Higher-form symmetry and eigenstate thermalization hypothesis

Osamu Fukushima RIKEN iTHEMS

August 28, 2024

NCTS-iTHEMS Joint Workshop on Matters to Spacetime: Symmetries and Geometry

at National Taiwan University

Based on

[O.F., Ryusuke Hamazaki, Phys. Rev. Lett. 131 (2023), arXiv:2305.04984] [O.F., PTEP 2024, no.4, 043B03 (2024), arXiv:2310.11425]

• Thermalization (Relaxation to thermal equilibrium): Transition from <u>atypical states</u> to <u>typical states</u> $\langle \psi | \mathcal{O} | \psi \rangle \neq \operatorname{tr}(\mathcal{O} \rho_{\operatorname{thermal}}) \quad \langle \psi | \mathcal{O} | \psi \rangle = \operatorname{tr}(\mathcal{O} \rho_{\operatorname{thermal}})$

<u>Universal property in (quantum/classical) many-body systems</u>

However, it is quite nontrivial:

- what kind of systems and which initial states relax to equilibrium,
- what statistical ensembles are realized, if the system thermalizes.

Thermalization process highly depends on datailed data in general.

- Motivation in this talk _____

Nontrivial thermalization process in quantum field theories

- How does higher-form symmetry affect thermalization? Consequence for real-time evolution
- What kind of observables distinguish nontrivial thermal equilibriums in the presence of non-local conserved quantities?

It is well-known that local conserved quatities leads to nontrivial thermal ensembles.

Thermalization in isloated quantum systems:

Quantum systems without diffusion exhibit unitary time evolutions. \Rightarrow Non-thermal states remain non-thermal after time evolution?

• A way to understand this point: consider expectation values of operators

$$\lim_{t \to \infty} \overline{\langle \psi(t) | \mathcal{O} | \psi(t) \rangle} = \operatorname{tr}(\mathcal{O} \rho_{\text{thermal}})$$

Time average
Statistical average
at thermal equilibrium

Sufficient condition:

(strong) Eigenstate Thermalization Hypothesis (ETH) [Deutsch, Phys. Rev. A 43(1991); Srednicki, Phys. Rev. E 50(1994)...]

All eigenstates are thermal.

Our work

- If a (d + 1)-dimensional QFT with a p-form symmetry satisfies some reasonable conditions(*), we showed (rather than expect): (d-p)-dimensional observables detect the ETH-violation.
 - The system does not necessarily relax to the standard canonical ensemble.
- We numerically demonstrated the argument above in the case of the (2+1)-dimensional Z₂ lattice gauge theory

In particular, the resulting thermal equilibrium is described by a Generalized Gibbs ensemble(GGE) taking account of the \mathbb{Z}_2 1-form symmetry.

Note: The (2+1)-dimensional \mathbb{Z}_2 gauge theory enjoys the electric \mathbb{Z}_2 1-form symmetry, and satisfies the conditions(*).

Contents

- Introduction (4)
- Eigenstate thermalization hypothesis (2)
- Higher-form symmetry (2)
- ETH breaking by higher-form symmetry (3)
- ETH breaking in \mathbb{Z}_2 lattice gauge theory (4)
- Generalized Gibbs ensemble for higher-form symmetry (3)
- Summary and outlook (1)

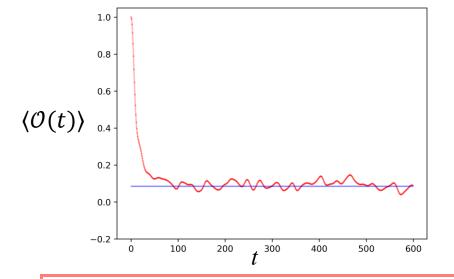
Eigenstate thermalization hypothesis

In general, the followings depend on the detail of the system and initial states: ①Does every initial state relax to some stationary state?

$$\delta \mathcal{O}^2 \coloneqq \overline{\langle \mathcal{O} \rangle^2} - \left(\overline{\langle \mathcal{O} \rangle} \right)^2 \to 0 \text{ as } t \to \infty$$

②If so, is the long-time average described by a thermal ensemble?

$$\overline{\langle \mathcal{O} \rangle} \simeq \langle \mathcal{O} \rangle_{\text{eq}}$$



* We use the terminology "ETH", referring to diagonal ETH in this talk.

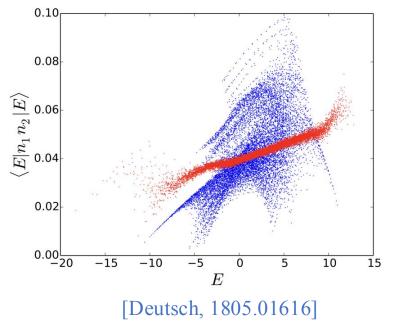
Once you assume the ETH, thermalization occurs regardless of the initial conditions...

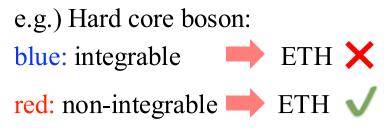
Eigenstate thermalization hypothesis

Let $|\psi(0)\rangle = \sum_{\alpha} c_{\alpha} |E_{\alpha}\rangle$ $(H|E_{\alpha}\rangle = E_{\alpha}|E_{\alpha}\rangle$: energy eigenstates), (No degeneracy for the Hamiltonian is assumed.)

$$\overline{\langle \mathcal{O} \rangle} = \sum_{\alpha} |c_{\alpha}|^2 \langle E_{\alpha} | \mathcal{O} | E_{\alpha} \rangle$$

(Diagonal) ETH $\langle E_{\alpha} | \mathcal{O} | E_{\alpha} \rangle (E_{\alpha}) \simeq \operatorname{tr}(\mathcal{O} \rho_{\operatorname{micro canonical}}(E_{\alpha}))$





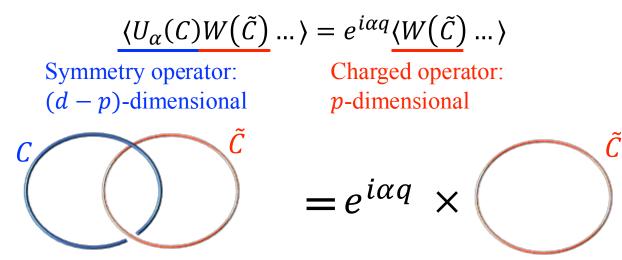
Higher-form symmetry

Topological operator

p-form symmetry is characterized by

a codimension-(p + 1) (unitary) symmetry operator.

In (d + 1)-dimensional QFTs,



Correlation functions are invariant under the continuous deformation of C.

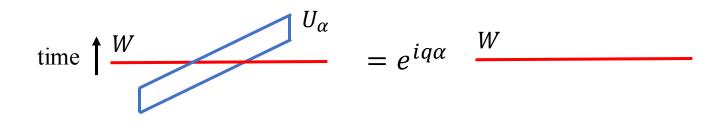
• Higher-form symmetry has a *G* group structure (*G*: abelian group)

$$U_{\alpha}(C)U_{\beta}(C) = U_{\alpha+\beta}(C)$$

Higher-form symmetry

Action on Hilbert space

• We consider actions of $U_{\alpha}(C)$ and $W(\tilde{C})$ on the Hilbert space (space-like symmetry [Gorantla-Lam-Seiberg-Shao, 2201.10589]):



Topological nature of $U_{\alpha} \implies [H, U_{\alpha}] = 0$

ETH breaking by higher-form symmetry

10/20

[O.F., Ryusuke Hamazaki, Phys. Rev. Lett. 131 (2023), arXiv:2305.04984]

Setup

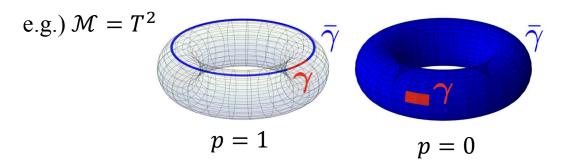
We consider a (d + 1)-dimensional QFT on a spacetime manifold $\mathcal{M} \times \mathbb{R}$. The Hamiltonian *H* is non-degenerate.

The system exhibits a *p*-form symmetry with the symmetry operator $U_{\alpha}(C)$.

Main claim

The operator $U_{\alpha}(\gamma)$ or $U_{\alpha}(\bar{\gamma})$ (or both) breaks the ETH if some reasonable assumptions(*) are satisfied.

 $\gamma, \overline{\gamma}: (d-p)$ -d manifold with boundary, s.t. $\gamma \cup \overline{\gamma} = C \subset \mathcal{M}$



The result implies that the operator $U(\gamma)/U(\bar{\gamma})$ may not relax to the standard canonical ensemble.

ETH breaking by higher-form symmetry 11/20

Main claim

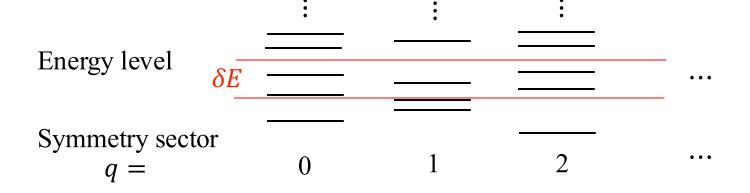
The operator $U_{\alpha}(\gamma)$ or $U_{\alpha}(\bar{\gamma})$ (or both) breaks the ETH if some reasonable assumptions(*) are satisfied. $(\gamma \cup \bar{\gamma} = \tilde{C} \subset \mathcal{M})$

Assumptions:

i) The operator $U_{\alpha}(\tilde{C})$ can be decomposed as $U_{\alpha}(\tilde{C}) = U_{\alpha}(\gamma)U_{\alpha}(\bar{\gamma})$.

ii) There exist energy eigenstates $|E_n\rangle$, $|E_m\rangle$, with E_n , $E_m \in [E, E + \delta E]$, s.t. $\langle E_n | U_\alpha(\tilde{C}) | E_n \rangle \neq \langle E_m | U_\alpha(\tilde{C}) | E_m \rangle$.

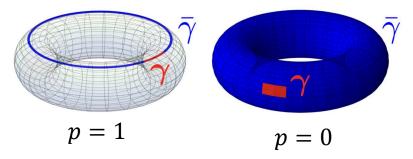
iii) The microcanonical average $\langle U_{\alpha}(\tilde{C}) \rangle_{\rm mc}^{\delta E} \neq 0$.



ETH breaking by higher-form symmetry 12/20

Comments

• The result is especially nontrivial for $p \ge 1$, since the ETH-violation is not due to the smallness of "bath."



• Generalization is possible: $A(g)U_{\alpha}(\gamma)$ or $A(g)^{\dagger}U_{\alpha}(\bar{\gamma})$ violates the ETH.

A(g): operator defined on a region $g(\subset \mathcal{M})$ with $g \cap \overline{\gamma} = \phi$

• Many ETH-violating operators for a fixed γ .

ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 13/20

Model (2+1)-dimensional \mathbb{Z}_2 lattice gauge theory

With \mathbb{Z}_2 electric 1-form symmetry

The space manifold \mathcal{M} is 2-torus T^2

Hamiltonian [Fradkin-Susskind, Phys. Rev. D, 17(1978)]

$$H_{\mathbb{Z}_2} = -\sum_{p \in \text{plaquette}} \lambda_p B_p - \sum_{b \in \text{link}} \lambda_b \sigma_b^x$$

$$B_p \coloneqq \prod_{b \in \text{plaquette } p} \sigma_b^z$$

Physical Hilbert space

Gauss law constraint:

$$Q_v := \prod_{\substack{b: ext{ spatial link} \ b
ightarrow v}} \sigma_b^{\chi} = 1$$

Constraint on physical Hilbert space

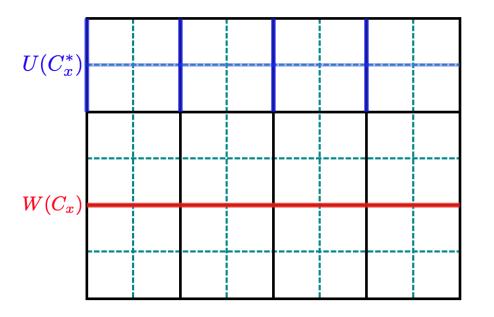
Q_v				
		B_p		

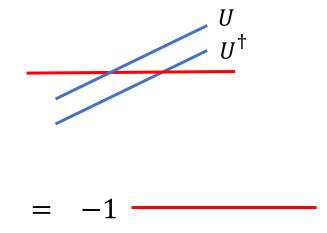
ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 14/20

• Wilson line \leftarrow Charged object under the \mathbb{Z}_2 1-form symmetry

$$W(C) \coloneqq \prod_{b \in C} \sigma_b^Z \qquad \Rightarrow W(C)^2 = 1$$

$$U(C^*) \coloneqq \prod_{b^* \in C^*} \sigma_{b^*}^{x} \qquad \Rightarrow U(C^*)^2 = 1$$

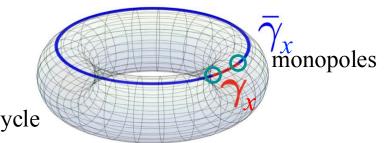




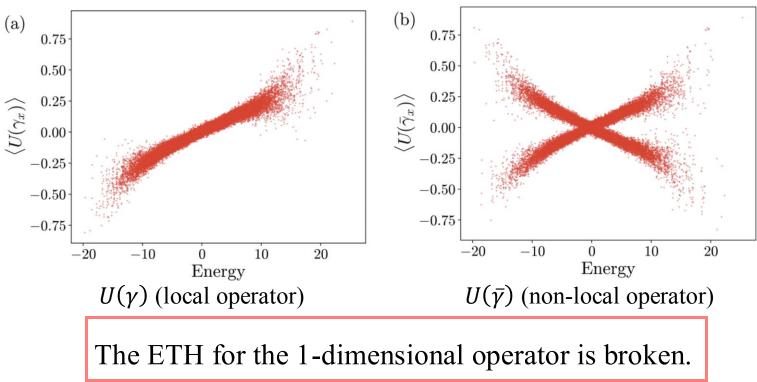
ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 15/20

Symmetry operator can have endpoints

$$U(\overline{\gamma_{x}}) \coloneqq \prod_{b^{*} \in \overline{\gamma_{x}}} \sigma_{b^{*}}^{x} \qquad \overline{\gamma_{x}} : \text{ open curve}$$
$$\gamma_{x} \cup \overline{\gamma_{x}} = C_{x} : x \text{ - cy}$$

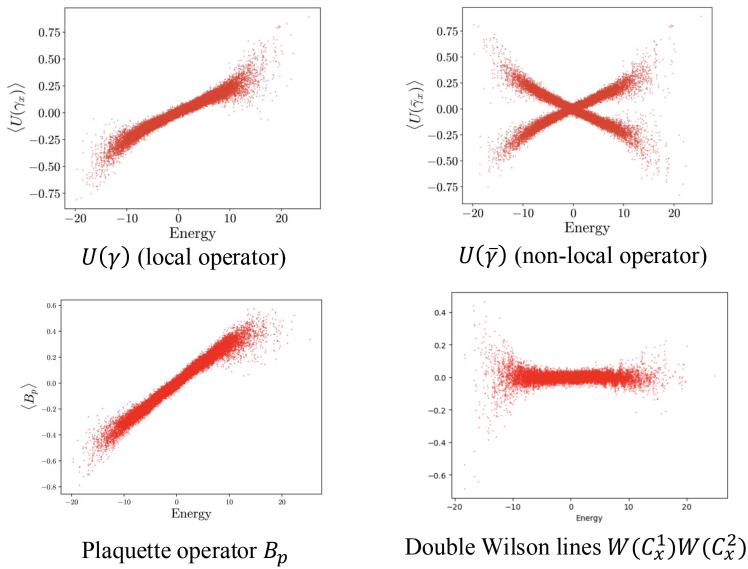


Numrtical calculation for 5×3 lattice



ETH breaking in \mathbb{Z}_2 **lattice gauge theory** 16/20

Other operators



• What is Generalized Gibbs ensemble(GGE)? GGE is originally introduced for integrable spin chain. [Pozsgay, 1304.5374; Ilievski et al., 1507.02993;...]

 $\langle \mathcal{O} \rangle_{\text{GGE}} = \text{tr } \mathcal{O} \rho(\beta, \{\lambda_i\})$ $\rho(\beta, \{\lambda_i\}) \coloneqq e^{-\beta H - \sum_i \lambda_i Q_i} / Z(\beta, \{\lambda_i\}),$ $Z(\beta, \{\lambda_i\}) \coloneqq \text{tr } e^{-\beta H - \sum_i \lambda_i Q_i}$

 Q_i : (quasi-)local conserved quantity λ_i : "chemical potential"

For integrable systems, GGE is realized as a thermal equilibrium.

• The GGE for \mathbb{Z}_2 gauge theory

$$\langle \mathcal{O} \rangle_{\text{GGE}} = \text{tr } \mathcal{O} \rho(\beta, \{\lambda_i\})_{\mathbb{Z}_2}$$

$$\rho(\beta, \{\lambda_i\})_{\mathbb{Z}_2} \coloneqq e^{-\beta H_{\mathbb{Z}_2} - \lambda_1 P_x - \lambda_2 P_x H_{\mathbb{Z}_2}} / Z(\beta, \{\lambda_i\})_{\mathbb{Z}_2},$$

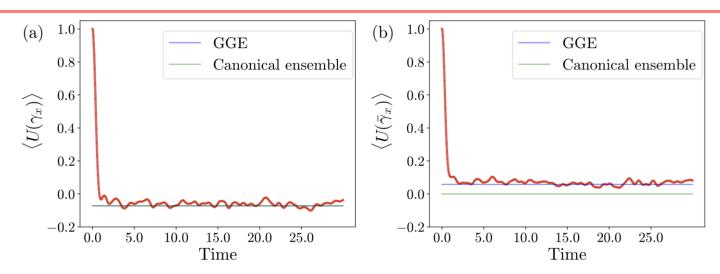
$$Z(\beta, \{\lambda_i\})_{\mathbb{Z}_2} \coloneqq \text{tr } e^{-\beta H_{\mathbb{Z}_2} - \lambda_1 P_x - \lambda_2 P_x H_{\mathbb{Z}_2}}$$

$$P_x = \frac{1 - U(C_x)}{2}$$
: projection to the sector $U(C_x) = 1$

To specify $\langle P_x H_{\mathbb{Z}_2} P_x \rangle$, $\langle (1 - P_x) H_{\mathbb{Z}_2} (1 - P_x) \rangle$, and $\langle P_x \rangle$ for a given state, three chemical potentials are needed.

• Numerical analysis of time-evolution

The thermal ensemble for \mathbb{Z}_2 gauge theory is given by the GGE.



Initial state: eigenstate of $U(\gamma_x) / U(\overline{\gamma_x}) = 1$, with $E \in [-5.0, -3.0]$.

Summary and outlook

We analytically showed

- Higher-form symmetry affects thermalization.
- *p*-form symmetry leads to (d p)-dimensional ETH-violating operators.

In the case of \mathbb{Z}_2 lattice gauge theory

1-dimensional

- The ETH for dipole-exciting operator $U(\bar{\gamma})$ is broken.
- Thermal equilibrium is given by the GGE taking account of \mathbb{Z}_2 1-form

symmtry rather than the canonical ensemble.

Outlook

- Effect on entanglement spectrum
- Implication to finite-temperature phase transition
- Demonstration for other QFTs

 \mathbb{Z}_N gauge theory, U(1) gauge theory, SU(N) gauge theory...

superconducter, super fluid...

Etc...

Backups

- Higher-form symmetry

A generalized concept of conventional global symmetry: In (d + 1)-dimensional QFTs, *p*-form symmetry is characterized by (d - p)-dimensional topological operator.

[Kapustin-Seiberg-Gaiotto-Willett, 1412.5148...]

It has similar properties as conventional symmetry e.g.)

- Selection rule
- SSB
- Anomaly

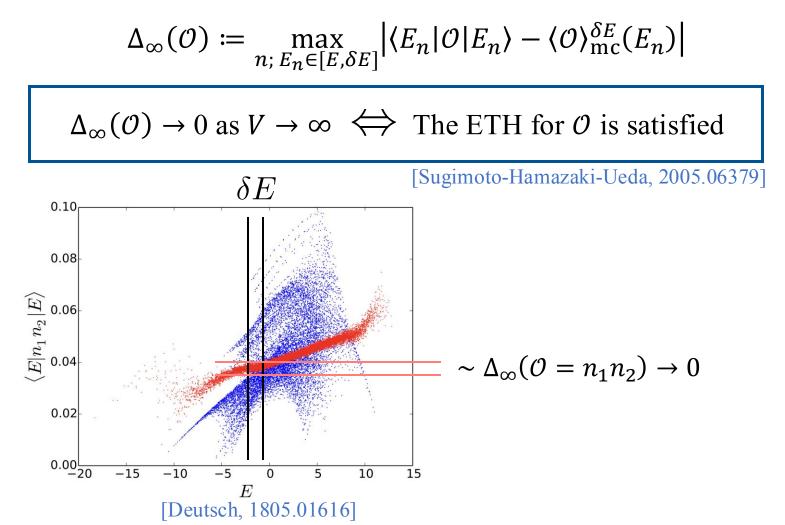
Identification of low-energy effective theories

Identification of phase structure

Eigenstate thermalization hypothesis

Finite-size scaling analysis:

To evaluate the validity of the ETH quantitatively, we consider



Eigenstate thermalization hypothesis

ETH and local/non-local conserved quantities

Conserved quantity Q: [H, Q] = 0, (*H*: Hamiltonian)

- Local conserved quantity: sum of local operators
 - $Q = \sum_{s:\text{site}} \prod_{|\tilde{s}-s| \le k} \mathcal{O}_{\tilde{s}} \qquad :k\text{-local} \qquad \begin{array}{c} (k \text{ is independent of} \\ \text{the system size.}) \end{array}$ $\simeq \int dx \,\mathfrak{O}(x) \qquad \qquad \text{in continuum}$
- Non-local conserved quantity: otherwise

$$Q \simeq \int dx_1 dx_2 \dots \mathfrak{O}(x_1, x_2, \dots)$$

In the system size $V \rightarrow \infty$ limit, local conserved quanties typically behaves as extensive variable: Q = O(V).

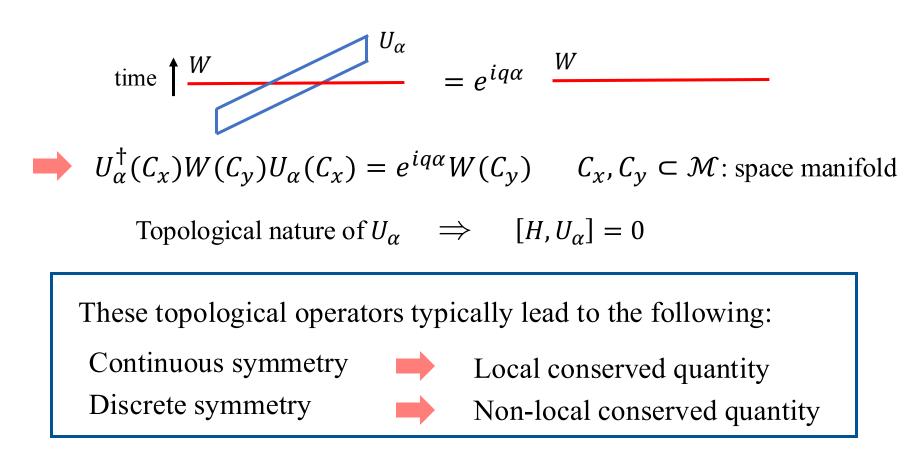
Violation of the ETH

Treatment of Non-local conserved quantities is quite subtle, i.e., it requires going beyond conventional statistical mechanics.

Higher-form symmetry

Action on Hilbert space

• We consider actions of $U_{\alpha}(C)$ and $W(\tilde{C})$ on the Hilbert space (space-like symmetry [Goranta-Lam-Seiberg-Shao, 2201.10589]):



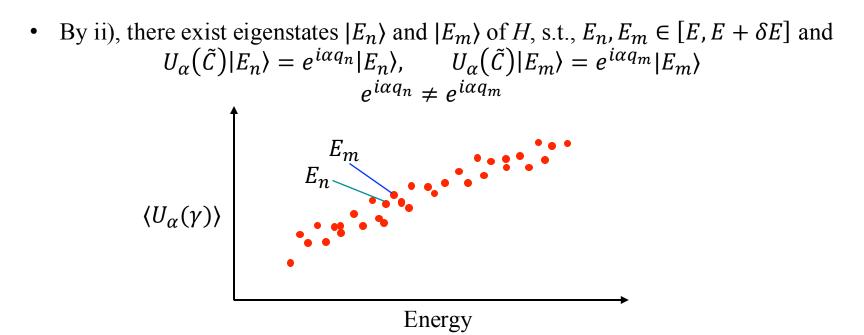
ETH breaking by higher-form symmetry 26/20

Main claim

The operator $U_{\alpha}(\gamma)$ or $U_{\alpha}(\bar{\gamma})$ (or both) breaks the ETH if some reasonable assumptions(*) are satisfied. $(\gamma \cup \bar{\gamma} = \tilde{C} \subset \mathcal{M})$

Sketch of the proof

- If the ETH for $U_{\alpha}(\gamma)$ is violated, the claim holds.
- We consider the case $\langle E_n | U_\alpha(\gamma) | E_n \rangle \simeq \langle E_m | U_\alpha(\gamma) | E_m \rangle \simeq \langle U_\alpha(\gamma) \rangle_{\rm mc}^{\delta E}$.



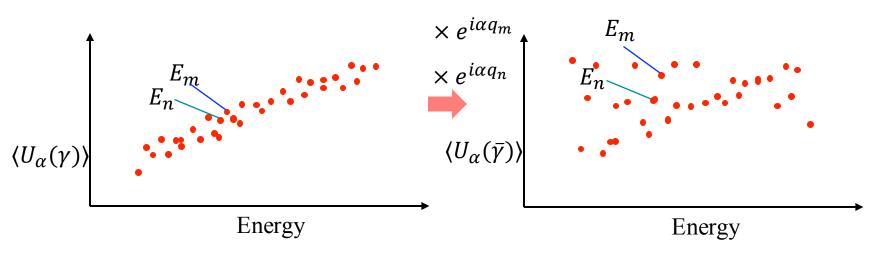
ETH breaking by higher-form symmetry 27/20

Main claim

The operator $U_{\alpha}(\gamma)$ or $U_{\alpha}(\bar{\gamma})$ (or both) breaks the ETH if some reasonable assumptions(*) are satisfied. $(\gamma \cup \bar{\gamma} = \tilde{C} \subset \mathcal{M})$

Sketch of the proof

• Noting $U_{\alpha}^{-1}(\bar{\gamma}) = U_{\alpha}(\gamma)U_{\alpha}^{-1}(\tilde{C})$



The ETH for $U_{\alpha}(\bar{\gamma})$ is broken.

ETH breaking by higher-form symmetry 28/20

Comments

• For charged operators, the ETH always holds.

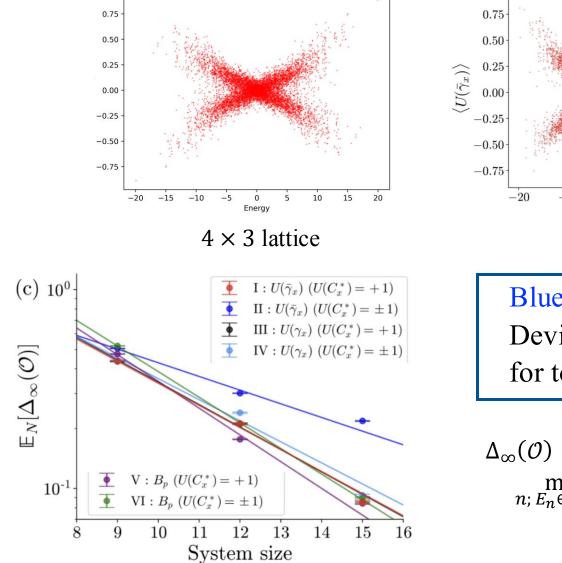
$$\begin{split} \langle W(C_1) \rangle &= e^{i\alpha q \cdot \operatorname{link}(C_1,C_2)} \langle U_{\alpha}^{\dagger}(C_2) W(C_1) U_{\alpha}(C_2) \rangle = e^{i\alpha q \cdot \operatorname{link}(C_1,C_2)} \langle W(C_1) \rangle \\ &e^{i\alpha q \cdot \operatorname{link}(C_1,C_2)} \neq 1 \; \Rightarrow \; \langle W(C_1) \rangle = 0 \end{split}$$

• Since the discrete symmetry typically leads to non-local conserved quantities, it means the ETH-violation caused by non-local conserved quantities.

Beyond the conventional statistical mechanics

ETH breaking in \mathbb{Z}_2 lattice gauge theory 29/20

Finite-size scaling



 $\begin{bmatrix} 0.75 \\ 0.50 \\ 0.25 \\ 0.00 \\ -0.25 \\ -0.50 \\ -0.75 \\ -20 \\ -20 \\ -10 \\ 0 \\ 10 \\ 20 \\ Energy \\ 5 \times 3 \\ lattice$

Blue line: Deviation $\Delta_{\infty}(U(\overline{\gamma_x}))$ for total symmetry sector

 $\Delta_{\infty}(\mathcal{O}) \coloneqq \max_{\substack{n; E_n \in [E, \delta E]}} |\langle E_n | \mathcal{O} | E_n \rangle - \langle \mathcal{O} \rangle_{\mathrm{mc}}^{\delta E}(E_n)|$

• GGE for \mathbb{Z}_2 gauge theory

$$\begin{aligned} \langle \mathcal{O} \rangle_{\text{GGE}} &= \text{tr } \mathcal{O} \ \rho(\beta, \{\lambda_i\})_{\mathbb{Z}_2} \\ \rho(\beta, \{\lambda_i\})_{\mathbb{Z}_2} &\coloneqq e^{-\beta H_{\mathbb{Z}_2} - \lambda_1 P_x - \lambda_2 P_x H_{\mathbb{Z}_2}} / Z(\beta, \{\lambda_i\})_{\mathbb{Z}_2}, \\ Z(\beta, \{\lambda_i\})_{\mathbb{Z}_2} &\coloneqq \text{tr } e^{-\beta H_{\mathbb{Z}_2} - \lambda_1 P_x - \lambda_2 P_x H_{\mathbb{Z}_2}} \end{aligned}$$

$$P_x = \frac{1 - U(C_x)}{2}$$
: projection to the sector $U(C_x) = 1$

To specify $\langle P_x H_{\mathbb{Z}_2} P_x \rangle$, $\langle (1 - P_x) H_{\mathbb{Z}_2} (1 - P_x) \rangle$, and $\langle P_x \rangle$ for a given state, three chemical potentials are needed.

Redefining the chemical potentials,

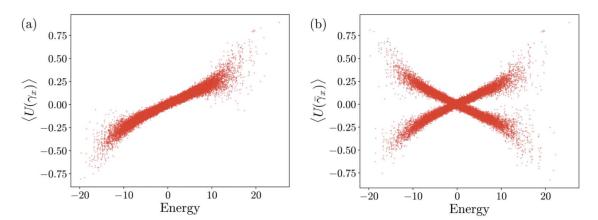
$$\rho(\beta,\lambda,\mu)_{\mathbb{Z}_2} = e^{-\beta H_{\mathbb{Z}_2} - \lambda U(C_x) - \mu U(C_x) H_{\mathbb{Z}_2}} / Z(\beta,\lambda,\mu)_{\mathbb{Z}_2},$$

$$Z(\beta,\lambda,\mu)_{\mathbb{Z}_2} = \operatorname{tr} e^{-\beta H_{\mathbb{Z}_2} - \lambda U(C_x) - \mu U(C_x) H_{\mathbb{Z}_2}}$$

• Numerical analysis of time-evolution

The thermal ensemble for \mathbb{Z}_2 gauge theory is given by GGE. (a) 1.0^{-1} (b) 1.0^{-1} GGE GGE 0.80.8 -Canonical ensemble Canonical ensemble $\langle U(\gamma_x) \rangle$ $\langle U(ar{\gamma}_x)
angle$ 0.60.60.40.40.20.20.0 0.0-0.2-0.20.05.010.015.020.025.00.05.010.015.020.025.0Time Time

Initial state: eigenstate of $\langle U(\gamma_x) \rangle / \langle U(\overline{\gamma_x}) \rangle = 1$, with $E \in [-5.0, -3.0]$.



• GGE for general discrete (abelian) group G

 $\begin{aligned} \langle \mathcal{O} \rangle_{\text{GGE}} &= \text{tr } \mathcal{O} \rho(\beta, \{\lambda_i\}, \{\mu_i\}) \\ \rho(\beta, \{\lambda_i\}, \{\mu_i\}) &\coloneqq e^{-\beta H - \sum_{i=1}^{N-1} \lambda_i P_i - \sum_{i=1}^{N-1} \mu_i P_i H} / Z(\beta, \{\lambda_i\}, \{\mu_i\}), \\ Z(\beta, \{\lambda_i\}, \{\mu_i\}) &\coloneqq \text{tr } e^{-\beta H - \sum_{i=1}^{N-1} \lambda_i P_i - \sum_{i=1}^{N-1} \mu_i P_i H} \end{aligned}$

 P_i : projection to each symmetry sector N: number of symmetry sector $|H_{d-p}(\mathcal{M}, G)|$

Assume that the canonical ensemble is realized for each symmetry sector.

At least for the operator $U_{\alpha}(\gamma)$ or $U_{\alpha}(\bar{\gamma})$, the thermal ensemble is given by this GGE for the total symmetry sector.