0)/∆̃c(0)



More numerical analysis - II
• Phase diagram without phonons for Uee/(πℏvF) = 2 and ∆̃c(0) = 0.03

Ks(l*) Δ

+(l*)

Ka(l*) Δ

c(l*)



More numerical analysis - III
• RG flow and phase diagrams for Uee/(πℏvF) = 2 and ∆̃c(0) = 0.03



Appendix II

Backgrounds



No-go theorem in pure 1D systems

• No-go theorem:
a single pair of helical states cannot be formed in pure 1D channels

continuous energy bands + Kramers degeneracy:

Wu et al., PRL 2006 Qi et al., Phys. Today 2010

• No restriction for helical states in higher dimensions
⇒ helical channels formed in 2D or 3D systems



Helical Tomonaga-Luttinger liquids

• Bosonization:

R↓(r) =
UR√
2πa

ei[−ϕ(r)+θ(r)], L↑(r) =
UL√
2πa

ei[ϕ(r)+θ(r)]

• Helical Tomonaga-Luttinger liquid:

H =
ℏu
2π

∫
dr
[

1
K

(∂rϕ)
2
+ K (∂rθ)

2
]
, [ϕ(r), θ(r′)] = i

π

2
sign(r′ − r)

• K = 1 for noninteracting systems; K < 1 for repulsive interaction

• Local density of states: universal scaling behavior

ρdos(E,T) ∝ Tα cosh

(
E

2kBT

) ∣∣∣∣Γ(1 + α

2
+ i

E
2πkBT

)∣∣∣∣2
• Interaction parameter K can be extracted through α = (K + 1/K)/2 − 1



Universal scaling behavior in spectroscopic measurements
• Scanning tunneling spectroscopy on bithmuthene on SiC:

Stühler et al., Nat. Phys. 2020

ρdos(E,T) ∝ Tα cosh

(
E

2kBT

) ∣∣∣∣Γ(1 + α

2
+ i

E
2πkBT

)∣∣∣∣2 , α =
K + 1/K

2
− 1

• Experimental extracted value K ≈ 0.4 ⇒ strong e-e interaction
⇒ suitable materials for topological zero modes

CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)



Identifying a B-field-free platform for double-wire setup
• B-field-free setup using double Rashba nanowires

⇒ alternative requirement: sufficiently strong e-e interactions
Klinovaja and Loss, PRB 2014; Thakurathi et al. PRB 2018

• Motivated to characterize e-e interaction strength in nanowires with strong SOC

• Universal scaling behavior of Tomonaga-Luttinger liquid in current-bias (I-V) curves
⇒ developing an approach to deduce the e-e interaction strength in SOC nanowires
CHH et al., Phys. Rev. B 100, 195423 (2019)

• Demonstrating strong e-e interactions in InAs wires
⇒ a platform for MZM and parafermions without B field
Sato, Matsuo, CHH et al., Phys. Rev. B 99, 155304 (2019)



Experimental evidences for 1D gapless hinge states

• Experimental evidences for gapless hinge states in nanoscale systems:
• bismuth (Bi) nanowires and bilayers

Schindler et al., Nat. Phys. 2018; Drozdov et al., Nat. Phys. 2014; Murani et al., Nat. Commun. 2017;

Murani et al., PRL 2019; Jäck et al., Science 2019

• bismuth bromide (Bi4Br4)
Noguchi et al., Nat. Mater. 2021

Schindler et al., Nat. Phys. 2018 Noguchi et al., Nat. Mater. 2021



Edge transport in 2DTI samples

• R↓ and L↑ in helical channels:
spin flip necessary for elastic backscattering R↓ ↔ L↑

• Charge impurities:
creating potential disorder Vdis but no spin flip: ⟨L↑|Vdis|R↓⟩ = 0
⇒ (naive) expectation: no edge resistance and dissipationless transport

L↑ R↓

μ
Δb

k

E k )

0 e2/h G

μ

• Transport signature when the chemical potential µ is in the bulk gap ∆b
⇒ quantized edge conductance at e2/h



Earlier experimental studies

• Experimental indication for charge transport via edge channels:

HgTe Konig et al., Science 2007 InAs/GaSb Knez et al., PRL 2011

*logarithmic axis

• Not well quantized conductance
⇒ motivation for subsequent works on edge transport



Finite edge resistance in realistic samples

• Experiments:
no robust conductance quantization in larger samples

• Edge resistance scales with the edge length
⇒ the presence of resistance sources

HgTe Olshanetsky et al., PRL 2015 InAs/GaSb Mueller et al., PRB 2017

• Various backscattering mechanisms proposed:
time-reversal-symmetry breakingmechanisms or time-reversal-invariant(inelastic) processes



Time-reversal-symmetry breaking mechanisms

Topical review:
CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)



Time-reversal-invariant mechanisms



Broken time-reversal symmetry by magnetic impurities

• Single magnetic impurity
• isotropic coupling JS · I ⇒ spin-conserving terms: SzIz, S+I−, S−I+

(x) strong-coupling regime: screened by Kondo effect
Maciejko et al., PRL 2009

(x) weak-coupling regime: polarization of the magnetic impurity
⇒ unable to back scatter more electrons without additional depolarization mechanisms
Tanaka et al., PRL 2011

• spin-orbit-induced anisotropic coupling and non-spin-conserving terms: SyIz, SzIy · · ·
Eriksson et al., PRB 2012

• Ensemble of magnetic impurities
• 1D array of Kondo impurities with anisotropic coupling

Altshuler et al., PRL 2013

• dynamic nuclear spin polarization and spin-orbit interaction
Lunde and Platero, PRB 2012; Del Maestro et al., PRB 2013

• nuclear spins in host lattices (spin diffusion for depolarization)
CHH et al., Phys. Rev. B 96, 081405(R) (2017); CHH et al., Phys. Rev. B 97, 125432 (2018)



Nuclear spins as resistance source in 2DTI edges

• Nuclear spins: typically present in 2DTI host lattices
• InAs/GaSb: 100% of nuclei with nonzero spin

• Key ingredients in the mechanism:
• broken time-reversal symmetry by nuclear spins

⇒ allowing for spin-flip elastic backscattering
• e-e interaction in 1D confinement

⇒ enhancement of the backscattering effects

• Nuclear spins induce substantial resistance under realistic conditions (low T and long edges)



Interacting electrons in edge channels

• Spatial confinement enhances the influence of Coulomb interaction between electrons
⇒ helical TLL formed in edge channels

• Bosonization:

R↓(r) =
UR√
2πa

eikFrei[−ϕ(r)+θ(r)], L↑(r) =
UL√
2πa

e−ikFrei[ϕ(r)+θ(r)]

• Kinetic energy and e-e interaction:

HhTLL = H0 + Hint =

∫
ℏdr
2π

{
uK [∂rθ(r)]

2
+

u
K

[∂rϕ(r)]
2
}

with the interaction parameter K < 1 and velocity u

L↑ R↓

helical states

μ

• Hyperfine coupling between electron and nuclear spins:

Hhf =
A0

ρnuc

∑
n∈nuclear spin

ρel(xn)
σ

2
· In



Edge transport in the disordered phase

• Randomly oriented nuclear spins:
spin-flip elastic backscattering terms R†

↓L↑ and L†
↑R↓

Hhf,b =

∫
dr

2πa
Vhf(r)e2iϕ(r) + H.c.

with random potential Vhf induced by nuclear spins

• Backscattering action:

δShf

ℏ
= −Dhfu2

8πa3

∫
drdτdτ ′ cos [2ϕ(r, τ)− 2ϕ(r, τ ′)]

• Renormalization-group analysis on the relevance of δShf
⇒ edge resistance induced by disordered nuclear spins

• Gap opening for repulsive interaction
⇒ localizationin a sufficiently long edge and sufficiently low temperature



Localization of edge states in the disordered nuclear spin phase

• Localization for a long edge L > ξhf at low temperature T < Thf

Physical parameter InAs/GaSb HgTe
Hyperfine coupling, A0 50 µeV∗ 3 µeV∗

Nuclear spin, I 3∗ 0.3∗

Fermi velocity, vF 4.6 × 104 m/s 5.1 × 105 m/s
Transverse decay length, a 9 nm 14 nm
Quantum well width, WQW 15 nm 9 nm
Number of nuclei per cross section, N⊥ 3900 3200
Localization length ξhf

∗∗ 17 µm 3.7 mm
Localization temperature Thf

∗∗∗ 100 mK 5.3 mK
∗ approximate average for all constituent isotopes
∗∗ localization length: ξhf = aD−1/(3−2K)

hf
∗∗∗ localization temperature: Thf = ℏu/(kBξhf)
CHH et al., Phys. Rev. B 97, 125432 (2018)

• For InAs/GaSb, localization takes place in the experimentally accessibleregime



Edge resistance due to disordered nuclear spins
- for InAs/GaSb, K = 0.2
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• Temperature dependence
• high-T regime: fractional power law R ∝ T2K−2

• low-T regime: exponential (long edge) or saturation (short edge)
• localization-delocalization transition at Thf for L > ξhf

• Length dependence
• long-edge regime: linear L dependence
• short-edge regime: fractional power law R ∝ L3−2K



Nuclear spin order in Q1D channels

• Conduction electrons mediate RKKY coupling∗ between localized spins

Hhf → HRKKY =
∑
i,j,µ

Jµij
N2
⊥

Ĩµi Ĩµj

*Ruderman-Kittel-Kasuya-Yosida coupling

μ

kF-kF

• RKKY-induced spin texture at low T in finite-size systems
Braunecker et al., PRL 2009; Braunecker et al., PRB 2009

• Antiferromagnetic nuclear spin helix in 13C nanotubes
CHH et al., Phys. Rev. B 92, 235435 (2015)

• RKKY coupling mediated by electrons in 2DTI edges
⇒ spiral nuclear spin order for T < T0 ≈ O(100 mK)

in finite-size systems

• Additional processes in the ordered phase:
spiral-field-assisted and magnon-mediated backscatterings



Spiral-field-assisted backscattering on impurities

• An effective field BOv created by the spiral order
⇒ mixing R↓ and L↑ states

• Lifting topological protection of the edge states
⇒ susceptible to charge impurities

BOv

VimpH4kFL

4ÑvFkF

2kF2kF

• Spiral-field-assisted backscattering:

Hhx =
1
L

∑
q

VhxR†
↓(q + 2kF)L↑(q) + H.c.

with Vhx ≡ BOvVimp(4kF)/(8ℏvFkF)

• Localization for L > ξhx and T < Thx, T0:

ξhx = aD−1/(3−2K)
hx , Thx = ℏuD1/(3−2K)

hx /a

• Combination of spiral field and impurities ⇒ exponential resistance below T0

Rhx(T) ∝ R0
πDhxL
2K2a

e∆hx/(kBT), ∆hx = ∆b (2KDhx)
1/(3−2K)



Magnon-mediated backscattering
• Backscattering and edge resistance due to magnon emission:

δSem
mag

ℏ
= −

Dmagu2

8πa3

∫
drdτdτ ′ e−ωmag|τ−τ ′| [1 + nB(ℏωmag)] cos [2ϕ(r, τ)− 2ϕ(r, τ ′)]

Rem
mag(T) ∝ R0

πDmagL
2K2a

[
Kℏωmag(T)

∆b

]2K−3

• Backscattering and edge resistance due to magnon absorption:

δSabs
mag

ℏ
= −

Dmagu2

8πa3

∫
drdτdτ ′ eωmag|τ−τ ′|nB(ℏωmag) cos [2ϕ(r, τ)− 2ϕ(r, τ ′)]

Rabs
mag(T) ∝ R0

πDhfL
2K2a

[1 − m2kF (T)] ∝ T3−2K

• Strong dependence on magnon energy (ℏωmag grows with T → 0)
• efficient for ℏωmag ≈ kBT (i.e. T > T0)
• inefficient for ℏωmag ≫ kBT (i.e. T → 0)

• Both processes give power-law edge resistance of T, suppressed as T → 0



Temperature dependence of the edge resistance
- summarizing all three backscattering mechanisms for InAs/GaSb, K = 0.2, L = 25 µm

• Nonmonotonic T dependence: transport signature for the spiral order
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CHH et al., Phys. Rev. B 96, 081405(R) (2017)

• T > T0 (disordered): power law for T > Thf
exponential for T < Thf

• T < T0 (sprial): power-law dependence for T > T0 due to magnons
T → 0 divergence due to spiral-order-assisted backscattering on impurities



Edge transport of 2DTI

• Nuclear spins can lead to a substantial resistance in 2DTI edges
• T, L, and V dependence: allowing future works to verify the proposed mechanisms

• Edge conductance suppressed in long samples at low temperatures
⇒ fundamental limitation in scalable architectures

CHH et al., Phys. Rev. B 96, 081405(R) (2017); CHH et al., Phys. Rev. B 97, 125432 (2018)

• Transport signatures for various mechanisms in the literature:
- T dependence of edge resistance R(T):
• helical Tomonaga-Luttinger liquids: fractional power-law dependence
• weakly interacting systems: integer power-law dependence

- overall trend for R(T) as T → 0:
• inelastic processes: R → 0
• broken time-reversal symmetry: nonvanishing R
CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)



Time-reversal-invariant mechanisms
• Kramers theorem:

no overlap between wave functions of time-reversal pairs at the same energy

• No restriction for states at different energies
⇒ inelastic processes

• Generic helical liquids in the presence of spin-orbit coupling
⇒ right-moving (+) and left-moving (−) modes are no longer spin eigenstates(

ψ↓,q
ψ↑,q

)
= Uso(q)

(
ψ+,q

ψ−,q

)
, Uso(q) =

(
1 −q2/k2

so
q2/k2

so 1

)
+ O(q4)

• Density operator:

ρq =
∑
σ

∑
k

ψ†
σ,kψσ,k+q →

∑
αβ

[U†
so(k)Uso(k + q)]αβψ

†
α,kψβ,k+q

• ρq affects the charge transport through e-e interaction and coupling to disorder
Wu et al., PRL 2006; Xu and Moore, PRB 2006; Maciejko et al., PRL 2009; Schmidt et al., PRL 2012; Kainaris et al.,

PRB 2014; Ström et al., PRL 2010; Geissler et al., PRB 2014; Xie et al., PRL 2016; Kharitonov et al., PRB 2017 ...



Electron-electron interaction in generic helical liquids
Hee =

∫
drdr′ Uee(r − r′)ρ(r)ρ(r′)

→ 1
L

∑
qkp

∑
αα′ββ′

Uee,qψ
†
α,kψβ,k+qψ

†
α′,pψβ′,p−q[U†

so(k)Uso(k + q)]αβ [U†
so(p)Uso(p − q)]α′β′

• Scattering processes:

Hee,1 =
Uee

k4
soL

∑
qkp

∑
α

(q2 + 2qk)(q2 − 2qp)ψ†
α,kψ

†
−α,pψ−α,k+qψα,p−q

Hee,2 =
Uee

L

∑
qkp

∑
α

ψ†
−α,pψ

†
α,kψα,k+qψ−α,p−q

Hee,3 =
Uee

k4
soL

∑
qkp

∑
α

(q2 + 2qk)(q2 − 2qp)ψ†
α,pψ

†
α,kψ−α,k+qψ−α,p−q

Hee,4 =
Uee

L

∑
qkp

∑
α

ψ†
α,pψ

†
α,kψα,k+qψα,p−q

Hee,5 = −2Uee

k2
soL

∑
qkp

∑
α

α(k2 − p2)ψ†
α,k+qψ

†
−α,p−qψα,pψα,k + H.c.



Disorder in generic helical liquids

• Coupling of charge density to the disorder potential

Himp =

∫
dr Vimp(r)ρ(r)

→ 1
L

∑
qk

Vimp,q−k

∑
αβ

[U†
so(q)Uso(k)]αβψ†

α,qψβ,k

• Forward and backward scattering processes:

Himp,f =
Vimp

L

∑
qk

∑
α

ψ†
α,qψα,k

Himp,b =
Vimp

L

∑
qk

∑
α

α
q2 − k2

k2
so

ψ†
α,qψ−α,k

• Combination of Hee and Himp:
various backscattering processes leading to finite edge resistance



Dominant processes allowed by momentum and energy conservation
• Hee,1, Hee,2 , Hee,4 conserve the numbers of right- and left-moving particles
⇒ no direct effects on charge transport

• Hee,5: backscattering of one particle + creation of a particle-hole pair (a,b)

• Hee,3: backscattering of two particles (c)

L R

(a) (b) (c)

• Clean systems: Hee,5 allowed when the Fermi level close to Dirac point kF ≈ 0 (a)

• Systems with disorder:
compensation of the momentum differences
⇒ 1PB by Hee,5 and Himp (b) and 2PB by Hee,3 and Himp (c)

Kainaris et al., PRB 2014



Nomenclature for various time-reversal-invariant mechanisms

CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)



Effective two-hinge system
• Momentum and spin conservation + uniform µ:

◦ nonlocal pairing ∆c between hinges 1&2
×nonlocal pairing between hinges 1&3 and 2&3

L1, L2,

R3,

R1, R2,

L3,

hinge 1 hinge 2

hinge 3

D1
D2

D3

Dc

Dc

• In two hinges with the same helicity: competition between local & nonlocal pairings

• The middle hinge (labeled by 3) is decoupled from the other hinges (1 and 2)
⇒ effective two-hinge system



MZM stabilized at the ends of the proximitized HOTI nanowire

• Nonlocal pairing allowed between long hinges, but suppressed between short hinges

∆c(r) =
{

∆c, for 0 ≤ r ≤ L,
0, otherwise, ∆n(r) = ∆n

• System gap ∆b changes its value at the corners where long hinges and short hinges meet
⇒ inhomogeneous system gap

• We solve the Bogoliubov-de Gennes equation near one end of the system



Effective two-channel Hamiltonian for noninteracting systems
• Single-particle Hamiltonian: H = H0 + Vloc + Vcap

ψn(r) = Rn(r)eikFr + Ln(r)e−ikFr

• right- and left-moving fields Rn and Ln for channel n (spin index suppressed)
• kinetic energy:

H0 = −iℏvF

∫
dr
(

R†
1∂rR1 − L†

1∂rL1 + R†
2∂rR2 − L†

2∂rL2

)
• local pairing:

Vloc =

∫
dr
[∆1(r)

2
(R†

1L†
1 − L†

1R†
1) +

∆2(r)
2

(R†
2L†

2 − L†
2R†

2) + H.c.
]

• nonlocal pairing:
Vcap =

∫
dr

∆c(r)
2

[
(R†

1L†
2 − L†

2R†
1) + (R†

2L†
1 − L†

1R†
2)
]
+ H.c.

• In the basis Ψ = (R1,L1,R2,L2,R
†
1,L

†
1,R

†
2,L

†
2)

T,

H =
1
2

∫
dr Ψ†

[
− iℏvFη

0τ 0σz∂r −∆+(r)ηyτ 0σy −∆−(r)ηyτ zσy −∆c(r)ηyτ xσy
]
Ψ

• ∆±(r) = [∆1(r)±∆2(r)]/2
• Pauli matrices for particle-hole (ηµ), channel (τµ), spin (σµ) space



Energy spectrum and band inversion
• Energy spectrum with uniform pairing gaps ∆n(r) → ∆n and ∆c(r) → ∆c:

E(±,±)(k) =±
[
(ℏvFk)2 +

(
∆+ ±

√
∆2

− +∆2
c

)2]1/2

Db Ñ vFk

EH±,±LHk L

• System gap at k = 0:

∆b ≡ E(+,−)(k = 0)− E(−,−)(k = 0) = 2
(
∆+ −

√
∆2

− +∆2
c

)
• ∆b changes its sign due to the competition between local and nonlocal pairing gaps

⇒ band inversion occurs when (∆1∆2 −∆2
c) changes its sign

• Zero modes (bound states) for inhomogeneous ∆b with sign change at some spatial point(s)



Kramers pairs of MZM and wave functions

• Single-particle Hamiltonian: H = 1
2

∫
dr Ψ†(r)H(r)Ψ(r)

• Bogoliubov-de Gennes equation at zero energy: H(r)Φmzm(r) = 0
⇒ solutions satisfying self-conjugate property and boundary condition at r = 0
⇒ 2 MZM emerge for ∆2

c > ∆1∆2

• 2 MZM solutions: Φmzm,1(r) = Φ>(r)Θ(r) + Φ<(r)Θ(−r) and Φmzm,2 = T Φmzm,1

Φ>(r) =e−κr × (iη,−η,−i, 1,−iη,−η, i, 1)T,

Φ<(r) =(iηeκ1r,−ηeκ1r,−ieκ2r, eκ2r,−iηeκ1r,−ηeκ1r, ieκ2r, eκ2r)T,

with the step function Θ(r) and

η =

√
∆2

− +∆2
c −∆−

∆c
, κ =

√
∆2

− +∆2
c −∆+

ℏvF
, κ1 =

∆1

ℏvF
, κ2 =

∆2

ℏvF

• Φmzm,1 & Φmzm,2: Kramers pair of MZM protected by time-reversal symmetry

• Another pair of MZM near r = L: Φmzm,1 and Φmzm,2 with r → L − r



Interacting helical channels

• Spatial confinement enhances the influence of Coulomb interaction between electrons
⇒ helical Tomonaga-Luttinger liquids formed in the interacting helical channels

• Bosonization:
Rn(r) =

UR√
2πa

ei[−ϕn(r)+θn(r)], Ln(r) =
UL√
2πa

ei[ϕn(r)+θn(r)]

• Commutation relation of the bosonic fields:

[ϕn(r), ∂r′θn′(r′)] = iπδnn′δ(r − r′)

• Kinetic energy and e-e interactions:

Hel = H0 + Hint =
∑

n=1,2

∫
ℏdr
2π

{
unKn [∂rθn(r)]

2
+

un

Kn
[∂rϕn(r)]

2
}
,

with the interaction parameter Kn < 1 for the hinge n and velocity un = vF/Kn



Renormalized pairing gaps by e-e interactions
- RG analysis

• Local pairing:
Hloc =

∑
n=1,2

1
πa

∫
dr ∆n cos[2θn(r)]

• Nonlocal pairing:

Hc =
2
πa

∫
dr ∆c cos[θ1(r) + θ2(r)] cos[ϕ1(r)− ϕ2(r)]

• Bosonic operators in Hloc and Hc do not commute
⇒ competing orders

• We examine how the pairing gaps get renormalized by interactions through RG analysis



RG flow diagram in the absence of phonons

• RG flows for the initial values: ∆1(0)/∆c(0) = 3, a(0) = 5 nm, and L = 1 µm
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• Blue dots: initial points of ∆c(0) for K1(0) = 0.2, 0.4, 0.6, and 0.8 (labeled by I, II, III, and IV)

• Green dots: renormalized pairing gaps at the end points of the RG flows
⇒ adiabatically connected to K = 1 (refermionization)

• Local pairing gap suppressed more significantly than nonlocal pairing

• Renormalized pairings ∆c(ℓ
∗) > ∆1(ℓ

∗) for RG flows II and III
⇒ moderate interactions can reverse the relative strength of ∆c and ∆1



Microscopic model

• Tunnel Hamiltonian between the hinge states and a BCS superconductor:

HT =
∑

n=1,2

∫
drdR

{
t′n(r,R)

[
R†

n(r)ψs,↓(R) + L†
n(r)ψs,↑(R)

]
+ H.c.

}
• Weak tunnel amplitude t′n (three-dimensional delta function):

t′n(r,R) ≡ tnδ(Rz − r)δ(Rx − dn)δ(Ry),

with d1 = d/2, d2 = −d/2, and the interhinge separation d

• BCS Hamiltonian (parent superconductor):

HBCS =
∑

k,σ=↑,↓

ℏ2(k2 − k2
Fs)

2me
ψ†

s,σ(k)ψs,σ(k) + ∆s

∑
k

ψs,↑(k)ψs,↓(−k) + H.c.

• We first integrate out the field ψs,σ in HBCS + HT to obtain δSnn′ ∝ tntn′

• We then construct the RG flow equations with the source terms depending on d and ξs



RG analysis from the microscopic model
• The RG flow equations read

d̃tn(l)
dl

=
[
2 −

(
Kn(l) + 1/Kn(l)

)
/4
]

t̃n(l),

d∆̃n(l)
dl

= [2 − 1/Kn(l)] ∆̃n(l) + Sn(l)̃t2
n(l),

d∆̃c(l)
dl

=

[
2 − 1

4

(
K1(l) + K2(l) + 1/K1(l) + 1/K2(l)

)]
∆̃c(l) + Sc(l)̃t1(l)̃t2(l),

dKn(l)
dl

= ∆̃2
n(l) +

1
2
[
1 − K2

n(l)
]
∆̃2

c(l)

• The source-term coefficients are given by

Sn(l) =
mev2

FsL
2π∆sa(l)

K0

(∆sa(l)
ℏun

)
,

Sc(l) =
mev2

FsL
2π∆sd

e−d/ξs |sin(kFsd)| I0

( ∆sa(l)
2ℏ√u1u2

)
K0

( ∆sa(l)
2ℏ√u1u2

)
• Including the effects of the coherence length ξs and the interhinge separation d



RG analysis from the microscopic model (conti.)

• Superconducting gap ∆s = 0.35 meV and coherence length ξs = 1.9 µm

• Interhinge separation: d = 50 nm (left) and d = 100 nm (right)
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CHH et al., Semicond. Sci. Technol. 36, 123003 (2021)

• Consistent with the phase diagram from the effective-Hamiltonian model

• For d ∼ O(100 nm) and ξs ∼ O(µm), we find a wide parameter range with MKPs
⇒ aluminum as a suitable material for the proximity superconductor



Estimated value of the interaction parameter Kn
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Maciejko et al., PRL 102, 256803 (2009)

• ϵ: dielectric constant, dsc: screening length, vF: Fermi velocity, a: hinge-state width

• Transverse decay length a ≈ 1 nm from asymmetric SQUID experiment
Schindler et al., Nat. Phys. 2018

• vF = 105 m/s from ∆ = ℏvF/a, bulk gap ∆ = O(0.1 eV) from band-structure calculations
Koroteev et al., PRB 2008; Wada et al., PRB 2011



Estimated bare gap ratio

Ds = 0.1 meV, a = 1 nm

Ds = 0.1 meV, a = 10 nm

Ds = 1 meV, a = 1 nm

Ds = 1 meV, a = 10 nm
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0L estimated from source-term approach:

∆1(0)
∆c(0)

≈ d
a

ed/ξs K0

(
∆sa
ℏvF

)
K0

(
∆sa
2ℏvF

)
I0

(
∆sa
2ℏvF

)

• d: inter-hinge separation, vF: Fermi velocity, a: hinge state width, I0, K0: modified Bessel
functions, ∆s, ξs: pairing gap and coherence length of the parent superconductor

• ∆1(0)
∆c(0) depends weakly on ∆s and a (except for linear dependence on d/a)

• For ∆s ∈ [0.1 meV, 1 meV] and a ∈ [1 nm, 10 nm], ∆1(0)/∆c(0) ∼ O(1)–O(10)



Materials other than Bi nanowires
- helical hinge states

• Our proposed scheme can be applied to any 3D helical 2nd-order TIs
⇒ the key is to bring two parahelical hinges into the proximity of a superconductor

• Our scheme can be applied to, but not limited to, Bi (111) nanowires
- theoretically predicted helical HOTI materials: SnTe, Bi2TeI, BiSe, and BiTe etc.

Schindler et al., Sci. Adv. 2018

• While Bismuth is a bulk semimetal, trivial bulk states can be gapped by disorder or finite size

• Our RG analysis can also be applied to helical edge channels of 2DTIs
(additional requirement: controlling µ of two isolated edge channels by local gates)



Proposals for MKP detection and quantum computing
Parity-controlled 2π Josephson effect

Schrade and Fu, PRL 120, 267002 (2018)

Majorana Kramers qubit

Schrade and Fu, PRL 129, 227002 (2022)
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