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Lifshitz field theory

LFTs are a class of non-relativistic field theories which are spatially
isotropic, homogeneous and admits the scaling symmetry

t → λzt, xi → λxi, λ > 0.

Space-time translation (H, Pi) and rotation symmetry (Mij) together
with dilatation (D) forms a Lifshitz group.
Other non-relativistic symmetry groups are Schrodinger and Galilean
group.
Lifshitz symmetry has found important applications in many physical
systems.
For example, the z = 2 Lifshitz scalar field theory in (2+1) dimensions
also called Quantum Lifshitz model (QLM) describe the critical point of
the well-known Rokhsar-Kivelson Quantum dimer model. [Moessner,
Sondhi and Fradkin ’01] [Ardonne, Fendley and Fradkin ’04]

Lifshitz holography which includes gravity duals for non-relativistic field
theories admitting Lifshitz symmetry. [Kachru, Liu and Mulligan ’08]
[Taylor ’08]
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In the literature, mostly Lifshitz scalar field theory with integer z has
been considered.
Various entanglement measures such as entanglement entropy [Fradkin,
Moore, Hsu, Thorlacius....], entanglement negativity [Angel-Ramelli et al.
’20], reflected entropy and Markov gap [Berthiere, Chen and Chen ’23] also
have been studied mostly for integer z.
We employ the notion of fractional derivatives to study the massless
Lifshitz theory for arbitrary values of z in any dimensions.
We study the entanglement properties of the Lifshitz theory for arbitrary
z by computing various entanglement measures.
Note that for z < 1, the dispersion relation is acausal due to the
existence of superluminal modes [Koroteev ’11] and the violation of the
null energy conditions of the holographic dual [Hoyos and Koroteev ’10].
We will focus on z > 1.
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Massless Lifshitz scalar theory and Lifshitz ground state
Consider the following action for the massless Lifshitz scalar field theory
in (1+1)-dimensions for arbitrary z > 1 as

S = 1
2

∫
dtdx

[
(∂tϕ)2 − κ2(∇z

xϕ)2
]

.

In our work, we use the following definition of fractional derivative ∇z
x

∇z
xeikx ≡ (ik)zeikx.

Then, the fractional derivative of any arbitrary function can be obtained
using the Fourier analysis with appropriate choice of integral contour

∇z
xF (x) =

∫
C

F(k)(ik)zeikxdk.

To construct the vacuum of the theory, it is convenient to consider the
Hamiltonian of the theory which is given by

H = 1
2

∫
dx

(
Π2(x) + κ2(∇z

xϕ)2)
.
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Now, define the generalized annihilation and creation operators

A(x) = 1√
2

(iΠ(x) + κ∇z
xϕ(x)) ,

A†(x) = 1√
2

(−iΠ(x) + κ∇z
xϕ(x)) .

The Hamiltonian of the theory now takes the following form

H =
∫

dxA†(x)A(x) + Evac.

The ground state of the theory may be defined by using the position
space annihilation operator as

A(x)|Ψ0⟩ = 0, ∀x.

In the Schrodinger representation Π(x) = −i ∂
∂ϕ(x) , the above equation

can be written as [
δ

δϕ
+ κ ∇z

xϕ

]
|Ψ0⟩ = 0.
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The ground state of the Lifshitz theory is then given by

|Ψ0⟩ = 1√
Z

∫
Dϕ e−Scl[ϕ]/2|ϕ⟩, Scl[ϕ] = κ

∫ (
∇

z
2
x ϕ

)2
dx.

Here Z =
∫

Dϕe−Scl[ϕ] is a normalization factor.

This ground state wavefunctional takes the form of RK vacuum, it is
given by a superposition of quantum states with a quantum mechanical
amplitude c[ϕ] ∝ e−Scl[ϕ]/2.

The propagator of the theory is given by

K(ϕi, ϕf ; xi, xf ) =
∫ ϕ(xf )=ϕf

ϕ(xi)=ϕi

Dϕ exp
(

−κ

∫ xf

xi

(
∇

z
2
x ϕ

)2
dx

)
.

Consider the solution of
∇z

xϕ = 0.

With the Dirichlet boundary condition

ϕ(xi) = ϕi, ϕ(xf ) = ϕf .
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The general solution is given by

ϕ = (ϕf − ϕi)
Nz∑

n=1

cn

lz−n
(x − xi)z−n + ϕi,

∑
n

cn = 1.

Here we have used the following fractional derivative

∇z
xxβ = Γ(β + 1)

Γ(β − z + 1)xβ−z for any real β and z.

The solution can be rewritten as

ϕ = ϕi + (ϕf − ϕi)g(t).

The integral can be evaluated by integrating out the fluctuations around
the classical solution ϕc and expressed as

K(ϕi, ϕf ; l) =
√

γ

πlz−1 e−γ(ϕf −ϕi)2/lz−1
.
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Entanglement

Consider a bipartite system A ≡ A1 ∪ A2 in a state ρA with density
matrices ρA1 and ρA2 . Such a state is called separable if it can be
expressed as

ρA1∪A2 =
∑

i

pi

(
ρi

A1
⊗ ρi

A2

)
,

∑
i

pi = 1, pi ≥ 0.

Otherwise it is called entangled.
If a state has density matrix ρ, then

Tr(ρ2) = 1 ⇐⇒ it is a pure state.
Tr(ρ2) < 1 ⇐⇒ it is a mixed state.

An example of an entangled state for a two-spin system is:

|Ψ⟩ = 1√
2

(|0⟩A |1⟩B − |1⟩A |0⟩B) .

There are different measures to quantify the amount of entanglement
such as entanglement entropy, mutual information, reflected entropy, etc.
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Entanglement Entropy (EE)

Consider a bipartite system made of subsystem A and remainder B in a
state ρ. The reduced density matrix for the subsystem A is defined as

ρA = TrB(ρ).

The entanglement entropy for the subsystem A is defined by the von
Neumann entropy of the reduced density matrix of A

SA = −Tr(ρA log ρA).

The Rényi entropy of order n is defined as

S
(n)
A = 1

1 − n
log Tr(ρA)n.

The entanglement entropy may also be expressed in terms of the Rényi
entropy as

SA = lim
n→1

S
(n)
A = − lim

n→1

∂

∂n
Trρn

A.
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Reduced density matrix and replica technique
The density matrix corresponding to Lifshitz ground state is given by

ρ = 1
Z

∫
DϕDϕ′e− 1

2 (Scl[ϕ]+Scl[ϕ′]) |ϕ⟩ ⟨ϕ′| .

Consider a subsystem A ≡
⋃N

i=1 Ai

The reduced density matrix ρA = trB ρ is obtained by tracing over
B :=

⋃N
i=0 Bi i.e. complement of A.

(ρA)ϕ′
A

,ϕ′′
A

= 1
Z

∫
DϕB(⟨ϕB | ⟨ϕ′

A|) |Ψ0⟩ ⟨Ψ0| (|ϕ′′
A⟩ |ϕB⟩).

The trace Zn ≡
∫

DϕA(ρn
A)ϕA,ϕA

is given by

Zn = 1
Zn

∫ ∞

−∞
dα1dβ1 · · · dαN dβN

N∏
i=1

Kn(ui, vi)
N∏

i=1
Kn(vi, ui+1).
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Single interval

For a finite subsystem A of length l in an infinite system, the trace Zn is
given by

Zn = Z−n

∫
dϕ1

∫
dϕ2K(ϕ1, ϕ2; l)n.

Now, using the form of the propagator, the Rényi entropy may be
expressed as

Sn(A) = z − 1
2 log l

ϵ
+ cn

2 .

Here ϵ is the UV cut-off and constant is non universal.

cn = log π

γ
+ log n

n − 1
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The entanglement entropy is given by taking the replica limit n → 1

S(A) = z − 1
2 log l

ϵ
+ c1

2 .

The Rényi entropy and the entanglement entropy share the same
universal UV part and differs only in their constant terms.
This is different from the usual case of a conformal vacuum where the
UV parts are proportional with a nontrivial n-dependent coefficient:

[Sn(A)]UV = 1
2(1 + 1/n)[S(A)]UV

It shows that the Lifshitz vacuum is different from the vacuum of the
CFT.
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Adjacent intervals in a finite system

Consider the case of a finite system divided into two adjacent intervals A
and B with length lA and lB respectively.

The junction point between A and B contains a free field ϕ and the
endpoints of the theory have the Dirichlet boundary conditions satisfying
ϕ(0) = 0 and ϕ(lA + lB) = 0.
In this case, the trace Zn = Tr ρn

A is given by

Zn = Z−n

∫
Dϕ K(0, ϕ; lA)nK(ϕ, 0; lB)n = Z−n

∫
Dϕ e

−nγ

(
1

l
z−1
A

+ 1
l
z−1
B

)
ϕ2

.

Using this, we obtain the entanglement entropy as

S(A) = 1
2 log (lAlB)z−1(

lz−1
A + lz−1

B

)
ϵz−1 + 1

2c1.
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Two disjoint intervals in a finite system

The configuration for disjoint intervals is shown as below.

For this case, the path integral Zn is given by

Zn = Z−n

∫
Dϕ1Dϕ2K(0, ϕ1, lB1)nK(ϕ1, ϕ2, lA)nK(ϕ2, 0, lB2)n.

The corresponding entanglement entropy is given by

S(A) = 1
2 log

lz−1
B1

lz−1
A lz−1

B2(
lz−1
B1

+ lz−1
A + lz−1

B2

)
ϵ2(z−1) + c1.

Note that when lA → ϵ, this configuration reduces to a union of two
adjacent intervals.
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Mutual information

The mutual information between two subsystems A andB is defined by

I(A : B) = S(A) + S(B) − S(A ∪ B).

For the case of a single interval and two adjacent intervals, we have
I(A : B) = 2S(A).
In case of two disjoint intervals, the mutual information between two
subsystem B1 and B2 whose density matrix is given by ρB1∪B2 = TrA ρ.
To determine the entanglement entropy from this state, we consider the
moment of the reduced matrix ρB1 = TrB2 ρB1∪B2 .
We have

Zn = Tr(ρB1)n = Z−n

∫
Dϕ K(0, ϕ; lB1)nK(ϕ, 0; lAB2)n.

Here K(ϕ, 0; lAB2) is the propagator

K(ϕ, 0; lAB2) =
∫

Dϕ′K(ϕ, ϕ′; lA)K(ϕ′, 0; lB2).
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Using this, we obtain the entanglement entropy for the subsystem B1 as

S(B1) = 1
2 log

lz−1
B1

(lz−1
A + lz−1

B2
)(

lz−1
B1

+ lz−1
A + lz−1

B2

)
ϵz−1 + c1

2 .

Note that instead of K(ϕ, 0; lA + lB2) which might be expected naively, it
is the propagator K(ϕ, 0; lAB2) which appears in the trace Zn.
On using these results, the mutual information between B1 and B2 is
given by

I(B1 : B2) = 1
2 log

(
lz−1
B1

+ lz−1
A

) (
lz−1
B2

+ lz−1
A

)
lz−1
A

(
lz−1
B1

+ lz−1
A + lz−1

B2

) = 1
2 log 1

1 − η̃
,

Here the cross-ratio η̃(z) is given by

η̃(z) := (lB1 lB2)z−1(
lz−1
B1

+ lz−1
A

) (
lz−1
B2

+ lz−1
A

) .

When lA ≪ lBi
, then η̃(z) → 1. It happens same for lA < lBi

and z ≫ 1.
The mutual information maximizes in these cases which is expected since
the interactions of the theory have increasing range while the length lA is
small compared to the rest subsystems sizes.
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Reflected entropy and Markov gap

Purification: It is always possible to purify the mixed state ρAB by
embedding the system A ∪ B in a larger tripartite system A ∪ B ∪ C
which is in a pure state.
Consider a bipartite system in an arbitrary mixed state ρAB on a finite
Hilbert space HA ⊗ HB .
A canonical purification is defined by a a pure state |√ρAB⟩ in a doubled
Hilbert space HA ⊗ HB ⊗ HA∗ ⊗ HB∗ where A∗ and B∗ are dual copies
of A and B respectively such that

ρAB = TrA∗B∗(|√ρAB⟩⟨√ρAB |).

The reflected entropy is defined as the von Neumann entropy of the
reduced density matrix ρAA∗ = TrBB∗(|√ρAB⟩⟨√ρAB |) [Dutta and
Faulkner ’19]

SR(A : B) = − TrAA∗ (ρAA∗ log ρAA∗) .
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The replica method for reflected entropy consists two replica indices m

and n, where the former is related to the purification |ρm/2
AB ⟩ of ρm

AB for
positive even integer m, and the latter denotes the usual Rényi index.
The reflected density matrix is then given by

ρ
(m)
AA∗ = TrBB∗

(
|ρm/2

AB ⟩⟨ρm/2
AB |

)
.

The (m, n)-Rényi reflected entropy is defined as,

SR
m,n(A : B) = 1

1 − n
log

Tr
(

ρ
(m)
AA∗

)n

(
Trρ(m)

AA∗

)n

 .

Markov gap has been proposed as a measure of tripartite entanglement
[Zou et al. ’21].
It is defined as the difference between the reflected entropy SR(A : B)
and the mutual information I(A : B)

h(A : B) = SR(A : B) − I(A : B).

As the reflected entropy is lower bounded by the mutual information,
Markov gap is non-negative.
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Two adjacent intervals

In this case, the trace Zm,n = Tr
(

ρ
(m)
AA∗

)n

is given by

Zm,n = Z−(m−2)n

∫ ∞

−∞

∫ ∞

−∞

dϕ1dϕ2K(0, ϕ1; lA)n
K(0, ϕ1; lB)n

K(0, ϕ2; lA)n
K(0, ϕ2; lB)n

,

On using the expression for the kernel, the reflected entropy is given by

SR(A : B) = log
[

(lAlB)z−1

(lz−1
A + lz−1

B )ϵz−1

]
+ c1.

The reflected entropy for adjacent interval is twice the entanglement
entropy S(A) which is expected since A ∪ B is in a pure state.
The Markov gap is zero for this configuration since the two adjacent
subsystems constituting the whole system is a pure state.
As a result no tripartite entanglement should be detected from the study
of this bipartite state.
Markov gap being zero correctly serves as a consistency check of our
results.
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Two disjoint intervals

For this configuration, the trace is given by

Zm,n =Z−(m−2)n

∫
dϕ1dϕ2....dϕ2nK(0, ϕ1; lB1 )m

K(ϕ1, ϕ2; lA)
m
2 K(0, ϕ2; lB2 )m

K(ϕ2, ϕ3; lA)
m
2

× K(0, ϕ3; lB1 )m
.....K(ϕ2n−1, ϕ2n; lA)

m
2 K(0, ϕ2n; lB2 )m

K(ϕ2n, ϕ1; lA)
m
2 .

Using the kernel, the Rényi reflected entropy is

SR
m,n(B1 : B2) = 1

n − 1 log (
√

1 − η̃ + 1)2n − η̃n

((
√

1 − η̃ + 1)2 − η̃)n
.

The reflected entropy can be obtained by taking the replica limit as

SR(B1 : B2) = 1√
1 − η̃

log
(

1 +
√

1 − η̃√
η̃

)
− log

(
2
√

1 − η̃

η̃

)
.
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The Markov gap for the configuration of disjoint intervals is given by

h(B1 : B2) = 1√
1 − η̃

log
(

1 +
√

1 − η̃√
η̃

)
− log

(
2(1 − η̃)√

η̃

)
.

5 10 15 20 25 30
z

0.05
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0.30

h (B1 : B2)

For lA ≤ min{lB1 , lB2}, h(B1 : B2) increases up to a constant value
whereas for lA > min{lB1 , lB2}, h(B1 : B2) decays to zero.
We observe that with increasing degrees of anisotropy of the Lifshitz field
theory, the tripartite entanglement can be enhanced or completely
destroyed depending on the sizes of the partitions.
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Lifshitz Holography
The standard form of the (2+1)-dimensions Lifshitz metric with
one-direction anisotropy is given by

ds2 = L2
[
−dt2

r2z
+ dr2

r2 + dx2

r2

]
.

The above metric is not Lorentz-invariant and supports non-relativistic
Lifshitz scaling invariance given by

t → λzt, x → λx, r → λr.

This metric appears as solution of the equations of motion of the bulk
action given by [Taylor ’08]

S = 1
16πG

∫
d3x

√
−g

(
R + z2 + 1

2L2 − F 2

4 − 1
2M2A2

)
.

At constant time slice, the above metric is the same as that for the
(2+1)-dimensional AdS. This would imply the same form of holographic
entanglement entropy for space-like interval which is well known

S(A) = L

2lP
log l

ϵ
.
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On matching it with the field theory results, we expect the following
relation

L = (z − 1)lP .

This relation is different from the well-known Brown-Henneaux relation
for the CFT vacuum (at z = 1).

c = 3L

2lP
.

Away from z = 1, holographic analysis inspired by cMERA gives [He,
Magan and Vandoren ’17]

S(A) = z

3 ln l

zϵ
.

This suggests that the bulk dual of the RK vacuum is different from the
usual Fock vacuum for the Lifshitz theory.
The z-dependence in L is consistent with the fact the RK vacuum
respects a z-dependent Lifshitz symmetry.
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Summary

We have used fractional derivative to propose a definition of the massless
Lifshitz theory with arbitrary dynamical exponent z.

In (1+1)-dimensions, the massless Lifshitz theory admits a Lifshitz
scaling invariant ground state having the form of RK vacuum.

We showed that there is a 2d/1d correspondence between the
(1+1)-dimensional Lifshitz field theory and a dual quantum mechanical
system defined with a fractional derivative.

We then computed various bipartite and tripartite entanglement
measures in the Lifshitz field theory and determined their z-dependence
respectively.

Finally, we considered a gravity dual corresponding to the Lifshitz
vacuum of the Lifshitz field theory.

We showed that in order to reproduce the field theory result for the
entanglement entropy, the previously considered Lifshitz bulk geometry
has to be supplemented by a Lifshitz radius scale that is dependent on z.
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