

#### Symmetry properties of the Coulomb interaction tensor and their implications in correlated electron systems

NCTS-iTHEMS Joint Workshop on Matters to Spacetime:

Symmetries and Geometry

August 26<sup>th</sup>, 2024

Steffen Backes

Collaborators:

Amanda Konieczna Roser Valenti GOETHE UNIVERSITÄT

Antoine Georges

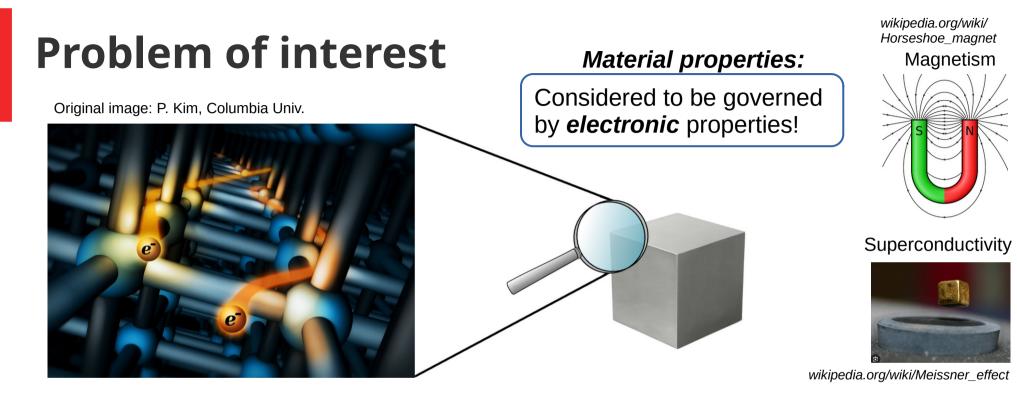
Min-Jae Kim



**Ryotaro Arita** 

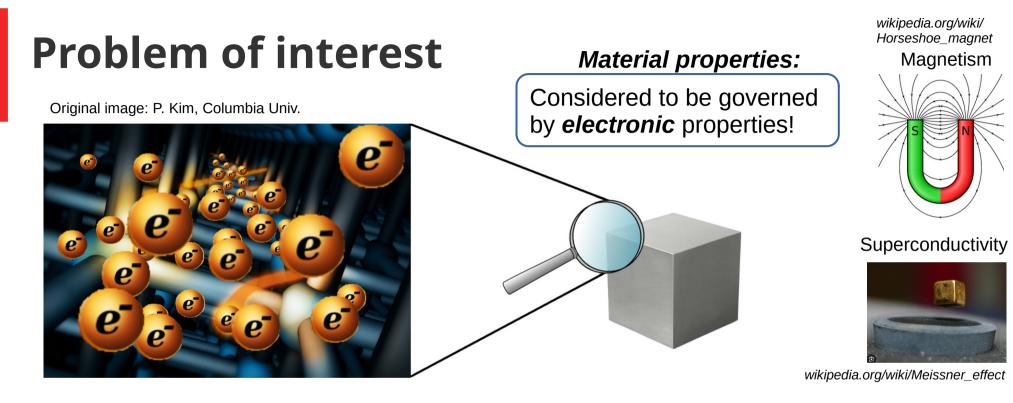
ithems





- Problem: Solid state materials are interacting <u>many</u>-electron systems
- Any study requires drastic but sensible approximations

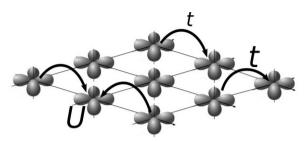
Use simpler model systems and apply sophisticated solution techniques



- Problem: Solid state materials are interacting <u>many</u>-electron systems
- Any study requires drastic but sensible approximations

Use simpler model systems and apply sophisticated solution techniques

#### Hubbard model

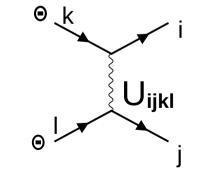


• Project onto a low-energy space with a localized (Wannier) basis |i
angle

$$H_{effective} = \sum_{ij,\sigma} \langle i|H_0|j\rangle c_{i\sigma}^{\dagger}c_{j\sigma} + \frac{1}{2} \sum_{ijkl,\sigma\sigma'} \langle ij|V_{Coul}|kl\rangle c_{i\sigma}^{\dagger}c_{j\sigma'}^{\dagger}c_{l\sigma'}c_{k\sigma}$$

- All matrix elements can in principle be obtained (approximately) using ab-initio methods specific for each model, defined by the basis  $|i\rangle$
- Solution not possible in general

   → Use approximations
   → (Dynamical) mean-field theory, etc.



What about the interaction?

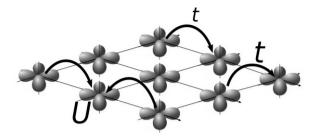
# Interaction term $U_{ijkl}$

- Coulomb interaction  $\sim \frac{1}{m}$
- Screening effects outside of the low-energy space reduce effective interaction further
- Often reasonable approximation: local  $U_{ijkl}$  !

 $\begin{array}{c}
\uparrow \downarrow \sim 0 \uparrow \sim 0 \uparrow \downarrow \\
+U +U +U
\end{array}$ 

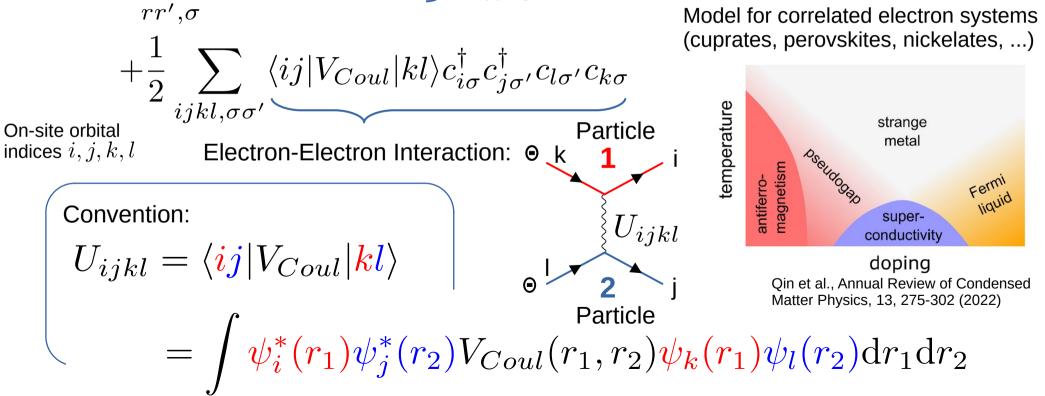
 Starting point for many methods: Local density approximation+U, dynamical mean-field theory (DMFT), random-phase approximation (RPA), ...

(ijkl on same atomic site)



Hubbard., Proc. R. Soc, London, Ser, A 276, 1365 (1963) Kanamori, Progress of Theoretical Physics 30(3), 275, (1963)

Model for correlated electron systems (cuprates, perovskites, nickelates, ...)



"electron hopping"

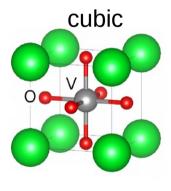
**Multi-orbital Hubbard model** 

 $H = \sum t_{rr'} c^{\dagger}_{r\sigma} c_{r'\sigma}$ 

$$\begin{aligned} \text{Standard Interaction Terms} \\ H_{int} &= \sum_{i} U_{ii}n_{i\uparrow}n_{i\downarrow} + \frac{1}{2}\sum_{i\neq j,\sigma}U'_{ij}n_{i\sigma}n_{j\sigma'}\\ \text{intra-orbital} \\ \text{intra-orbital} \\ + \frac{1}{2}\sum_{i\neq j,\sigma}J_{ij}(-n_{i\sigma}n_{j\sigma} + \underbrace{c^{\dagger}_{i\sigma}c^{\dagger}_{j\bar{\sigma}}c_{i\bar{\sigma}}c_{j\sigma}}_{spin-flip}\\ \text{High-spin Hund's rule} \\ + \frac{1}{2}\sum_{i\neq j,\sigma}J_{ij}\underbrace{c^{\dagger}_{i\sigma}c^{\dagger}_{i\bar{\sigma}}c_{j\bar{\sigma}}c_{j\sigma}}_{pair-hopping} \\ + \frac{1}{2}\sum_{i\neq j,\sigma}J_{ij}\underbrace{c^{\dagger}_{i\sigma}c^{\dagger}_{i\bar{\sigma}}c_{j\bar{\sigma}}c_{j\sigma}}_{pair-hopping} \\ \text{Hund's type} \\ \end{aligned}$$

#### Symmetry of the Coulomb Tensor

Coulomb tensor must obey the symmetry of the atoms' environment



$$T_g \psi_i(r) = \sum_j \Gamma^g_{ij} \psi_j(r) \qquad T_g$$
$$\Gamma^g_{\cdot}$$

, Point-group operation 
$$g$$

 $\Gamma^g_{ij}$  Matrix-representation of irreducible representation

- $U_{ijkl} \stackrel{!}{=} \sum_{i=1}^{l} \Gamma^g_{ia} \Gamma^g_{jb} U_{abcd} \Gamma^g_{kc} \Gamma^g_{ld} \models \text{Invariant under symmetry} \text{transformation!}$
- Symmetry properties restrict the form of  $\,U_{ijkl}$

abcd

E.g.  $t_{2g}$  manifold (cubic)  $U_{iiii} = U_{jjjj} \ \forall i, j$  Coulomb matrix elements in multi-orbital Hubbard models, J. Bünemann, F. Gebhard J. Phys.: Condens. Matter 29, 165601 (2017)

# Symmetry of the Coulomb Tensor

Rewrite as:  $U_{\alpha} = \sum_{\beta} \Omega_{\alpha\beta}^{g} U_{\beta} \quad \text{where} \quad \begin{array}{l} \alpha = (ijkl) \quad \text{combined index} \\ \Omega_{\alpha\beta}^{g} = \Gamma_{ia}^{g} \otimes \Gamma_{jb}^{g} \otimes \Gamma_{kc}^{g} \otimes \Gamma_{ld}^{g} \end{array}$ 

- U is an Eigenvector with Eigenvalue  $\lambda=1$  of  $\,\Omega^g\,$
- Physical operators (such as U ) live in :  $M = \bigcap \operatorname{Eig}_{\lambda=1}[\Omega^g]$
- Idea: Construct basis of  $\,M\,$  !

Due to symmetry:  $\dim[M] \ll \dim[\Omega^g]$ 

U can be parametrized by  $\dim[M]$  parameters!

 $\boldsymbol{q}$ 

#### Symmetry of the Coulomb interaction

- We construct basis of  $M=\bigcap_g {\rm Eig}_{\lambda=1}[\Omega^g]$   $v\in V, \ \dim[V]=n< d$  e.g. d=625 for 5 orbitals
- And basis of complement space

$$w \in W : \langle w | v \rangle = 0, \ \dim[W] = d - n$$

- Then
  - $u_i = \langle v_i | U \rangle, \quad n \text{ independent Coulomb parameters}$

$$0 = \langle w_i | U \rangle \; \forall w_i \in W$$

#### Symmetry of the Coulomb interaction

 $\int u_1$ 

$$\begin{pmatrix} \cdots v_1^* \cdots \\ \cdots v_2^* \cdots \\ \vdots \\ \cdots w_{d-n} \cdots \end{pmatrix} U = MU = \begin{pmatrix} \vdots \\ u_n \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
full rank  $\Rightarrow M^{-1}u = U$ 

M

- Full U reconstructed from minimal set  $u_i$ 
  - $u_i$  in general arbitrary linear combinations of  $U_{ijkl}$

  - $U_{\mathbf{i}j\mathbf{k}l} = U_{\mathbf{k}j\mathbf{i}l}$  etc. can be implemented in the same way

#### Symmetry of the Coulomb interaction

• Symmetries independent of crystal structure?

$$\begin{aligned} U_{ijkl} &= \langle ij | V_{Coul} | kl \rangle \\ &= \int \psi_i^*(r_1) \psi_j^*(r_2) V_{Coul}(r_1, r_2) \psi_k(r_1) \psi_l(r_2) dr_1 dr_2 \end{aligned}$$
$$\begin{aligned} V_C \\ &= \langle ji | V_{Coul} | lk \rangle = U_{jilk} \\ &= \langle kl | V_{Coul} | ij \rangle^* = U_{klij}^* \\ &= \dots \end{aligned}$$

$$V_{Coul}(r_1, r_2) \sim \frac{1}{|r_1 - r_2|}$$

• 
$$U_{\mathbf{i}j\mathbf{k}l} = U_{\mathbf{k}j\mathbf{i}l}$$
 can be exploited by  $U_{(kjil)} = \Omega^g U_{(ijkl)}$ 

#### Minimal set of parameters for d shell

- Spherical symmetry (free atom): 3 (#129/625 nonzero)
- Cubic O<sub>h</sub> (SrVO<sub>3</sub>, NiO):
   10 (#129/625 nonzero)
- Tetragonal  $D_{4h}$  (Sr<sub>2</sub>**Ru**O<sub>4</sub>) : **23** (#129/625 nonzero)
- Tetragonal  $D_{2d}$  (FeSe, BaFe<sub>2</sub>As<sub>2</sub>): 23 (#129/625 nonzero)
- Tetragonal  $C_{2h}$  (La<sub>2</sub>**Cu**O<sub>4</sub>) : **66** (#313/625 nonzero)

Nonzero Elements (except C<sub>2h</sub>):

$$\sim (c_i^{\dagger} c_k + c_k^{\dagger} c_i) n_j$$
  $\checkmark$  3-inde  
"correlated" inter-orbital hopping

Density U, U'Hund Jiiii, ijij, ijji, iijj, ijjj, ijjj, ijjj, 2-indexex ijkj, ijkkijkl4-indexonly between  $e_g$ - $t_{2g}$ 

 → only U<sub>avg</sub>, J<sub>avg</sub>
 Same form of
 Coulomb tensor (except lifting of degeneracies)

when using

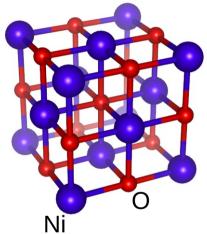
Slater form with

 $F^2/F^4 = 8/5$ 

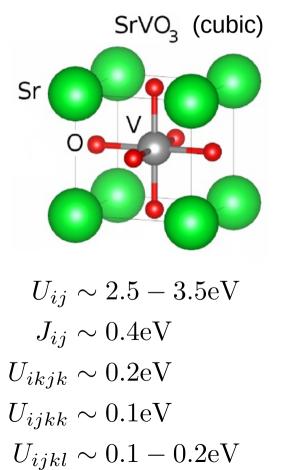
(Using constrained RPA: Aryasetiawan et al., PRB 70, 195104 (2004))

#### **Interaction term for real materials (3d)**

NiO (cubic)



 $U_{ij} \sim 4 - 6 \text{eV}$  $J_{ij} \sim 0.5 - 0.8 \text{eV}$  $U_{ikjk} \sim 0.3 \text{eV}$  $U_{ijkk} \sim 0.2 \text{eV}$  $U_{ijkl} \sim 0.2 - 0.3 \text{eV}$ 



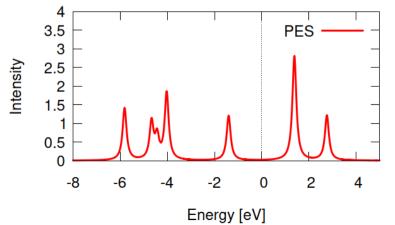
FeSe (tetr.) Se Fe  $U_{ii} \sim 3 - 4.5 \mathrm{eV}$  $J_{ij} \sim 0.4 - 0.6 \text{eV}$  $U_{ikjk} \sim 0.2 \text{eV}$  $U_{ijkk} \sim 0.1 \mathrm{eV}$  $U_{ijkl} \sim 0.1 - 0.2 \mathrm{eV}$ 

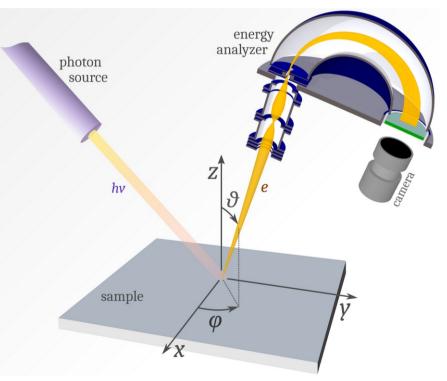
#### Some actual examples

- Photoemission spectroscopy (PES)
- Accessible via Green's function:

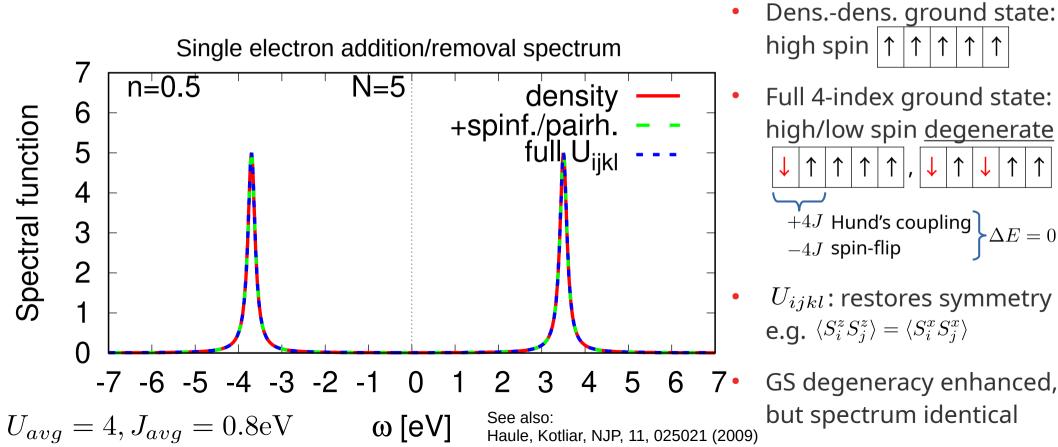
$$A(\omega) = \operatorname{Im} \sum_{n} \frac{|\langle \operatorname{Ex}_{n} | c | \operatorname{GS} \rangle|^{2}}{\omega + i0^{+} - (E_{N} - E_{GS})} + \dots$$

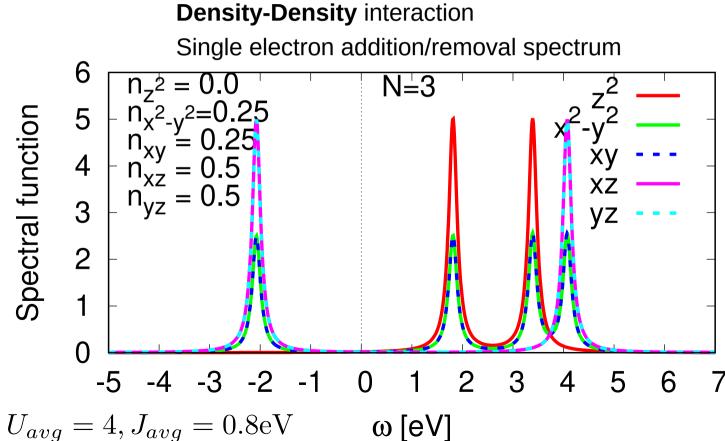
• Typical spectrum:





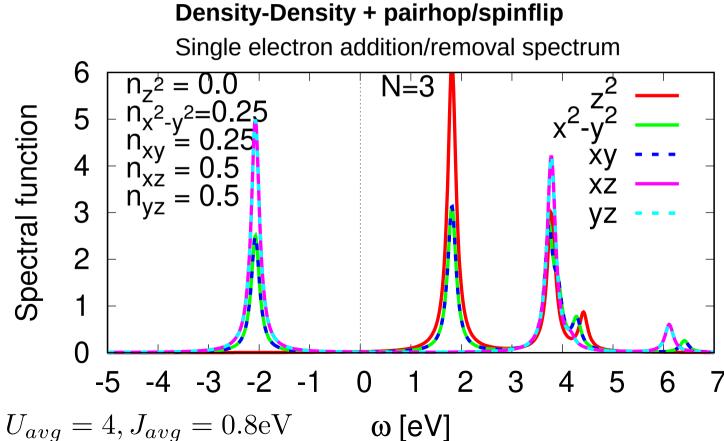
https://en.wikipedia.org/wiki/Photoemission\_spectroscopy

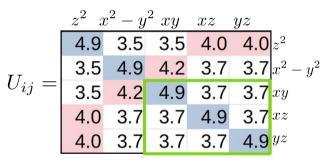




|            | $z^2 x$                         | $x^{2} - y^{2}$ | $^{2} xy$ | xz  | yz  |             |
|------------|---------------------------------|-----------------|-----------|-----|-----|-------------|
|            | 4.9                             | 3.5             | 3.5       | 4.0 | 4.0 | $z^2$       |
| τ          | 3.5                             | 4.9             | 4.2       | 3.7 | 3.7 | $x^2 - y^2$ |
| $J_{ij} =$ | 3.5                             | 4.2             | 4.9       | 3.7 | 3.7 | xy          |
|            | 4.0                             | 3.7             | 3.7       | 4.9 | 3.7 | xz          |
|            | 4.9<br>3.5<br>3.5<br>4.0<br>4.0 | 3.7             | 3.7       | 3.7 | 4.9 | yz          |

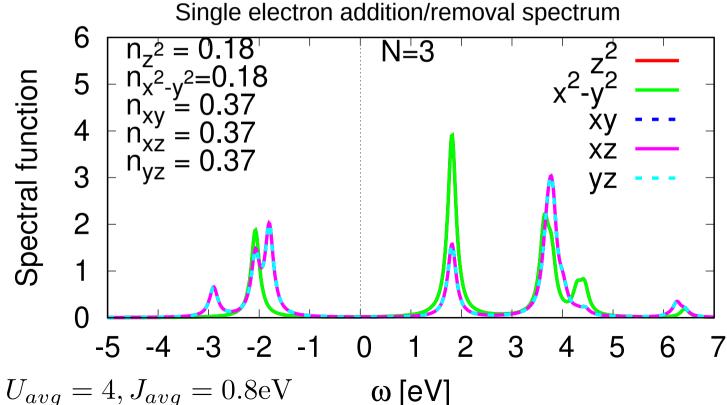
- <u>pairhop/spinflip + 3-index</u>
   terms still break orbital
   symmetry
- Full  $U_{ijkl}$  restores sym.





- pairhop/spinflip + 3-index terms still break orbital symmetry
- Full  $U_{ijkl}$  restores sym.

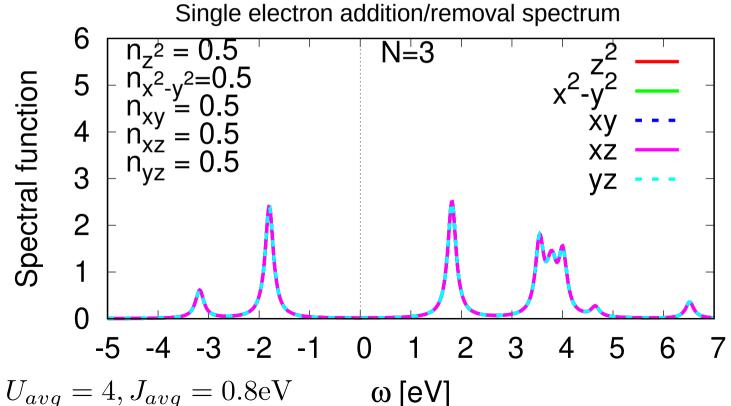
#### All 3-index terms



|                      | $z^2 x$ | $x^{2} - y$ | $^2 xy$ | xz  | yz  |             |
|----------------------|---------|-------------|---------|-----|-----|-------------|
|                      | 4.9     | 3.5         | 3.5     | 4.0 | 4.0 | $z^2$       |
| T                    | 3.5     | 4.9         | 4.2     | 3.7 | 3.7 | $x^2 - y^2$ |
| $\mathcal{I}_{ij} =$ | 3.5     | 4.2         | 4.9     | 3.7 | 3.7 | xy          |
|                      | 4.0     | 3.7         | 3.7     | 4.9 | 3.7 | xz          |
|                      | 4.0     | 3.7         | 3.7     | 3.7 | 4.9 | yz          |

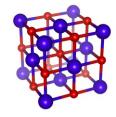
- pairhop/spinflip + 3-index terms still break orbital symmetry
- Full  $U_{ijkl}$  restores sym.

Full 4-index  $U_{ijkl}$ 



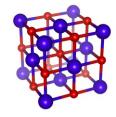
|                      | $z^2 x$ | $x^{2} - y$ | $^2 xy$ | xz  | yz  |                  |
|----------------------|---------|-------------|---------|-----|-----|------------------|
|                      | 4.9     | 3.5         | 3.5     | 4.0 | 4.0 | $z^2$            |
| τ                    | 3.5     | 4.9         | 4.2     | 3.7 | 3.7 | $x^2 - y^2$      |
| $\mathcal{I}_{ij} =$ | 3.5     | 4.2         | 4.9     | 3.7 | 3.7 | $x^2 - y^2$ $xy$ |
|                      | 4.0     | 3.7         | 3.7     | 4.9 | 3.7 | xz               |
|                      | 4.0     | 3.7         | 3.7     | 3.7 | 4.9 | yz               |

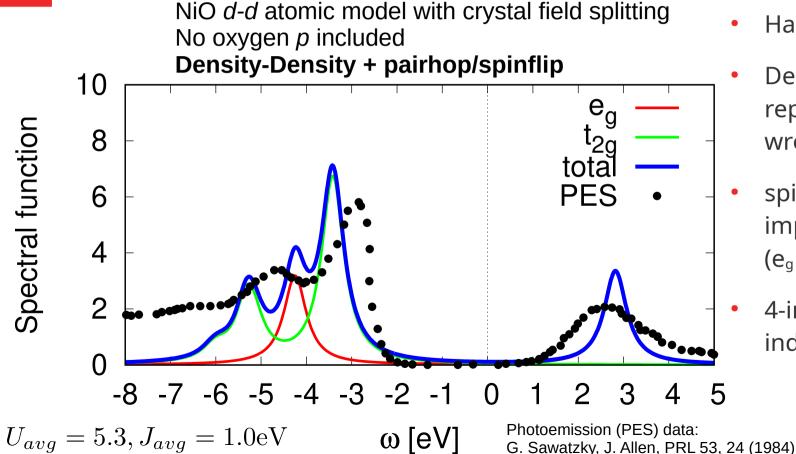
- pairhop/spinflip + 3-index terms still break orbital symmetry
- Full  $U_{ijkl}$  restores sym.



NiO *d*-*d* atomic model with crystal field splitting No oxygen *p* included **Density-Density** interaction 10 е Spectral function 8 total 6 PES 4 2 Photoemission (PES) data:  $U_{avg} = 5.3, J_{avg} = 1.0 \text{eV}$  $\omega$  [eV] G. Sawatzky, J. Allen, PRL 53, 24 (1984)

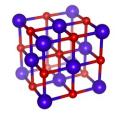
- Half-filled  $e_g$ , full  $t_{2g}$
- Dens.-dens. interaction reproduces *e*<sup>g</sup> gap but wrong spectral weights
- spin-flip/pair-hopping
   improves t<sub>2g</sub> weight
   (e<sub>g</sub> symmetry broken)
- 4-index interaction terms induce ~0.1-0.2eV shifts



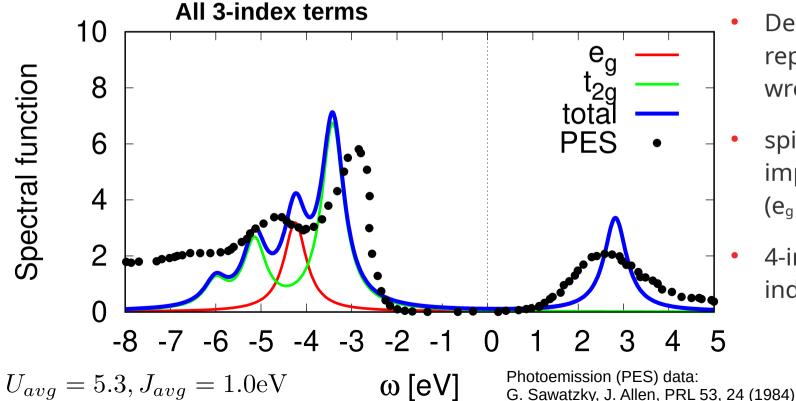


<sup>•</sup> Half-filled  $e_g$ , full  $t_{2g}$ 

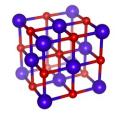
- Dens.-dens. interaction reproduces *e*<sup>g</sup> gap but wrong spectral weights
- spin-flip/pair-hopping
   improves t<sub>2g</sub> weight
   (e<sub>g</sub> symmetry broken)
- 4-index interaction terms induce ~0.1-0.2eV shifts



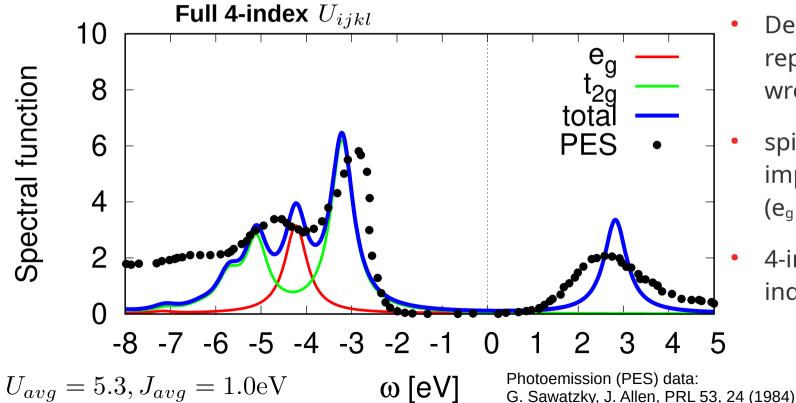
NiO *d-d* atomic model with crystal field splitting No oxygen *p* included



- Half-filled  $e_g$ , full  $t_{2g}$
- Dens.-dens. interaction reproduces *e*<sup>g</sup> gap but wrong spectral weights
- spin-flip/pair-hopping
   improves t<sub>2g</sub> weight
   (e<sub>g</sub> symmetry broken)
- 4-index interaction terms induce ~0.1-0.2eV shifts



NiO *d-d* atomic model with crystal field splitting No oxygen *p* included



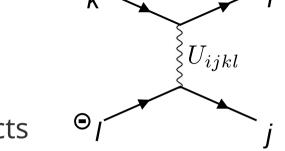
- Half-filled  $e_g$ , full  $t_{2g}$
- Dens.-dens. interaction
   reproduces *e<sub>g</sub>* gap but
   wrong spectral weights
- spin-flip/pair-hopping
   improves t<sub>2g</sub> weight
   (e<sub>g</sub> symmetry broken)
- 4-index interaction terms induce ~0.1-0.2eV shifts

#### **Further applications**

- Projection provides efficient MU=u compression compression of data onto minimal set  $U=M^{-1}u$  decompression according to the symmetry of the system (Storage)
- Applies to any local two-particle quantity in orbital representation:

   → Only the independent parameters need to be calculated
   (Susceptibility, Vertex functions, etc. )
- Explicit symmetrization matrices available for restoring symmetry (Numerical errors, identify effect of symmetry breaking)

#### Conclusion



- Symmetry of the crystal environment restricts the form of the Coulomb interaction (sparse)
- Symmetry allows parametrization of full  $U_{ijkl}$  with a minimal parameter set
- Without full  $U_{ijkl}$ : Artificial breaking of symmetries, artificial ordered states, wrong multiplet positions
- Strongly correlated materials: spin-flip/pair hopping considered, but 3(4)-index terms hardly studied

Thank you very much for your attention!