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Section 1

Euclidean Path Integrals

3 / 52



Euclidean Path Integrals
General Structure of Statistical Field Theories

Definition (Heuristic)

A Euclidean field theory (in the path integral formalism) is a triple (Ω,A, µ) such that:

Ω is a space of Euclidean histories.

A : Ω → K is an action functional controlling the dynamics of the field.

µ is a path integral measure on Ω, i.e. formally we have:

dµ(ω) =
1

Z[ω]
exp (−A(ω)) (1)

where the partition function Z is a normalisation factor.
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Euclidean Path Integrals
Constructing Statistical Field Theories from Discrete Theories

1 Start with a classical theory (Ωcl,Acl[λ]). λ is some family of parameters.

2 Discretise the classical theory to obtain a family of theories (Ωa,Aa[λ]) depending
on the discretisation parameter a.

3 Consider the (well-defined) finite-dimensional statistical ‘field’ theories
(Ωa,Aa[λ], µ

λ
a ). These are often actual statistical mechanical models. We will

denote { (Ωa,Aa[λ], µ
λ
a ) }a,λ.

4 A scaling limit of the family { (Ωa,Aa[λ], µ
λ
a ) }a,λ is any cluster point

(Ω,A[λ0], µλ0) of the family such that a → 0 and λ → λ0 for any net of points in
{ (Ωa,Aa[λ], µ

λ
a ) }a,λ converging to (Ω,A[λ0], µλ0).
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Euclidean Path Integrals
Some Remarks

The notion of scaling limit given here is flexible enough to take into account of
more standard physical conceptualisations of scaling limits (critical conformal field
theories) and also can encompass the process of renormalisation.

Discretisation appears to be necessary to deal with various nonuniqueness
problems associated to quantisation procedures.

For instance there is a systematic connection between operator-ordering
prescriptions and precise discretisations of the path integral.

The notion of scaling limit as defined here involves a notion of limit; this means
we need to specify a notion of convergence for both path-integral measures and
histories.
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Quantum Histories and Topology
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(ΩU ,T )

Ωcl

Ωcl: space of classical histories.

ΩU : space of mathematical histories.

T : topology in ΩU .

Ω0: space of discrete histories.

Ω = cl(Ω0): space of quantum
histories.

Since Ω0 ⊆ Ωcl ⊆ Ω, we find

Ω = cl(Ω0) ⊆ cl(Ωcl) ⊆ cl(Ω) = Ω

i.e. Ω = cl(Ωcl).
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The Topology in the Space of Histories
Generalities

The problem of specifying the support of the path-integral measure becomes the
problem of choosing a topology T in the space of mathematical histories.

Traditionally this has been seen as (largely) a technical mathematical problem.

In fact a topology in the space of fields is simply a set of standards for evaluating
when two fields ‘look alike’.

As such a good topology T should encode important physical properties of the
fields such as symmetry, localisability and asymptotic (decay) properties of the
fields.

It also turns out that a topology on the space of histories is essentially determined
by a choice of discretisation of the action.
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The Topology in the Space of Histories
Examples
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a
dt f (t)−

∫ b

a
dt g(t)
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∫ b

a
dt(f (t)− g(t))2 < ε. (4)
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Action and Topology

It is natural to assume that the topology T ensures the stability of the action at
the discrete and classical level:

A0(γ0) → Acl(γcl) as γ0
T−→ γcl. (2)

A can then be extended to Ω via stability:

A0(γ0) → A(γ) as γ0
T−→ γ Acl(γcl) → A(γ) as γcl

T−→ γ (3)

Thus for a given discretisation of the action we can choose T to be the weakest
topology such that the stability criteria 2 and 3 hold, such that all a priori
physical constraints on the theory are imposed and such that

A(Ω) ⊆ R. (4)

Choosing the weakest topology gives the biggest possible space of quantum
histories Ω. (Note that if stability holds for one topology then it holds for all
stronger topologies.)
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Section 2

Euclidean Quantum Gravity
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Euclidean Quantum Gravity
General Structure

Definition (Heuristic)

A EQG theory is a Euclidean Field Theory (Ω,A, µ) such that:

Ω is a configuration space of quantum Euclidean spacetime structures.

A : Ω → K is a gravitational action functional.

µ is a path integral measure on Ω.

In particular we obtain Ω and A from a classical theory (Ωcl,Acl) where Ωcl consists of
Riemannian manifolds and Acl is the Euclidean Einstein-Hilbert action:

Aκ,Λ
EH (ω) =

1

κ

∫

ω
d volω(x)(2Λ− R(x)) (5)

where R is the scalar curvature in ω and Λ is the cosmological constant.
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Euclidean Quantum Gravity
Challenges

How do we discretise Riemannian manifolds and the Einstein-Hilbert action on
manifolds?

What topology do we put on the space of ‘mathematical Euclidean spacetimes’
ΩU?

More generally what is an element of ΩU?

Can such an approach avoid renormalisability problems?
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2D EQG
General Remarks

Classical gravity in 2D is trivial by the Gauss-Bonnet theorem.

Trivial here means that there are no locally propagating modes and that the
equations of motion are satisfied automatically.

2D EQG is power-counting renormalisable and in fact finite so it may be
interesting to try and quantise.

Quantum mechanically we expect the theory to be nontrivial for two reasons.

Firstly large quantum fluctuations may lead to a change in the topology of
space(time) and so a quantum theory of EQG in 2D may exhibit nontrivial
topological dynamics.

2D EQG may also allow us to resolve the nontrivial kinematic challenges described
above, allowing us to specify a reasonable notion of quantum Euclidean spacetime.
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2D EQG
The Classical Theory

By the Gauss-Bonnet theorem the classical action becomes

Acl(ω) = βA(ω)− γχ(ω) (6)

where A(ω) denotes the area and χ the Euler characteristic of the surface ω.

The coupling constant β is related to the cosmological constant Λ while γ is
determined by the gravitational coupling κ. In particular the Euler characteristic
term contains all the geometric dynamics associated to the curvature of the
surface.

Closed (compact without boundary) surfaces are classified up to diffeomorphism
by the genus g(ω) ∈ N of the surface. Thus it is convenient to take Ωcl to be
(diffeomorphism classes) of closed surfaces.

We have the famous formula

χ(ω) = 2− 2g(ω). (7)
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2D EQG
Discretising the Classical Theory

Consider a triangulated surface △ with V vertices, E edges and F faces.

The Euler formula states
χ(△) = V − E + F . (8)

Simple combinatorics implies:
3F = 2E . (9)

Let f (v) denote the number of faces incident to the vertex v . Then

V =
∑

v∈V (△)

F =
1

3

∑

v∈V (△)

f (v) (10)

Finally taking all triangles to be equilateral with unit are we have A(△) = F .

Thus a discretisation of the classical action becomes

A0(△) =
∑

v∈V (△)

(
1

3
βf (v)− γ

(
1− 1

6
f (v)

))
. (11)

16 / 52



2D EQG
The Partition Function and the Topological Expansion

From the above it is natural to consider discrete histories

ΩN,g = { △ : |V (△)| = N and g(△) = g } (12)

and the path-integral measures associated to the partition functions

ZN,g =
∑

△∈ΩN,g

exp(−A0(△)). (13)

The general partition function on N-vertices allowing topological dynamics is then
written

Z =
∑

g∈N
N2−2gZN,g (14)

after some rescaling of the action.

In the large-N limit higher genus contributions to the partition function are
suppressed.
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The Brownian Sphere: Emergent 2D Quantum Spacetime
Continuum Limit

ZN,0 admits a perturbative expansion in some coupling λ = λ(β) which diverges
at some critical λc . In particular we have

ZN,0 ∼ (λ− λc)
2−γ . (15)

The continuum limit partition function is obtained by tuning λ → λc as N → ∞.

The measure associated to this partition function defines a random continuum
geometry known as the Brownian sphere BS.
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The Brownian Sphere: Emergent 2D Quantum Spacetime
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Timothy Budd, https://hef.ru.nl/~tbudd/gallery/

BS ∼= S
DS = 2

DH = 4

https://hef.ru.nl/~tbudd/gallery/


The Brownian Sphere: Emergent 2D Quantum Spacetime
Some Remarks

BS describes the effective geometry of 2D quantum spacetime.

BS can also be shown to be equivalent in a precise sense to a geometric model of
c = 0 Liouville field theory on the sphere

=⇒ the continuum limit is really a correct continuum limit.

The Brownian sphere is a highly fractal topological 2-sphere.

Thus even ‘small’ quantum fluctuations ruin smooth structure.

2D EQG is entropic : the Brownian sphere is also the scaling limit of uniformly
selected random triangulations of the sphere.

This is to be expected for the scaling limit of ZN,0 since the classical gravitational
dynamics is trivial and there is no topological dynamics by definition.

In the large-N scaling limit on the other hand the gravitational dynamics in fact
only contributes to suppress topological dynamics.
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Euclidean Dynamical Triangulations
Higher Dimensional Triangulations and the Regge Calculus
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Hinge: (D-2)-simplex (corner).

Deficit angle:

ωh =
1

3
π(6− nh) (16)

where nh is the number of
(D − 1)-simplices at the hinge h.

The Regge action:

AR =
1

8π

∑

h

Ahωh (17)

where Ah is the ‘area’ of the hinge h.

AR → AΛ=0
EH as N → ∞.



Aldous’ Continuum Random Tree (Branched Polymers)
A Pathological Model of Emergent Spacetime in Dimensions > 2
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Igor Kortchemski,
https://igor-kortchemski.perso.math.cnrs.fr/images.html
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Euclidean Dynamical Triangulations
Remarks

The continuum random tree is a pathology : the appearance of this universal
scaling limit (for all high dimensions) is a defect of the theory.

The theory is again entropic: the Brownian continuum random tree appears as the
scaling limit of uniform triangulations of higher dimensional (closed) manifolds.

In 3D, since the theory is renormalisable this is perhaps again an expression of the
triviality of the theory (no local propagating degrees of freedom).

In dimensions D > 3 it appears to be a defect of nonrenormalisability: we only
obtain a well-defined scaling limit by ‘turning off’ the gravitational interaction.

The Brownian continuum random tree can be obtained as the universal scaling
limit of suitable branching processes.
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Section 3

Baby Universes in Quantum Gravity
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Topology Change in Quantum Gravity

In a reasonable theory of quantum gravity the topology of spacetime must be able to be
different from that of flat space. Otherwise, the theory would not be able to describe closed
universes or black holes. Presumably, the theory should allow all possible spacetime topologies.
In particular, it should allow closed universes to branch off, or join onto, our asymptotic flat
region of spacetime. ... If it is possible for a closed universe the size of a blackhole to branch
off, it is also presumably possible for little Planck-size closed universes to branch off and join on.

Stephen Hawking, ‘Wormholes in spacetime’, PRD, 37(4), 1988.
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Wormholes and Baby Universes
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A Euclidean wormhole is an instance of
tunnelling between two extended (noncompact)
regions of Euclidean spacetime.

The ‘interior’ of the wormhole has nontrivial
topology (is not simply connected).

If the regions of Euclidean spacetime are
connected even without the wormhole, the
wormhole is effectively an additional handle for
the Euclidean spacetime manifold.

Wormholes themselves can thus be detected
through the specification of suitable Morse
functions on the spacetime manifold.



Wormholes and Baby Universes
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A baby universe is an aborted wormhole, i.e.
an event where the universe tunnels to nothing.

Baby universe nucleation describes the process
whereby a little Planck sized closed universe
branches off from a parent spacetime universe.

Any branch of spacetime created by baby
universe nucleation can support further
nucleation of baby universes.

Baby universe nucleation may generate a
branch of spacetime described by a relatively
complex bordism before the universe
completely tunnels to nothing.



Tunnelling to Nothing
A General Bordism
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Tunnelling to Nothing
Branched Bordism

29 / 52



A Phenomenological Model of Baby Universe Nucleation
The Model

1 At ‘time’ t = 0 there is a single baby universe nucleation event.

2 At the time t = τ the baby universe either tunnels to nothing, continues
unchanged or nucleates another baby universe with probabilities p0, p1 and p2
respectively, 1 = p0 + p1 + p2.

3 Each baby universe evolves independently preserving its geometry for a duration τ .

4 At time t = 2τ the process in step 2 repeats; more generally at each time t = nτ ,
n ∈ N, the connected components of space independently undergo random baby
universe nucleation as described in step 2.

30 / 52



A Phenomenological Model of Baby Universe Nucleation
Assumptions of the Model

1 Baby universes only have a single possible ‘spatial’ geometry.

2 Baby universe nucleation is an entirely quantum process that is independent of
the geometric structure of each connected ‘spatial’ geometry.

3 Disconnected spatial slices are not communicating during nucleation.

4 Nucleation only occurs at given discrete timesteps.

5 Nucleation of more than two universes in a single instant is a very low probability
procedure.

6 Different branches of spacetime never reattach.

7 When the quantum nucleation events are not taking place the spatial geometry
evolves in a trivially classical (in fact Lorentzian) manner.
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A Phenomenological Model of Baby Universe Nucleation
Assumptions of the Model

Some of these assumptions (e.g. 3 and 5) are rather reasonable. In particular 5
can probably be derived heuristically in theories of quantum gravity. Recent
thinking in holography appears to be that assumption 3 fails (factorisation
problem) but the precise ramifidations of this fact are not entirely clear.

Other assumptions such as 1, 2, 4 and 7 are essentially only made for convenience;
modifying these assumptions will not change our subsequent conclusions.

Assumption 6 (that reattachment never occurs) is not obvious; for our purposes it
can be replaced by the weaker (but still mysterious) assumption that ‘wormholes
are never too long’.
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A Phenomenological Model of Baby Universe Nucleation
Branching Processes and their Scaling Limits

The bordism described by this model is essentially described by a binary branching
process ancestry tree (as well as information about the initial spatial geometry and
the classical evolution duration τ).

Since the scaling limit of such processes describes a (rooted) Brownian continuum
random tree we see that the this ‘phenomenological’ model of baby universe
nucleation describes the naive scaling limit of high-dimensional quantum gravity.

Because of the universality of the Brownian continuum random tree scaling limit
our phenomenological model is robust to several changes in the assumptions.

For instance the same conclusion holds if we have a finite family of
(diffeomorphism classes) of spatial geometries describing baby universes or if we
assume that nucleation time is Poisson distributed.
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The Upshot

Recall that in the large-N limit in 2D, topological dynamics was suppressed by the
geometric dynamics of the theory.

In D > 2 on the other hand, topological dynamics as exhibited in the nucleation
of baby universes is strongly entropically favoured.

Since gravity is not contributing in the Euclidean dynamical triangulations
framework, a scaling limit in which gravitational dynamics remains relevant might
allow for the suppression of baby universe nucleation.
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Section 4

Regularisations of Curvature
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The Main Argument

We wish to suppress baby universe nucleation by taking a discretisation of the
curvature and a scaling limit such that gravitational interactions remain relevant.

The idea will be to take a different regularisation of the Ricci curvature to the one
traditionally employed in the Regge calculus and Euclidean Dynamical
Triangultions.

This also amounts to considering an unusual topology in the space of discrete
histories.

The topology encodes two key facts: firstly that branching singularities associated
with baby universe nucleation cannot be localised at corners of the manifold and
secondly that classical symmetries cannot completely decouple distance from
volume.
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The Concrete Task

It is too difficult to completely replicate the Dynamical Triangulation/Matrix
Model analysis using different discretisations of the curvature.

We begin by specifying coarse notions of curvature that apply to rough fractal
spaces like the continuum random tree.

Since the Gibbs factor behaves as

exp

(
1

κ

∫
R

)
(18)

with R a generalised scalar curvature, we hope to show that the pathological
‘branching singularity’ described by the continuum random tree is infinitely
negatively curved (‘infinitely hyperbolic’).
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What is Curvature?
Gauss Curvature
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What is Curvature?
Riemann Curvature

p

εX

εY

εY

εX
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ε2Riem(X,Y )Z

. 39 / 52



What is Curvature?
Riemann, Ricci and Scalar Curvatures

Sectional (Riemannian) curvature controls the second-order behaviour of
geodesics:

ρM(γ1(s), γ2(t))
2 = s2 + t2 − 2st cos θ − 1

3
K (γ̇1(0), γ̇2(0))s

2t2 sin2 θ + · · · (19)

The Ricci curvature controls infinitesimal volume corrections:

d volM(x) = d volRD

(
1− 1

6
Ric(ux , ux)|x |2 +O(|x |3)

)
(20)

The scalar curvature controls volume corrections:

vol(BM
δ (p)) = vol(BRD

δ (0))

(
1− R

6(D + 2)
δ2 +O(δ4)

)
(21)
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What is Curvature?
Triangle Comparisons
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Lars H. Rohwedder,
https://commons.wikimedia.org/wiki/File:Orthographic_Projection_Japan.jpg,
https://creativecommons.org/licenses/by-sa/3.0/
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What is Curvature?
Ricci Curvature in Metric-Measure Spaces
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x y
γ

δ = ρM(x, y)

WM(µεx, µ
ε
y) = δ


1− ε2

2(D+2)Ric


γ̇
|γ̇|,

γ̇
|γ̇|


 +O(ε2(ε + δ))




µεx µεy

µε
p is the normalised volume in Bε(p).

WM is the Wasserstein distance.

It is obtained from parallel transport in
M, but is defined for any MM-space.

Thus in any MM-space X we define
the Ollivier-Ricci curvature

κδ,ε(p, q) = 1−
WX (µ

ε
p, µ

ε
q)

ρX (p, q)
. (22)

Positive ORC says that the average
distance between two balls is greater
than the distance between their
centres.



The Brownian Continuum Random Tree is Infinitely Hyperbolic

This perspective is immediately obvious if we consider the triangle comparison
notion of curvature: since triangles in the Brownian continuum random tree are
‘infinitely thin’ the spaces are infinitely hyperbolic.

More precisely every continuum tree is a so-called CAT (K ) space for all K ∈ R.
Intuitively this supports our idea that we may suppress baby universe nucleation
using gravitational dynamics, but the statement is qualitative and is hard to turn
into a formalism where we can in principle consider a discrete Einstein-Hilbert
action and an associated path-integral measure.

In arXiv:2312.01894 [math.PR] it is shown that

− a

δℓ
≤ κx(δ, ℓ) ≤ − b

δℓ
(23)

for positive constants a, b ∈ (0,∞) where κx(δ, ℓ) is a properly normalised
Ollivier-Ricci curvature and x is a random point of the continuum random tree.
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Euclidean Quantum Gravity with the Ollivier-Ricci Curvature

Thus if we can define a EQG model using the Ollivier-Ricci curvature as a
regularisation of the action it will not suffer from the branching singularity
pathology.

In K., Trugenberger, Biancalana (arXiv:2102.02356 [gr-qc]) it was shown how to
write down a discrete Einstein-Hilbert action ADEH such that

Aδ,ℓ
DEH(ωn) → AEH(ω) (24)

where ωn are discrete metric-measure spaces (graphs) that converge appropriately
to the closed Riemannian manifold ω.

44 / 52

https://arxiv.org/abs/2102.02356


Conclusions
Main Claims

There is a regularisation of the curvature and the Euclidean Einstein-Hilbert
action using the notion of Ollivier-Ricci curvature.

Any scaling limit of the Euclidean quantum gravity theory defined using this type
of regularisation will not be concentrated in the branched polymer phase.

Indeed, if such a scaling limit exists, then we have a non-entropic theory which
successfully uses gravitational dynamics to suppress baby universe nucleation in
higher dimensions.

This regularisation of the Einstein-Hilbert action is associated to a topology on
the space of triangulations where distances and volumes are coupled locally (see
appendix).

This ensures that symmetries of quantum spacetime cannot be too different from
classical diffeomorphisms.
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Conclusions
The Problem with the Regge Action?

The Ollivier-Ricci curvature is by definition concerned with open regions about
points.

The Regge action, however, adopts a notion of curvature where all the
information is encoded in monodromy defects localised at corners.

The Regge action cannot see divergences that spread out over open regions!

Branching singularities associated to the branched polymer phase are manifestly
such singularities: with probability 1 a randomly chosen point in the BCRT is not
a branching point, but with the same probability every open set contains an
infinite number of such branching points.

46 / 52



Conclusions
The Problem with the Regge Action?

The above ... suggests that settling the convergence problem in general, might just amount to
calculating the pointwise limit of an appropriate angle defect. But this turns out to be
somewhat misleading. In the general case, the pointwise calculation of limη→0 R

j
η results in an

expression which merely resembles, but does not coincide with R j . ... Recall, however, our
actual assertion that Rη → R in the sense of measures. This means the following. We fix an
open set U ⊆ Mn, and then count all contributions corresponding to points lying in U. Thus,
when the approximation becomes fine, we are counting a large number of small contributions.
So the possibility exists that these might give the correct answer on the average, even though
they fail to do so individually. Remarkably, this averaging effect does indeed take place, and in
this sense, the convergence, Rη → R, is not a purely local phenomenon.

Cheeger, Müller and Schrader, ‘On the Curvature of Piecewise Flat Spaces’, Comm. Math.
Phys, 92, 1984.
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Thank You!
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Section 5

Appendix
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Topologies on Spaces of Metric Spaces and the Stability of Ollivier-Ricci
Curvature
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The two spaces are Gromov-Hausdorff similar
(i.e. similar as metric spaces) iff there is a nearly
isometric imbedding of one into the other.

This essentially means that we can approximate
distances in the blue space by distances in the
discrete space.

Here the spaces are additionally Prokhorov
similar (i.e. similar as measure spaces).

In particular this means that the proportion of
points in the red ball around any point is
approximately the proportion of the volume of
the ball to the total volume.
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We may compute the Ollivier curvature by
computing the average distance between two
small balls in the spaces in question.

Since the blue space is sampled evenly
everywhere by the discrete space, the Ollivier
curvature of the discrete space
well-approximates the Ollivier curvature of the
blue space.

Hence we can compute the Ricci curvature of
the blue space in terms of the Ollivier curvature
of the discrete space space.
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However consider a new DS that no longer
samples the blue space evenly.

This DS is a better GH approximation of the
blue space.

The DS is also a reasonable Prokhorov
approximation of the blue space as long as the
red balls are small.

However the average distance between the two
red balls in the DS longer approximates the
average distance in the blue space and the
Ollivier curvature fails to converge.
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