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Gravity is universal.
• Charge for gravity = (positive) energy
⇒Universal attractive force

• Accumulating the effect of gravity makes the bulk non-uniform.

• An extreme and universal result: 

   In a strong gravity limit, any configuration becomes a “black hole”.

Einstein eq:

𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝑇𝑇𝜇𝜇𝜇𝜇
curvature of spacetime energy-momentum density

𝑀𝑀 𝑚𝑚

𝐹𝐹 =
𝐺𝐺𝑀𝑀𝑚𝑚
𝑟𝑟2

Cf: Charge for EM = +/- electric charge
⇒ The bulk can be neutral and uniform.

Any spherical 
configuration 
with mass 𝑀𝑀

“black hole” with size 𝑎𝑎0 ≡ 2𝐺𝐺𝑀𝑀

𝑎𝑎0
(Schwarzschild radius)Collapse due to 

strong self-gravity

curvature 
of spacetime



What is a black hole in quantum theory? 

• Classical definition of black holes = existence of horizons 
    

However,…
• No observational data showing  the existence of horizons yet.

• Black-hole entropy 𝑺𝑺 = 𝑨𝑨
𝟒𝟒𝟒𝟒𝟒

= log Ω 

⇒ black hole = essentially quantum object consisting of (still unknown) d.o.f.
• In quantum gravity, spacetime should fluctuate.

      ⇒ The classical geometric definition must be modified/replaced somehow.  

⇒A possible approach is to consider 

     What is the quantum definition/characterization of black holes? 
avity?  

BH?

BH?
𝑎𝑎0 ≡ 2𝐺𝐺𝑀𝑀

X singularity
vacuum

(Bekenstein-Hawking formula)

But there should be many candidates…



Maximization of entropy
• A candidate quantum definition is
 Black hole maximizes thermodynamic entropy for a given surface area.

• Motivations
(1) Thermodynamic entropy is quantum:

𝑆𝑆 = log  Ω , Ω = # of {|𝜓𝜓⟩ consistent with (𝐸𝐸,𝑉𝑉)}

(2) Bekenstein-Hawking formula saturates the holographic entropy bound: 

𝑆𝑆 𝐿𝐿 ≤
𝐴𝐴 𝐵𝐵
4𝑙𝑙𝑝𝑝2

 

(3) Any  configuration with mass 𝑅𝑅
2𝐺𝐺

 in a strong-gravity limit becomes a BH with size 𝑅𝑅.
⇒BH = a macroscopic state (phase) with maximum entropy according to 2nd law?

• This should be valid in quantum theory, but…

[Bousso 1999]

(still conjecture) Area of B: 𝐴𝐴(𝐵𝐵)

[Yokokura 2023]

[Dvali-Gomez 2013, 
Oriti-Pranzetti-Sindoni 2016]

expectation value of

≺
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚BH =

surface area 𝐴𝐴



• As a first trial, we consider the 4D semi-classical Einstein eq with 
many matter fields in a self-consistent manner:

self-gravity 𝑔𝑔𝜇𝜇𝜇𝜇=
excited quanta in |𝜓𝜓⟩

a collection of self-gravitating 
many excited quanta in 𝜓𝜓 ,𝑔𝑔𝜇𝜇𝜇𝜇  

𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝜓𝜓|𝑇𝑇𝜇𝜇𝜇𝜇|𝜓𝜓

Semi-classical Einstein eq.

𝑔𝑔𝜇𝜇𝜇𝜇:classical metric
𝜙𝜙𝑖𝑖:quantum operators

spherical static region 
with a surface area 𝟒𝟒𝟒𝟒𝑹𝑹𝟐𝟐 

∇𝜇𝜇�̃�𝑠𝜇𝜇 = 0Assume spherical and static

𝑅𝑅

𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 ≠ 0 

𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 ≈ 0 

𝑚𝑚 𝑟𝑟
2𝐺𝐺

≡ 𝑚𝑚(𝑟𝑟): quasi-local energy inside 𝑟𝑟



• As a first trial, we consider the 4D semi-classical Einstein eq with 
many matter fields in a self-consistent manner:

self-gravity 𝑔𝑔𝜇𝜇𝜇𝜇=
excited quanta in |𝜓𝜓⟩

𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝜓𝜓|𝑇𝑇𝜇𝜇𝜇𝜇|𝜓𝜓

Semi-classical Einstein eq.

𝑔𝑔𝜇𝜇𝜇𝜇:classical metric
𝜙𝜙𝑖𝑖:quantum operators

spherical static region 
with a surface area 𝟒𝟒𝟒𝟒𝑹𝑹𝟐𝟐 

Non-uniform bulk structure by self-gravity 𝑔𝑔𝜇𝜇𝜇𝜇
⇒Violate extensivity/intensivity
⇒ Self-gravity dependence of entropy

thermodynamic entropy 

𝑆𝑆 𝑔𝑔𝜇𝜇𝜇𝜇,𝑅𝑅 = �
Σ
𝑑𝑑Σ𝜇𝜇 �̃�𝑠𝜇𝜇 = �

0

𝑅𝑅
𝑑𝑑𝑟𝑟 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑠𝑠(𝑟𝑟)

∇𝜇𝜇�̃�𝑠𝜇𝜇 = 0

entropy density 
per proper radial length

Assume spherical and static

𝑅𝑅

𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 ≠ 0 

𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓 ≈ 0 

a collection of self-gravitating 
many excited quanta in 𝜓𝜓 ,𝑔𝑔𝜇𝜇𝜇𝜇  



Step1: Estimation of 𝑆𝑆[𝑔𝑔𝜇𝜇𝜇𝜇;𝑅𝑅)
• Focus on a small spherical subregion  of the static configuration (𝑔𝑔𝜇𝜇𝜇𝜇 , |𝜓𝜓⟩).

• Consider a typical state |𝜓𝜓⟩ for 𝑔𝑔𝜇𝜇𝜇𝜇 s.t. 

𝜓𝜓| − 𝑇𝑇𝑡𝑡𝑡𝑡 𝑟𝑟 |𝜓𝜓 = −𝑇𝑇𝑡𝑡𝑡𝑡 𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑚𝑚𝑡𝑡 , 𝜖𝜖 𝑟𝑟 ~𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟

⇒  𝑠𝑠 𝑟𝑟 ~
4𝜋𝜋𝑟𝑟2 𝜓𝜓| − 𝑇𝑇𝑡𝑡𝑡𝑡 𝑟𝑟 |𝜓𝜓

𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟
=
𝑟𝑟2(−𝐺𝐺𝑡𝑡𝑡𝑡(𝑟𝑟))
2𝐺𝐺𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟

• Thus, we can estimate 

𝑆𝑆[𝑔𝑔𝜇𝜇𝜇𝜇;𝑅𝑅) = �
0

𝑅𝑅
𝑑𝑑𝑟𝑟 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑠𝑠(𝑟𝑟)~�

0

𝑅𝑅
𝑑𝑑𝑟𝑟 1 −

2𝐺𝐺
𝑟𝑟
�
0

𝑟𝑟
𝑑𝑑𝑟𝑟′ 𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟′ 𝑠𝑠(𝑟𝑟′) 

−12
𝑠𝑠(𝑟𝑟)

• For the semi-classical description to be valid, we must have 𝜖𝜖 𝑟𝑟 ≤ 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚~𝑚𝑚𝑝𝑝

𝑛𝑛

𝑟𝑟 = 𝑅𝑅

𝑟𝑟
Δ�̂�𝑟

𝜆𝜆 𝑟𝑟 ~
𝟒
𝜖𝜖 𝑟𝑟

ℛ(𝑟𝑟)−
1
2

entropy density 
per proper radial length

characteristic 
wavelength

Radius of curvature

Δ�̂�𝑟 ≡ 𝑔𝑔𝑟𝑟𝑟𝑟(𝑟𝑟)𝛥𝛥𝑟𝑟

⇒ A larger 𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟  gives a larger 𝑆𝑆 (for 𝑠𝑠(𝑟𝑟), an increasing function of 𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟 ).

⇒This subsystem does not feel gravity.

𝜆𝜆 𝑟𝑟 ∼
𝟒
𝜖𝜖 𝑟𝑟

< Δ�̂�𝑟 < ℛ 𝑟𝑟 −1/2

local temperature

~ ~

[Yokokura 2023]

[Goldstein et al 2006, 
Reimann 2007, more]

𝑛𝑛 = 𝑂𝑂 1 ≫ 1

highly excited Einstein eq



Step2: Upper bound from static condition  
• A static spacetime has a timelike Killing vector globally.
⇒No trapped surface (horizon) exists.  

• Semi-classical condition for no trapped surface:
𝜆𝜆 𝑟𝑟 < 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟

• Then, we obtain 

𝑠𝑠 𝑟𝑟 <
1
𝟒

𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟 4𝜋𝜋𝑟𝑟2 −𝑇𝑇𝑡𝑡𝑡𝑡(𝑟𝑟)  

• Using 𝑠𝑠 𝑟𝑟 ~ 𝑟𝑟2(−𝐺𝐺𝑡𝑡
𝑡𝑡(𝑟𝑟))

2𝐺𝐺𝜖𝜖(𝑟𝑟)
, we reach the upper bound:

𝑟𝑟 𝑎𝑎(𝑟𝑟)

𝜆𝜆 𝑟𝑟 ~
𝟒
𝜖𝜖(𝑟𝑟)

[Sorkin-Wald-Zhang 1981]

~

~𝑆𝑆 <
1
𝑙𝑙𝑝𝑝2
�
0

𝑅𝑅
𝑑𝑑𝑟𝑟 𝑟𝑟𝜕𝜕𝑟𝑟𝑎𝑎(𝑟𝑟)

=static

𝑚𝑚 𝑟𝑟
2𝐺𝐺

≡ 𝑚𝑚(𝑟𝑟):energy inside 𝑟𝑟

[Mars-Senovilla 2003]

Meaning: 
A quantum composing a part at 𝑟𝑟 must be outside the would-
be horizon 𝑎𝑎(𝑟𝑟) at least by its wavelength 𝜆𝜆 𝑟𝑟 ∼ 𝟒/𝜆𝜆(𝑟𝑟).

proper length

[Yokokura 2023]

Ex. 𝑘𝑘 = 𝜕𝜕𝑡𝑡 in Schwarzschild metric 

𝑘𝑘2 = − 1 −
𝑎𝑎0
𝑟𝑟



Step3: Saturating condition
• To get the saturating configuration, we solve 

𝜆𝜆 𝑟𝑟 ~ 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟  for 𝜖𝜖 𝑟𝑟 = 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚~
𝑚𝑚𝑝𝑝

𝑛𝑛
and use 
- consistency with local thermodynamics:  𝑇𝑇𝑟𝑟𝑟𝑟 , 𝑇𝑇𝜃𝜃

𝜃𝜃 ≥ 0
- consistency with semi-classical approximation: 𝑇𝑇𝑟𝑟𝑟𝑟 , 𝑇𝑇𝜃𝜃

𝜃𝜃 ≤ 𝑂𝑂(1)

• These lead to uniquely the entropy-maximizing spacetime:

𝑑𝑑𝑠𝑠2 = −
𝜂𝜂2𝜎𝜎
2𝑟𝑟2 𝑒𝑒

− 𝑅𝑅2−𝑟𝑟2
2𝜎𝜎𝜎𝜎 𝑑𝑑𝑡𝑡2 +

𝑟𝑟2

2𝜎𝜎 𝑑𝑑𝑟𝑟
2 + 𝑟𝑟2𝑑𝑑Ω2.

- Satisfies 𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺 𝜓𝜓|𝑇𝑇𝜇𝜇𝜇𝜇|𝜓𝜓  with 𝑛𝑛(≫ 1) scalar fields non-perturbatively in 𝟒 for 

𝜎𝜎 =
𝑛𝑛𝑙𝑙𝑝𝑝2

120𝜋𝜋𝜂𝜂2 , 1 ≤ 𝜂𝜂 < 2.

• This can be obtained in various manners 
    and should be robust.
  (In particular, formation process in a heat bath.)

for O( 𝑛𝑛𝑙𝑙𝑝𝑝) ≤ 𝑟𝑟 ≤ 𝑅𝑅

[Kawai-Matsuo-Yokokura 2013, 
Kawai-Yokokura 2014, 2015, 2017, 
2020, 2021,
Yokokura 2022, 
Ho-Kawai-Liao-Yokokura 2023]

Heat baht at 𝑻𝑻𝑯𝑯

[Yokokura 2023]

at each 𝑟𝑟



• The entropy-maximizing configuration 

𝑑𝑑𝑠𝑠2 = −
2𝜎𝜎
𝑟𝑟2 𝑒𝑒

−𝑅𝑅
2−𝑟𝑟2
2𝜎𝜎𝜎𝜎 𝑑𝑑𝑡𝑡2 +

𝑟𝑟2

2𝜎𝜎 𝑑𝑑𝑟𝑟
2 + 𝑟𝑟2𝑑𝑑Ω2

represents that  self-gravitating quanta condensates into a dense configuration. 

Semi-classical gravity condensate

Surface (𝑎𝑎0 ≡ 2𝐺𝐺𝑀𝑀)

𝑅𝑅 = 𝑎𝑎0 +
𝜎𝜎𝜂𝜂2

2𝑎𝑎0
(> 𝑎𝑎0)

⇒No horizon but surface

- Curvatures ℛ = 𝑂𝑂 1
𝑛𝑛𝑡𝑡𝑝𝑝2

≪ 𝑂𝑂 1
𝑡𝑡𝑝𝑝2

⇒No singularityQuantum pressure

𝑇𝑇𝜃𝜃
𝜃𝜃 =

1
16𝜋𝜋𝐺𝐺𝜎𝜎𝜂𝜂2

�̂�𝑟
𝜆𝜆 𝑟𝑟 ~ 𝑛𝑛𝑙𝑙𝑝𝑝

⇒uniform in r direction

This pressure and self-gravity are balanced!

⇒ Semi-classical gravity condensate is the black hole. 

Hawking-like radiation occurs 

𝑇𝑇 =
𝟒

4𝜋𝜋𝑎𝑎0 𝑢𝑢

𝑅𝑅

[Yokokura 2023]

(←Locally 𝐴𝐴𝑑𝑑𝑆𝑆2 × 𝑆𝑆2)

Finite!

[Yokokura 2022]

[Yokokura 2022]

[Kawai-Matsuo-Yokokura 2013]

[Kawai-Yokokura 2020]



Maximum entropy 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
• The excited quanta behave like a local thermal state at

𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟 =
𝟒

2𝜋𝜋 2𝜎𝜎𝜂𝜂2
.

• In this local equilibrium, we have 

𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙𝑠𝑠 = 𝜌𝜌1𝑑𝑑 + 𝑝𝑝1𝑑𝑑 , 𝑝𝑝1𝑑𝑑 =
2 − 𝜂𝜂
𝜂𝜂

𝜌𝜌1𝑑𝑑 .

• Then, we can evaluate the entropy density: 𝑠𝑠 𝑟𝑟 = 2𝜋𝜋 2𝜎𝜎
𝑡𝑡𝑝𝑝2

⇒Integrating it over the volume produces the Bekenstein-Hawking formula:

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = �
0

𝑅𝑅
𝑑𝑑𝑟𝑟 𝑔𝑔𝑟𝑟𝑟𝑟(𝑟𝑟)𝑠𝑠(𝑟𝑟) = �

0

𝑅𝑅
𝑑𝑑𝑟𝑟

𝑟𝑟2

2𝜎𝜎
2𝜋𝜋 2𝜎𝜎
𝑙𝑙𝑝𝑝2

=
𝐴𝐴

4𝑙𝑙𝑝𝑝2

• This derives the Bousso bound for thermodynamic entropy: 𝑆𝑆 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐴𝐴
4𝑡𝑡𝑝𝑝2

.

− 𝑇𝑇𝑡𝑡𝑡𝑡 =
1

8𝜋𝜋𝐺𝐺𝑟𝑟2 ,

𝑇𝑇𝑟𝑟𝑟𝑟 =
2 − 𝜂𝜂
𝜂𝜂 − 𝑇𝑇𝑡𝑡𝑡𝑡

𝐴𝐴 ≡ 4𝜋𝜋𝑅𝑅2 ≈ 4𝜋𝜋𝑎𝑎02

𝜎𝜎 cancels out!

Note: The self-gravity changes the volume law to the area law.

𝜌𝜌1𝑑𝑑 = 4𝜋𝜋𝑟𝑟2 − 𝑇𝑇𝑡𝑡𝑡𝑡 ,
𝑝𝑝1𝑑𝑑 = 4𝜋𝜋𝑟𝑟2 𝑇𝑇𝑟𝑟𝑟𝑟

~
𝑚𝑚𝑝𝑝

𝑛𝑛

[Yokokura 2022,2023]

How to get this? 
- Unruh temperature
- Particle creation

1D Gibbs relation equation of states



Conclusions
• We have considered a candidate for quantum characterization of BH: 
                 Black hole maximizes thermodynamic entropy for a given surface area.

• Studying this for spherical static cases in 𝐺𝐺𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝐺𝐺⟨𝜓𝜓 𝑇𝑇𝜇𝜇𝜇𝜇 𝜓𝜓⟩ under 

(1) Local spherical typicality: 𝜓𝜓| − 𝑇𝑇𝑡𝑡𝑡𝑡 𝑟𝑟 |𝜓𝜓 = −𝑇𝑇𝑡𝑡𝑡𝑡 𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑚𝑚𝑚𝑚𝑡𝑡, 𝜖𝜖 𝑟𝑟 ∼ 𝑇𝑇𝑡𝑡𝑙𝑙𝑙𝑙 𝑟𝑟 , 𝑇𝑇𝑗𝑗𝑖𝑖 ≥ 0

(2) Semi-classicality: 𝜖𝜖 𝑟𝑟 ≤ 𝑚𝑚𝑝𝑝

𝑛𝑛
, 𝑇𝑇𝜇𝜇

𝜇𝜇 ≤ 𝑂𝑂(1) 

(3) Static condition: 𝜆𝜆 𝑟𝑟 ≤ 𝑔𝑔𝑟𝑟𝑟𝑟 𝑟𝑟 𝑟𝑟 − 𝑎𝑎 𝑟𝑟 ,
we found uniquely

                 Black hole  = semi-classical gravity condensate

𝑑𝑑𝑠𝑠2 = −
𝜎𝜎𝜂𝜂2

2𝑟𝑟2 𝑒𝑒
−𝑅𝑅

2−𝑟𝑟2
2𝜎𝜎𝜎𝜎 𝑑𝑑𝑡𝑡2 +

𝑟𝑟2

2𝜎𝜎 𝑑𝑑𝑟𝑟
2 + 𝑟𝑟2𝑑𝑑Ω2

𝑆𝑆 ≤ 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐴𝐴

4𝑙𝑙𝑝𝑝2

- 4D non-perturbative 
solution for 𝟒

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚BH = = Self-gravitating quantum many-body 
system with holographic bulk dynamics

�̂�𝑟

-Derive Bousso bound for 
thermodynamic entropy 



• 1. Role of self-gravity in holography

• 2. Gravity-condensate phase 

Future prospects (1/2)

- 𝑠𝑠3𝑑𝑑 𝑟𝑟  ~ 𝑛𝑛
𝑡𝑡𝑝𝑝𝑟𝑟2

≪ 𝑠𝑠𝑛𝑛𝑚𝑚𝑖𝑖𝑛𝑛𝑡𝑡3𝑑𝑑 𝑟𝑟 ~ 𝑛𝑛
𝑡𝑡𝑝𝑝3

- S-wave excitations can explain 𝑆𝑆 = 𝐴𝐴
4𝑡𝑡𝑝𝑝2

. 

⇒Self-gravity suppresses excitations of local d.o.f. in the bulk? 
⇒Origin of holography? 

- The radial direction is uniform radially.  
⇒The gravity condensate is a thermodynamic phase?

⇒ Can we make an effective theory/a quantum many-body model? 

𝑙𝑙𝑝𝑝

𝑙𝑙𝑝𝑝
𝑙𝑙𝑝𝑝

𝑛𝑛

𝜆𝜆𝑇𝑇 =
𝟒
𝑚𝑚𝑇𝑇

~𝜌𝜌𝑁𝑁
−1/3

𝜆𝜆 𝑟𝑟 ~ 𝟒
𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟

∼ ℛ 𝑟𝑟 −12. 

In a (non-rel) material,

In the gravity condensate,

⇒Quantum effects govern the system. 

⇒Quantum gravitational phase?

[Kawai- Yokokura 2020]

~ 𝑛𝑛𝑙𝑙𝑝𝑝

Thermal wavelength Mean classical-particle distance

(But the full 4D fluctuation is needed for 𝑔𝑔𝜇𝜇𝜇𝜇.)



• 3. Similarities to other gravity-condensate in QG

• 4. Phenomenology 

Future prospects (2/2)

- Model in Group Field Theory
⇒ radially uniform

- Model in gravitons
⇒ Their picture appears in each spherical subsystem of ours.

      ⇒ It has 
𝑁𝑁𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟 𝑟𝑟 ~𝑁𝑁𝑔𝑔𝑟𝑟𝑚𝑚𝑛𝑛𝑖𝑖𝑡𝑡𝑙𝑙𝑛𝑛 𝑟𝑟 ~𝑛𝑛 (≫ 1)

⇒It represents semi-classically a mixture of matter quanta and gravity quanta?

[Dvali-Gomez 2013]

[Oriti-Pranzetti-Sindoni 2016]

-Imaging (“BH shadow”) the gravity condensate.
⇒ - consistent with current observations
      - tiny characteristic difference

- How about GW? 

Thank you very much!!

[Chen-Yokokura 2024]

Classical Schwarzschild BH Our gravity condensate

≈
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