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What do we normally do to know constituents of something?  Just break it ! 

What about gravity? Can we study spacetime geometry in a finite region ?

• Cutting & gluing of spacetimes & entanglement

• Non-trivial: Gravity (gauge) constraints and gauge invariant observables are non-local!  

• Physical Phase & Hilbert space does not admit tensor-product factorization ℋ1∪2 ≠ ℋ1 ⊗ ℋ2

• Usually remedied by extending the Hilbert space with d.o.f. living along the cut, edge modes 

• QG in a lab: What are d.o.f.s inside the system and the outside environment
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Spacetime with boundaries (even at infinities) is interesting
Holography: Information of spacetime is encoded in some lower-
dimensional objects

Only in the presence of boundaries that we can talk about symmetries of spacetime

• Without boundaries, diffeomorphism ( ) is gauge redundancy  x → x′￼(x)

• With boundaries, parts of diffeomorphism turn physical with associated Noether charges 
supported at corners (codim-2)

• Utilization of the Noether’s 2nd theorem

Holographies and Symmetries

AdS/CFT holography Celestial holography
• Timelike boundary 

• Conformal field theory (CFT) 

• Codim-1 holography 

• Null boundary 

• CFT at celestial sphere 

• Codim-2 holography 

(Maldacena, Witten, …) (Strominger, Pasterski ,…)

03



Symmetries of Gravity

Covariant Phase Space Formalism (modern language of Noether’s theorems)

04



Symmetries of Gravity

Covariant Phase Space Formalism (modern language of Noether’s theorems)

Starting with a spacetime 
 with a boundary  and 

a theory of gravity
M B

Lagrangian  L[g]

Identifying symmetries
Diffeomorphism  ξ

g → g + δξg

M B

C

04



Symmetries of Gravity

Covariant Phase Space Formalism (modern language of Noether’s theorems)

Starting with a spacetime 
 with a boundary  and 

a theory of gravity
M B

Lagrangian  L[g]

Identifying symmetries
Diffeomorphism  ξ

g → g + δξg

Extracting phase space 
structure covariantly

δL = E + dθ

Equation of motion: E = 0
Symplectic 2-form

Ω[g, δg] = ∫B
δθ

M B

C

04



Symmetries of Gravity

Covariant Phase Space Formalism (modern language of Noether’s theorems)

Starting with a spacetime 
 with a boundary  and 

a theory of gravity
M B

Lagrangian  L[g]

Identifying symmetries
Diffeomorphism  ξ

g → g + δξg

Extracting phase space 
structure covariantly

δL = E + dθ

Equation of motion: E = 0
Symplectic 2-form

Ω[g, δg] = ∫B
δθ

Given the symplectic 
structure & symmetries, 
Noether charges can be 
computed

(Ω, ξ) ⟹ 𝒬ξ = ∫C
qξ

as well as their algebra
{𝒬ξ1

, 𝒬ξ2
} = 𝒬[ξ1,ξ2]

M B

C

04



Symmetries of Gravity

Covariant Phase Space Formalism (modern language of Noether’s theorems)

Starting with a spacetime 
 with a boundary  and 

a theory of gravity
M B

Lagrangian  L[g]

Identifying symmetries
Diffeomorphism  ξ

g → g + δξg

Extracting phase space 
structure covariantly

δL = E + dθ

Equation of motion: E = 0
Symplectic 2-form

Ω[g, δg] = ∫B
δθ

Given the symplectic 
structure & symmetries, 
Noether charges can be 
computed

(Ω, ξ) ⟹ 𝒬ξ = ∫C
qξ

as well as their algebra
{𝒬ξ1

, 𝒬ξ2
} = 𝒬[ξ1,ξ2]

M B

C

The charges are corner integral (codim-2), the hallmark of local symmetries  

04



Symmetries of Gravity

Covariant Phase Space Formalism (modern language of Noether’s theorems)

Starting with a spacetime 
 with a boundary  and 

a theory of gravity
M B

Lagrangian  L[g]

Identifying symmetries
Diffeomorphism  ξ

g → g + δξg

Extracting phase space 
structure covariantly

δL = E + dθ

Equation of motion: E = 0
Symplectic 2-form

Ω[g, δg] = ∫B
δθ

Given the symplectic 
structure & symmetries, 
Noether charges can be 
computed

(Ω, ξ) ⟹ 𝒬ξ = ∫C
qξ

as well as their algebra
{𝒬ξ1

, 𝒬ξ2
} = 𝒬[ξ1,ξ2]

M B

C

The charges are corner integral (codim-2), the hallmark of local symmetries  

For gravity, there are various issues, such as  

04



Symmetries of Gravity

Covariant Phase Space Formalism (modern language of Noether’s theorems)

Starting with a spacetime 
 with a boundary  and 

a theory of gravity
M B

Lagrangian  L[g]

Identifying symmetries
Diffeomorphism  ξ

g → g + δξg

Extracting phase space 
structure covariantly

δL = E + dθ

Equation of motion: E = 0
Symplectic 2-form

Ω[g, δg] = ∫B
δθ

Given the symplectic 
structure & symmetries, 
Noether charges can be 
computed

(Ω, ξ) ⟹ 𝒬ξ = ∫C
qξ

as well as their algebra
{𝒬ξ1

, 𝒬ξ2
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M B

C

The charges are corner integral (codim-2), the hallmark of local symmetries  

For gravity, there are various issues, such as  

• Non-integrable due to dissipation (very hard to have a closed system in gravity) 

• Renormalization at infinities 

Many techniques were invented to deal with these issues.  
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The knowledge about corner symmetries & charges is necessary for the spitting/gluing problem

• Extended Hilbert Space: The Hilbert space must carry non-trivial rep. 
of corner symmetries (additional label arising from corner charges)

• Physical Hilbert space is a subspace  

    containing states  ℋphys ⊂ ℋext
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Σ1
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Dynamics and phase space of gravity on  are Carrollian geometro-hydrodynamicsN

Carrollian Membrane Paradigm

Gravity d.o.f = Fluid quantities
Einstein equations = Hydrodynamics

   (Gab = Tab)ℓb    Db𝖳a
b = 𝖥a

Raychaudhuri & Damour Energy and momentum 
conservations for Carrollian fluid

(Donnay, Marteau, Speranza, Chandrasekara, PJ, Freidel, …)  
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Quantization of null surface
Quantization of the geometry of generic finite-distance null surfaces shows interesting features

• 1d CFT associated to each null rays, with infinite central charge 
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Quantization of null surface
Quantization of the geometry of generic finite-distance null surfaces shows interesting features

• 1d CFT associated to each null rays, with infinite central charge 

• The area element, a charge associated to the Weyl rescaling, is a Casimir operator. It has 
two types of representations

➡ Strictly positive + continuous   = classical spacetime representation

➡ Positive + discrete   = molecular representation, embadons, a cutoff to central charges 
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Gravitational Edge Modes

We saw that diffeomorphism that does not vanish at boundaries (large gauge transformations) 
turns physical and, by virtue of Noether’s theorems, has non-zero charge

• Gravity is an open system (there is flux) leading to non-integrable of charge. Noether charges 
may not be a Hamiltonian generator of symmetry

• Usually remedied by introducing a modified bracket (Barnich-Troessaert). However it is usually not 
Poisson and we do not know how to quantize
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Extended Phase Space
• Adding a new field , edge modes, to the symplectic structure . This new field 

keep track of the variation of the embedding of the boundary. 
χ Ω[g, δg]

ΩB[g, δg] Ωext
B [g, δg, χ] = ΩB[g, δg] + Ω∂B[g, δg, χ]

• Now, the system is still open but the Hamiltonian is integrable and the algebra is Poisson

Gatekeeper 

EDGE
MODE
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• Now, the system is still open but the Hamiltonian is integrable and the algebra is Poisson

Gatekeeper 

EDGE
MODE

This is at the phase space level. What about the action ? Will edge mode has its own dynamics ?

For internal gauge theories (like electromagnetism and Chern-Simons), edge modes can have 
their own dynamics (boundary action)  (Blommaert-Mertens-Verschelde, Geiller-PJ …)

The situation involving gravity is still awaiting exploration 
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Upshot

• Diffeomorphism, once thought as being gauge, is physical in the presence of spacetime 
boundaries. It is associated, through the Noether’s 2nd theorem, is the charge that 
represents physical quantities (energy, momentum, area, … ) 

• The charges are corner integrals and they form an algebra of corner symmetry group or its 
subgroup

• One can regard this as an emergence of new excitations living at boundaries, edge modes

• This then turns the geometry problem to the algebra problem, readily for quantization

• This procedure may help us understand some aspect of quantum gravity 

• The case of null boundary is particularly interesting as it reveals a deep connection with 
Carrollian physics 

Thank you! 
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