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* Thermalization (Relaxation to thermal equilibrium):
Transition from atypical states to typical states

(l/)|0|l/)> * tI‘( 0 Pthermal ) <1/J|0|7~/)> = tr( 0 Pthermal )

) Universal property in (quantum/classical) many-body systems

However, it 1s quite nontrivial:
* what kind of systems and which initial states relax to equilibrium,

* what statistical ensembles are realized, if the system thermalizes.

Thermalization process highly depends on datailed data in general.
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- Motivation in this talk

Nontrivial thermalization process in quantum field theories

* How does higher-form symmetry affect thermalization?

Consequence for real-time evolution

* What kind of observables distinguish nontrivial thermal equilibriums in
the presence of non-local conserved quantities?

It 1s well-known that local conserved quatities leads to nontrivial
thermal ensembles.
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Thermalization 1n 1sloated quantum systems:

Quantum systems without diffusion exhibit unitary time evolutions.

?Non—thermal states remain non-thermal after time evolution?

= A way to understand this point: consider expectation values of operators

th—>r23<l/)(t)|0|l/)(t)> = tr( 0 pthermal )

Statistical average
at thermal equilibrium

Time average

Sufficient condition:

(strong) Eigenstate Thermalization Hypothesis (ETH)
[Deutsch, Phys. Rev. A 43(1991); Srednicki, Phys. Rev. E 50(1994)...]

All eigenstates are thermall.
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- Our work

= [fa(d + 1)-dimensional QFT with a p-form symmetry satisfies
some reasonable conditions(*), we showed (rather than expect):
(d-p)-dimensional observables detect the ETH-violation.

The system does not necessarily relax to the standard
canonical ensemble.

= We numerically demonstrated the argument above in the case of the
(2+1)-dimensional Z, lattice gauge theory

In particular, the resulting thermal equilibrium is described
by a Generalized Gibbs ensemble(GGE) taking account of
the Z, 1-form symmetry.

Note: The (2+1)-dimensional Z, gauge theory enjoys the electric Z, 1-form
symmetry, and satisfies the conditions(*).
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In general, the followings depend on the detail of the system and initial states:
(DDoes every initial state relax to some stationary state?

§0% = (0)2 — ({0))* > 0 as t > o

(If so, is the long-time average described by a thermal ensemble?

W = (0)eq

| O off-diagonal ETH
o] | @ < diagonal ETH
(O0()) o] |

* We use the terminology “ETH”,
ol T T TV referring to diagonal ETH in this talk.

Once you assume the ETH, thermalization occurs regardless of the initial
conditions...



Eigenstate thermalization hypothesis 720

Let |[W(0)) =X,¢cq |Ey) (H|IE,) = E,|E,): energy eigenstates),
(No degeneracy for the Hamiltonian 1s assumed.)
W = Zalca|2<Ea|0|Ea>
- (Diagonal) ETH
(EalolEa>(Ea) = tr( Y Pmicro canonical(Eoc))

¢.g.) Hard core boson:
blue: integrable ETH X

red: non-integrable ETH +/

[Deutsch, 1805.01616]



Higher-form symmetry

Topological operator

= p-form symmetry is characterized by

a codimension-(p + 1) (unitary) symmetry operator.
In (d + 1)-dimensional QFTs,

(U (OW(C) ...y = e w(C) ...)
Symmetry operator: Charged operator:

(d — p)-dimensional p-dimensional
J}

=eiaq X

8/20

Correlation functions are invariant under the continuous deformation of C.

* Higher-form symmetry has a G group structure (G: abelian group)

Ue(C)Up(C) = Upsp (C)
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Action on Hilbert space
= We consider actions of U, (C) and W(C~ ) on the Hilbert space
(space-like symmetry [Gorantla-Lam-Seiberg-Shao, 2201.10589]):

time 1 w — elqa

U; (COW(C))HU,(Cy) = eiq“W(Cy) Cy, C,, © M space manifold

Topological nature of U, = [H,U,] =0
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[O.F., Ryusuke Hamazaki, Phys. Rev. Lett. 131 (2023), arXiv:2305.04984]

Setup

We consider a (d + 1)-dimensional QFT on a spacetime manifold M X R.
The Hamiltonian H 1s non-degenerate.

The system exhibits a p-form symmetry with the symmetry operator U, (C).
- Main claim
The operator U, (y) or U, (y) (or both) breaks the ETH if some

reasonable assumptions(*) are satisfied.
Y, 7V: (d — p)-d manifold with boundary, s.t. yuUy=CcM

e.0) M = T? .

—— + —

p=1 p=20

Y

The result implies that the operator U(y)/U(y) may not relax to the
standard canonical ensemble.
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Main claim

The operator U, (y) or U, (y) (or both) breaks the ETH if some
reasonable assumptions(¥) are satisfied. =~ (yUy =C c M)

Assumptions: 3 3
1) The operator U, (C) can be decomposed as U, (C) = U, (y)U, ().

ii) There exist energy eigenstates |E:n), |E,,), with E,,, E,,, € [E, E + 8E],
.. (En|Ua(C)|En) # (Em|Ua(C)|Em).

. . ~\\ 0
iii) The microcanonical average (U, (C ))mEC # 0.

Energy level

OE

Symmetry sector
q =

1



ETH breaking by higher-form symmetry 1220

Comments

* The result 1s especially nontrivial for p = 1, since the ETH-violation 1s
not due to the smallness of “bath.”

* Generalization 1s possible:
A(g)U4(y) or A(g)TU,(¥) violates the ETH.

A(g): operator defined on a region g(Cc M )withgnNny = ¢
Many ETH-violating operators for a fixed y.



ETH breaking in Z, lattice gauge theory 1320

Model (2+1)-dimensional Z, lattice gauge theory With Z, electric 1-form

{
The space manifold M is 2-torus T2 Symmetry

Hamiltonian [Fradkin-Susskind, Phys. Rev. D, 17(1978)]

HZzz_ 2 Z /1bo-b

p€ plaquette belink
B, = af
beplaquette p i i i i
Physical Hilbert space L Qu | | |
Gauss law constraint: ; ; ; 5
! ! By !
------ e T T i
Q= ]I =1 s s | |
b: spatial link . . : .
bov E i i i
Constraint on physical Hilbert space [ E """""" E' """""" ‘i """""" EL """
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* Wilson line Charged object under the Z, 1-form symmetry
W(C) = nag S W) =1
becC

* Symmetry operator (‘t Hooft operator)

vy = | | o > U(C*)? =1

b*eC*

___________________________________________________
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Symmetry operator can have endpoints

H \7 X
> monopoles

U(yy) = 1_[ O'gc* Yx . Open curve

b*€Yx Y U7y = Cy: x-cycle

Numrtical calculation for 5 X 3 lattice

(a) (b)

0.751 ’ 0.751
0.501 T 0.50-
~~ 0.25 g ~ 0251
= 0.00] = 000
" —0.25] —0:251
—0.50- —0.501
—0.75 ' —0.75

50 —10 0 10 20 20 10 0 10 20

Energy Energy
U(y) (local operator) U(y) (non-local operator)

The ETH for the 1-dimensional operator is broken.
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Other operators

0.75- : 0.751
0.501 124, 0.501
. 0.25 " ~ 0251
% £ 0.00]
= 0.001 5°
" —0.25 —0.25
~0.501 ~0.501
~0.751 ~0.751
50 10 0 10 0 20  -10 0 10 20
Energy Energy
U(y) (local operator) U(y) (non-local operator)
0.6
0.4
0.4 1
0.2
0.2 1
00 0.0
~ 0.2 -0.2
~0.41
-0.4
~0.6 1
-0.6
-0.8 1
= = : = 2 -20 -10 0 10 20

Energy

Plaquette operator B, Double Wilson lines W (Cx)W (Cy)



Generalized Gibbs ensemble for
higher-form symmetry

* What is Generalized Gibbs ensemble(GGE)?

GGE 1s originally introduced for integrable spin chain.
[Pozsgay, 1304.5374; Ilievski et al., 1507.02993;...]

17/20

(O)gge = tr 0 p(B,{4;:})

p(B, (A} = e FH-2:hiQi/7(B,{A;}),
Z(,B» {/11'}) = tre B H-2itiQ

Q;: (quasi-)local conserved quantity
A;: “chemical potential”

For integrable systems, GGE i1s realized as a thermal equilibrium.
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* The GGE for Z, gauge theory

(O)ge = tr 0 p(B,{4:}),

p(B (A}, = e™F Hoe P haPbins s 78 {2}),,,
Z(ﬁ, {Al})zz = tr e_,B HZZ _Alpx_AZPxHZZ

P, = %(Cx) . projection to the sector U(C,) = 1

To specify (PxHZ2 Px), ((1 — Py)Hz, (1 — Py)), and (Py) for a given state,
three chemical potentials are needed.
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higher-form symmetry o

* Numerical analysis of time-evolution
The thermal ensemble for Z, gauge theory is given by the GGE.

(a) 1.0 (b) 1.0-1

—— GGE —— GGE
0.81 Canonical ensemble 0.81 Canonical ensemble
— 0.6 - 0.6
& =
S 0.4 S 0.4
~ ~—
0.21 0o
0.01 E: A~ 0.01
—0.2- ' : : : : —0.2L- : : : : :
0.0 5.0 10.0 15.0 20.0 25.0 0.0 5.0 10.0 15.0 20.0 25.0
Time Time

Initial state: eigenstate of U(y,) / U(y,) =1 ,with E € [-5.0,—3.0].
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We analytically showed

* Higher-form symmetry affects thermalization.
* p-form symmetry leads to (d — p)-dimensional ETH-violating operators.

In the case of Z, lattice gauge theory

1-dimensional

* The ETH for dipole-exciting operator U(y) is broken.
* Thermal equilibrium 1s given by the GGE taking account of Z, 1-form

symmtry rather than the canonical ensemble.

Outlook

» Effect on entanglement spectrum
* Implication to finite-temperature phase transition
e Demonstration for other QFTs

Z, gauge theory, U(1) gauge theory, SU(N) gauge theory...
superconducter, super fluid...

Etc...
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- Higher-form symmetry

A generalized concept of conventional global symmetry:

In (d + 1)-dimensional QFTs, p-form symmetry is
characterized by (d — p)-dimensional topological operator.

[Kapustin-Seiberg-Gaiotto-Willett, 1412.5148...]

It has similar properties as conventional symmetry
c.g.)

* Selection rule

« SSB Nambu-Goldstone’s theorem
+  Anomaly Identification of low-energy effective theories

Identification of phase structure
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Finite-size scaling analysis:

To evaluate the validity of the ETH quantitatively, we consider

— _ OE
8 (0) = Ei%?§6E]|<En|O|En> (0)3E(E,)|

A (0) > 0asV — oo < The ETH for O is satisfied

SE [Sugimoto-Hamazaki-Ueda, 2005.06379]

0.10

0.08}

~Ap(0 =nyny) - 0

0.02}

T T-a— —5 0 5 10 15
FE
[Deutsch, 1805.01616]
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ETH and local/non-local conserved quantities

Conserved quantity Q: [H, Q] = 0, (H: Hamiltonian)
* Local conserved quantity: sum of local operators

_ _ i 3 g (k is independent of
Q= Lsssite [ljs-s1<x Os k-local the system size.)

~ f dx D(x) 1n continuum
* Non-local conserved quantity: otherwise

Q = [ dxidxy ... O(xy, Xz, ...)

In the system size V — oo limit, local conserved quanties typically behaves
as extensive variable: Q = O(V).

Violation of the ETH

Treatment of Non-local conserved quantities is quite subtle,
1.e., it requires going beyond conventional statistical mechanics.
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Action on Hilbert space
= We consider actions of U,(C) and W(C~ ) on the Hilbert space
(space-like symmetry [Goranta-Lam-Seiberg-Shao, 2201.10589]):

time 1 w — elqa

US(COW (C)Uq(Cy) = %W (C,)  Cy, C, © M: space manifold

Topological nature of U, = [H,U,] =0

These topological operators typically lead to the following:

Continuous symmetry Local conserved quantity

Discrete symmetry Non-local conserved quantity
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Main claim

The operator U, (y) or U, (y) (or both) breaks the ETH if some
reasonable assumptions(¥) are satisfied. =~ (yUy =C c M)

Sketch of the proof
« Ifthe ETH for U,(y) is violated, the claim holds.

» We consider the case (E,|Ug(Y)|En) = (Em|Ug(1)|E) = (Ug())5E..

« By ii), there exist eigenstates |E,) and |E,;,) of H, s.t., Ey,, Ey, € |E,E + 6E] and
Uo(C)E,) = e®n|E,),  Ug(C)IEy) = e'“m|E,,)
el®n + olaqm

En cage e’
En\\‘.\... .° e
Ve | Lyt

Energy
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Main claim
The operator U, (y) or U, (y) (or both) breaks the ETH if some

reasonable assumptions(¥) are satisfied. =~ (yUy =C c M)
Sketch of the proof
* Noting Uz (7) = U (1)U (C)

A X eiaqm A m

E o.:O..... Xei“q" \ 0..'
En%.‘ 0.'.'. \' oo' %
et . " °
Ue) Ua) — *
Energy ] Energy :

The ETH for U, (y) is broken.
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Comments
* For charged operators, the ETH always holds.
(W(Cy)) = e@@ KL UL(CIW (CUa(C)) = e' @ IMKCL W ()
eiaq-link(Cl,Cz) +1 = (W(C1)> =0

* Since the discrete symmetry typically leads to non-local conserved
quantities, it means the ETH-violation caused by non-local conserved
quantities.

Beyond the conventional statistical mechanics
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Finite-size scaling

0.75 A

0.50

0.25 A1

0.00 4

—0.25 A

—0.50 1

—0.75 A

-20 =15 -10 -5 0 5 10 15 20
Energy

4 X 3 lattice

(c) 10° ¥ 1:U() (UC)=+1)

¥ I:UGF) UC)=+1)
Il : Uly) (U(C;)

)

8

g

=

L

i

8 9 10 11 12 13 14 15 16
System size
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0.751
0.50
0.251
0.00 1

—0.25

—0.50

—0.75

—20 ~10 0 10 20
Energy
5 x 3 lattice

Blue line:
Deviation A, ( U ()ZC))
for total symmetry sector

Aoo(o) =

max

_ ((9\SE
n;EnE[E,SE]|<En|0|En> (0)(En)|
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* GGE for Z, gauge theory
(O)gge = tr 0 p(B,{A:}),

p(B, {4}z, 1= e™F fiza “Pa=aPullza 17(g, {2}y,
Z(ﬁ, {Ai})Zz :— tr e P Hz,=A1Px—A2PxHz,

P, = 12U . projection to the sector U(C,) =1

To specify (P.Hz, Py), ((1 — P)Hz, (1 — P,)), and (P;) for a given state,
three chemical potentials are needed.

Redefining the chemical potentials,

p(ﬁ’ /1’ U )ZZ = e_ﬁ HZZ _AU(CX)_MU(Cx)HZZ /Z(ﬁ; A; lu) Ly
Z(B, A, 1)y = tre B Hi=AU(CO~1U(CoHz,
) ) 2
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* Numerical analysis of time-evolution

The thermal ensemble for Z, gauge theory is given by GGE.

1.0+ 1.0+
a b
( ) — GGE ( ) — GGE
0.81 Canonical ensemble 0.81 Canonical ensemble
//: 0.6 - 0.6
= =
& =
b 04' b 04'
~— ~—
0.2 0.2
0.0 E: A~ 0.0
0.2~ : : : : : —0.2~ : : : : :
0.0 5.0 10.0 15.0 20.0 25.0 0.0 5.0 10.0 15.0 20.0 25.0
Time Time

Initial state: eigenstate of (U(y,)) /{(U(y,)) = 1 ,with E € [-5.0,—3.0].

(a) a (b)
0.75 0.75
0.50 ey 0.50
-~ 0.25 -~ 025
& S
:b: 0.00 = 0.00
~—
~0.25 ~0.25
~0.50 ~0.50
—0.75 ‘ —0.75
20  —10 0 10 20 20 —10 0 10 20

Energy Energy
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* GGE for general discrete (abelian) group G
<0)GGE =tr0 p(lg' {)]'i}' {.ul})

N-— N-—
p(ﬁ’ {/L:}, {.ul}) = e_ﬂ H_Zi=11 Aipi_2i=11 /“‘iPiH/Z(:B) {Ai}; {:ul})a
Z (,3 ) {/1;'}, {,ul-}) = tre FH —Z?':_ll ﬂiPi—Z’i\’;ll UiPiH

P;: projection to each symmetry sector
N: number of symmetry sector |Hy_,,(M, G)|

Assume that the canonical ensemble is realized for each symmetry sector.

At least for the operator U, (y) or U,(y), the thermal ensemble is
given by this GGE for the total symmetry sector.
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