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Problems with Black Hole

1. Bekenstein-Hawking entropy:

SB−H =
A

4Gℏ
.

What is the interpretation? entanglement? microstates?
Why area dependence?

2. Black hole interior: existence of singularity
What replace the continuum spacetime description inside the black
hole?
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3. Information problem: non-unitarity evolution appears in 2 ways.
- Hawking radiation is a “mixed thermal state”, while the initial
state can be a pure state.
- Hawking curve behaviour of Srad violates unitarity.

What should be quantum degrees of freedom of black hole so that
one can evolve them quantum mechanically?
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Top-Down Approach to QG

• Obviously, all these problems are due to a lack of understanding of
the d.o.f. of quantum gravity.

• The best thing to do is to start from a theory X of quantum gravity,
construct the classical black hole as a solution of it, then the
properties of quantum black hole should follow.
X = e.g. string theory, branes, AdS/CFT, matrix model etc
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This top-down approach has been quite successful in string theory.

• Duality in QFT e.g. Montone-Olive S-duality

• Non-commutative geometry can be derived from first principle

• For BH, some of the progress made are:

1. Bekerstein-Hawking entropy: Microstate counting (Strominger-Vafa),
fuzzy ball proposal (Mathur), and progress in index computation.

2. Page curve: AdS/CFT Island proposal (Engelhardt, Wall, Penington,
Almheiri, Marlof, Maxfield, Mahajan, Maldacena, Zhao, ...)

Yet we still do not know: e.g.
- it hasn’t been possible to study an ordinary Schwarzschild BH
- what fundamental degrees of freedom of BH are being counted?
- how are they related to the Hawking radiation?
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Bottom up approach to QG

• Historically, QM was built bottom-up. Various models (e.g. Planck
model of blackbody radiation, Bohr model of atom) helped in
identifying fundamental features of QM, which eventually got built
in to the formulation of QM.

• Current mainstream construction of string theory: AdS/CFT,
M(atrix) theory etc have captured truth about quantum gravity, but
not complete.

• We initiated an bottom-up approach to QG by taking 2 steps:

1. Fermi model of BH (2209.03610, 2307.06164, 2307.06176)
2. QM of spacetime (2406.01466, 2406.12704)
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• General relativity is a classical theory of the continuum spacetime
M. The spacetime is endrosed with a metric gµν which became
dynamical. The theory is then shown to contain gravity.

• Quantum gravity should be a theory of quantum spacetime M̂. One
may model model quantum space by operator coordinates
(noncommutative geometry). (Synder; Yang (1947)).

• We propose to construct a theory of quantum gravity as a quantum
mechanics of noncommutating coordinates.
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Fermi model of BH

• In 2307.06164, a phenomenological model of quantum BH was
constructed. as a matrix model of fermionic degrees of freedom
coupled with bosonic degrees of freedom. Schematically,

L = iψ†ψ̇ + h(X )ψ†ψ − V (X ), e.g. BFSS

where h(X ) denotes some Yukawa coupling and V (X ) the
self-interaction. Presumably spacetime/gravity will emerge in some
“effective” way.

• Instead of committing to a specific Hamiltonian, e.g. BFSS matrix
model, we derived necessary properties of the matrix model so that
the box of fermi system resembles a BH.



I. Problems of Quantum Black Hole and Approaches (4) II. A Proposal of Quantum Gravity (5) III. Quantum Schwarzschild BH from Matrix Quantum Mechanics (5) IV. Quantum Kerr BH from Matrix Quantum Mechanics (7) V. Newton Gravity Limit (2) VI. Discussions

• We found that

- if the model admits a constant density of energy eigenstates and
- if the Fermi sea of the system is filled up to a Fermi energy level that
is inversely proportional to the system size,

then

- the Schwarzschild radius of BH is reproduced for the system.
- Moreover, a counting of microstates gives precisely the
Bekenstein-Hawking entropy.

• The model works also for charged BH, BH with a cosmological
constant. And also for Kerr BH and higher dimensional BH
(unpublished).
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Theory of Quantum Space
• We consider the large N quantum mechanics of quantum space

L = tr(
Ẋ a2

2MP
+

MP

N2
[X a,X b]2 +

4MP

N2
X a2 + iψ̇†ψ +

MP

N2
ψ†σaX aψ −MP1),

where a = 1, 2, 3, X a
mn, ψmn, ψ

†
mn in the adjoint of SU(N), and

MP :=
√

2/πG = Planck Mass.

• Remarks:

1. The necessity of fermionic geometry in quantum gravity arises from
the previous analysis of Fermi model of BH

2. SUSY is needed for consistency in popular top down approaches of
QG, however, it is not required for the well-definedness of QM. As a
result, our model of boson/fermi d.o.f. is OK. Also, a Higgs like
potential −ϕ2 + ϕ4 is allowed.

3. The theory is invariant under global SU(N) transformation

X a → UX aU†, ψ → UψU†, ψ† → Uψ†U†,

which replaces diffeomorphism.
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The Proposal

We propose that the large N quantum mechanics gives a fundamental
formulation of quantum gravity in 3 space dimensions.

• We will show that the theory admits quantum space solutions that
describe quantum Schwarzschild BH and quantum Kerr BH.

• We will also show that the interaction energy between two fuzzy
spheres has the correct dependence: GM1M2 as required by gravity.
We conjectured that Newton gravity will be reproduced in the large
distance limit.
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Quantum Schwarzschild as Fuzzy Sphere

• The classical EOM for bosonic matrix configuration is given by

− 1

MP
Ẍ a +

4MP

N2

(
[X b, [X a,X b]] + 2X a

)
= 0.

For static configuration, this becomes [[X a,X b],X b] = 2X a.

• This can be solved by the spin j = (N − 1)/2 reps. of SU(2):

[X a,X b] = iϵabcX c .

Due to the Casimir
∑

a X
a2 = N2−1

4
1, the config is a fuzzy sphere.

• Or, introduce dimensional coords Y a = 2lPX
a, we get a fuzzy sphere of

radius R,

[Y a,Y b] =
2iR√
N2 − 1

ϵabcY
c ,

∑
a

Y a2 = R21,

where R2 = (N2 − 1)l2P and lP = 2/πMP .
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Energy

• Over the fuzzy sphere, the Hamiltonian of the system reads

H = HB + HF , HB =
NMP

2
(1 +

1

N2
), HF = −MP

N2
ψ†σaX aψ

• HF describes a collection of fermionic oscillators with equal frequency

since K := σaX a satisfies K 2 + K − N2−1
4

1 = 0 and so it has eigenvalues
(N − 1)/2 or −(N + 1)/2. In large N, K has the eigendecomposition

K(mα)(nβ) =
N

2

N∑
p=1

(
Up
mαUp†

nβ − Vp
mαVp†

nβ

)
.

• Introduce the 2N2 oscillators ξpk := Up†
nβψnkβ , χ

p†
k := Vp†

nβψnkβ , then

HF =
MP

2N

 N∑
p,k=1

ξp†k ξ
p
k + χp†

k χ
p
k − N2

 .
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• Energy of the fermi system is

HF =
MP

2N
n, n := N2 − r − s,

where n = −N2, · · · , 0, · · · ,N2 specifies the energy level within the Fermi
sea. The lowest level (highest weight) of energy −NMP/2 (+NMP/2)
corresponds to a completely filled (empty) Fermi sea.

• Let us consider the n = 0 energy state which corresponds to a half-filled
Fermi sea. We have the total energy (R = NlP),

E =
NMP

2
=

R

2G
.

• This is precisely the Schwarzschild mass-radius relation if equivalence
principle holds

E = M (internal = grav energy)
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Entropy

• Let us consider the microstates counting. The level n eigenvalue has a
degeneracy of

Ωn =

(
2N2

N2 − n

)
.

• For the n = 0 energy state, we have Ω0 = 22N
2

in large N. These
microstates give rises to the entropy S = log2 Ω0:

S = 2N2 =
A

4G
,

i.e. precisely the Bekenstein-Hawking entropy!

• For the first time, we have a fundamental theory where both the geometry
and the Berkenstein-Hawking entropy of an ordinary non-SUSY BH can
be accounted for consistently.

• We thus propose that Schwarzschild black hole in GR is described by a
fuzzy sphere quantum geometry with a half-filled Fermi sea in QG.
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Remarks

• ’t Hooft (85): ’t Hooft has proposed that BH entropy is an entanglement
entropy. In our construction, the BH entropy is a coarse grained entropy
rather than an entanglement entropy.

• Bekenstein entropy bound (81):

S ≤ 2πRE

is satisfied for n ≥ 0. Negative n states (more than half filled) are
probbaly excluded because of stability reason.

• Holography(94): Our description of BH is naturally holographic: (1) The
BH is described by a 2-dimensional quantum geometry. (2) If we divide
the fuzzy sphere into N2 cells, each cell of a Planck size area ∆A = 4πl2P ,
then there is precisely one pair of fermionic oscillators ξa, χa

(a = 1, · · ·N2) in each cell of the fuzzy sphere to describe the quantum
fluctuations over the fuzzy sphere.
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Kerr metric in General Relativity

• In the Boyer-Lindquist coordinates, the Kerr metric of a BH of mass M
and angular momentum J reads

ds2 = −
(
1− 2M

ρ2

)
dt2− 4Mar sin2 θ

ρ2
dtdϕ+

Σ

ρ2
sin2 θdϕ2+

ρ2

∆
dr 2+ρ2dθ2,

ρ2 := r 2 + a2 cos2 θ,∆ := r 2 − 2Mr + a2,Σ := (r 2 + a2)2 − a2∆sin2 θ.

• In the asymptotic region r → ∞, we have

ds2 = −
[
1− 2M

r
+ O

(
1

r 3

)]
dt2 −

[
4Ma sin2 θ

r
+ O

(
1

r 3

)]
dϕdt

+

[
1− 2M

r
+ O

(
1

r 2

)] [
dr 2 + r 2(dθ2 + sin2 θdϕ2)

]
.

This shows that M is the mass and J = aM is the angular momentum of
the black hole spacetime.
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• For M = 0, we obtain

ds2 = −dt2 +
r 2 + a2 cos2 θ

r 2 + a2
dr 2 + (r 2 + a2 cos2 θ)dθ2 + (r 2 + a2) sin2 θdϕ2.

This is Minkowski metric written in the “oblate spherical” coordinates,
which is related to the Cartesian coordinates as

x =
√

r 2 + a2 sin θ cosϕ, y =
√

r 2 + a2 sin θ sinϕ, z = r cos θ.

• For a ̸= 0, the oblate spherical coordinates (r , θ, ϕ) is different from the
usual polar coordinates. e.g. r = constant describes an ellipsoid.
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• The Kerr BH has a horizon at r+ = M +
√
M2 − a2. Viewed in the

Cartesian coordinates, the horizon is an elliptical surface

x2 + y 2

r 2+ + a2
+

z2

r 2+
= 1.

• The area of the horizon is A = 4π(r 2+ + a2) and give rises to the
Bekenstein-Hawking entropy

S =
A

4G
=
π(r 2+ + a2)

G
.

• The mass of the Kerr black hole written in terms of r+ is

M =
r 2+ + a2

2Gr+
.

We will show below a noncommutative geomeytry solution to the matrix QM
that precisely reproduces the shape, mass and entropy of the Kerr BH.
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Rotating Fuzzy Ellipsoid Solution
• The axial symmetry of the Kerr BH suggests to consider a rotating

solution in the QM. Introduce new basis (X+,X−,X 3),
X± := 1√

2
(X 1 ± iX 2) and consider the ansatz

X±(t) = e±iωtX±(0), X 3 independent of t

The equation of motion becomes

[X+, [X+,X−]] + [X 3, [X+,X 3]] + 2c2X+ = 0,

[X−, [X 3,X+]] + [X+, [X 3,X−]] + 2X 3 = 0

where c2 := 1 + N2ω2/(8M2
P).

• This has the soln

X± = e±iωtT±, X 3 = c3T
3, c3 =

√
1 +

N2ω2

4M2
P

,

or, in terms of dimensionful coord

Y 1,2 = NlP T̂ 1,2, Y 3 = NlP cosβ T̂ 3

where T̂ a := 2
N
T a and cosβ := 1/c3.
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• Identify T̂ a with the directional cosines and R and a as

R = NlP cosβ, a = NlP sinβ,

we have
Y 2

1 + Y 2
2

R2 + a2
+

Y 2
3

R2
= 1,

which is precisely the shape of the horizon of the Kerr BH.
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Entropy

• Over the fuzzy ellipsoid geometry, the bosonic Hamiltonian is

HB =
NMP

2
+

N3ω2

12MP
.

• The fermionic Hamiltonian HF = −MP
N2 ψ

†σaX aψ = H0
F + hF ,

H0
F = −MP

N2
ψ†σaT a(t)ψ, hF = −(c3 − 1)

MP

N2
ψ†σ3T 3ψ

where T±(t) = e±iωtT±,T 3(t) = T 3. H0
F is an isotropic part, hF is of

order a2/R2 and can be considered a perturbation.

• Consider the n = 0 level, this is a degenerate level with Ω0 = 22N
2

states.
These microstates give rise to the entropy S = log2 Ω0:

S = 2N2 =
π(R2 + a2)

G
,

which is precisely the Bekenstein-Hawking entropy of a Kerr BH if we
identify R with r+ of the outer horizon radius of the Kerr BH.
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Energy

• Rather than computing the corrections for individual states of the level
n = 0, it is more meaningful to compute the ensemble average of the
corrections

hF :=
1

Ω0

∑
p

λp

for the set of microstates. We find hF = − c3−1
6

NMP and

E =
R2 + a2

2GR
(1 +

1

6
sin4 β + · · · ), sinβ =

a√
R2 + a2

.

• The quantum energy agrees precisely with that of general relativity, with a
correction of the order O(a4/R4).

• This result relies on an exact cancellation between the contributions of the
bosonic and fermionic Hamiltonian at order O(a2/R2). This is a nontrivial
check of our proposal.
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• Let us consider block diagonal configuration

X a =

(
X a

1 0

0 X a
2

)
,

Define COM coordinates for each block xa
i := 1

Ni
trX a

i . We can interpret
xa
i as the location of the BH with respect to the COM of the system
(since N1x

a
1 + N2x

a
2 = 0 and BH masses Mi =

NiMP
2

.).

• The energy of the block config can be computed. We obtain

E = M1 +M2 + Vint

where the interaction energy is a function of ∆x :=
√

(xa
1 − xa

2 )
2.

• In terms of the dimensionful distance r := ∆xlP , we have

Vint = const− GM1M2

r
g(r)

where g(r) = −4r/R + · · · for small r/R ≪ 1. Note that the structure of
Newtonian gravity is reproduced.
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Remarks:

• Note that Vint is finite at r = 0. No singularity!

• Newtonian limit is for r/R ≫ 1. It is important to devise method to
reliably compute the potential V (r) between the fuzzy spheres in order to
confirm that gravity does emerge from our proposed theory of quantized
spacetime. large N resummation? contributions from off-diagonal blocks?
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• We have made a proposal of quantum gravity as a large N quantum
mechanics of non-abelian bosonic and fermionic coordinates with a Higgs
like potential.

• The QM admits solutions with quantum fuzzy geometries and half filled
fermi sea. These solutions reproduce the properties of quantum
Schwarzschild BH and quantum Kerr BH. A number of crucial properties
of black hole and quantum gravity that people have conjectured before
appear naturally in our theory. e.g. noncommutative geometry,
holography, membrane paradigm, etc.

To do:

1. Cosmological solution? Dark energy? Inflation?

2. It is important to understand how Einstein gravity and geodesic equation
arise in the GR limit (probe analysis).

3. We have now a theory where one can resolve other puzzling properties of
BH in GR+QM: e.g. Hawking radiation? Page curve? information loss?

4. Note that unlike BH in GR, the quantum BH in our theory is described by
a quantum noncommutative geometry and is non-singular. It is interesting
to understanding how a singularity would arise in the GR limit.

5. Is it possible to derive AdS/CFT? holography?
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