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Problem of interest
Original image: P. Kim, Columbia Univ.

Magnetism

Superconductivity

Material properties:

● Problem: Solid state materials are interacting many-electron systems

● Any study requires drastic but sensible approximations

Use simpler model systems and apply sophisticated solution techniques

wikipedia.org/wiki/Meissner_effect

Considered to be governed 
by electronic properties!

wikipedia.org/wiki/
Horseshoe_magnet
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Hubbard model
● Project onto a low-energy space with a localized (Wannier) basis

● All matrix elements can in principle be obtained
(approximately) using ab-initio methods specific
for each model, defined by the basis

● Solution not possible in general
 Use approximations →
 (Dynamical) mean-field theory, etc.→
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What about the 
interaction?



Interaction term 
● Coulomb interaction
● Screening effects outside of the low-energy space reduce 

effective interaction further
● Often reasonable approximation: local                 !

                                                            (          on same atomic site)

● Starting point for many methods: 
Local density approximation+U, dynamical mean-field theory 
(DMFT), random-phase approximation (RPA), ...



Multi-orbital Hubbard model
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Particle

Particle

Convention:

Qin et al., Annual Review of Condensed 
Matter Physics, 13, 275-302 (2022)

Hubbard,, Proc. R. Soc. London, Ser. A 276, 1365 (1963)
Kanamori, Progress of Theoretical Physics 30(3), 275, (1963)“electron 

hopping”

Electron-Electron Interaction:
On-site orbital 
indices

Model for correlated electron systems 
(cuprates, perovskites, nickelates, ...)



Standard Interaction Terms

● Which of the 
terms vanish due to 
symmetry?

● What about real materials?

● What is the effect of 
on electronic properties?

+

+

+

Density-Density type (Hartree)

Hund’s type
(Fock)

intra-orbital inter-orbital

High-spin Hund’s rule

Questions:

Common definition:

Ribic, Assmann, Tóth, Held, PRB 90, 165105 (2014)
Zhang et al., PRL 116, 106402 (2016)
Hausoel, et al., Nat.Comm. 8, 16062 (2017)

See also:

(intra)

(inter)

(Hund)



Symmetry of the Coulomb Tensor
● Coulomb tensor must obey the symmetry of the atoms’ environment

● Symmetry properties restrict the form of 

Coulomb matrix elements in multi-orbital Hubbard models, 
J. Bünemann, F. Gebhard
J. Phys.: Condens. Matter 29, 165601 (2017)

Point-group operation

Matrix-representation of 
irreducible representation

E.g. t2g manifold (cubic)

Invariant under symmetry 
transformation!

cubic



Symmetry of the Coulomb Tensor

●       is an Eigenvector with Eigenvalue               of 
● Physical operators (such as       ) live in :
● Idea: Construct basis of          !

where

Rewrite as:

Due to symmetry:       can be parametrized 
by                parameters! 

combined index



Symmetry of the Coulomb interaction

● We construct basis of 

● And basis of complement space

● Then

e.g.                    for 5 orbitals

independent Coulomb 
parameters



Symmetry of the Coulomb interaction
● Full      reconstructed from 

minimal set 
●      in general arbitrary linear 

combinations of
● Physical intuitive parameters      

                       etc., can be 
chosen as n  indep. parameters 
by partial transform & back-
transform

●                               etc. can be 
implemented in the same way

 full rank



Symmetry of the Coulomb interaction

●                                   can be exploited by

● Symmetries independent of crystal structure?



Minimal set of parameters for d shell

● Spherical symmetry (free atom): 3    (#129/625 nonzero)

● Cubic Oh (SrVO3, NiO):                   10    (#129/625 nonzero)

● Tetragonal D4h (Sr2RuO4) :             23   (#129/625 nonzero) 

● Tetragonal D2d (FeSe, BaFe2As2) : 23   (#129/625 nonzero) 

● Tetragonal C2h (La2CuO4) :             66   (#313/625 nonzero)

Nonzero Elements (except C2h):

only between eg-t2g

when using 
Slater form with

→only 

Density Hund

3-index 4-index

Same form of 
Coulomb tensor 
(except lifting of 
degeneracies)

2-index

“correlated” inter-orbital hopping



Interaction term for real materials  (3d)
NiO (cubic)

Ni
O

FeSe (tetr.)

(Using constrained RPA: Aryasetiawan et al., PRB 70, 195104 (2004) )

(cubic)



Some actual examples

https://en.wikipedia.org/wiki/Photoemission_spectroscopy

● Photoemission spectroscopy (PES)
● Accessible via Green’s function:

● Typical spectrum:



3d shell, Nel=5, isolated atom toy model

 0

 1

 2

 3

 4

 5

 6

 7

-7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7

n=0.5 N=5

S
p
e
c
tr

a
l 
fu

n
c
ti
o
n

ω [eV]

density
+spinf./pairh.

full Uijkl

● Dens.-dens. ground state:
high spin

● Full 4-index ground state:
high/low spin degenerate 

●           : restores symmetry
e.g. 

● GS degeneracy enhanced, 
but spectrum identical

    ↑↑↑↑↑

↓     ↑↑↑↑ , ↓  ↑↓  ↑↑

Single electron addition/removal spectrum

Hund’s coupling
spin-flip

See also: 
Haule, Kotliar, NJP, 11, 025021 (2009)
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● Dens.-dens. ground state
breaks spin-rotational 
invariance & orbital sym.

● pairhop/spinflip + 3-index 
terms still break orbital 
symmetry

● Full            restores sym.

3d shell, Nel=3, isolated atom toy model

Single electron addition/removal spectrum

Density-Density interaction
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3d shell, Nel=3, isolated atom toy model

Single electron addition/removal spectrum

Density-Density + pairhop/spinflip 
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3d shell, Nel=3, isolated atom toy model

Single electron addition/removal spectrum

All 3-index terms
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NiO: Ni 3d, Nel=8, atom toy model
● Half-filled eg, full t2g

● Dens.-dens. interaction 
reproduces eg gap but 
wrong spectral weights

● spin-flip/pair-hopping 
improves t2g weight 
(eg symmetry broken)

● 4-index interaction terms  
induce ~0.1-0.2eV shifts 

NiO d-d atomic model with crystal field splitting
No oxygen p included
Density-Density interaction

Photoemission (PES) data:
G. Sawatzky, J. Allen, PRL 53, 24 (1984)

For charge-transfer discussion, see:
(and refs therein)
Zaanen, et al., PRL 55, 418 (1985)
Schuler, et al., PRB 71, 115113 (2005)
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Further applications

● Projection provides efficient
compression of data onto minimal set
according to the symmetry of the system
(Storage)

● Applies to any local two-particle quantity in orbital representation:
 Only the independent parameters need to be calculated→

(Susceptibility, Vertex functions, etc. )
● Explicit symmetrization matrices available for restoring symmetry

(Numerical errors, identify effect of symmetry breaking)

compression

decompression



Conclusion

● Symmetry of the crystal environment restricts 
the form of the Coulomb interaction (sparse)

● Symmetry allows parametrization of full         with a minimal 
parameter set 

● Without full        : Artificial breaking of symmetries, artificial
                               ordered states, wrong multiplet positions

● Strongly correlated materials: spin-flip/pair hopping considered,
                                                      but 3(4)-index terms hardly studied
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Thank you very much for your attention!
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