
Outline for Microarray Data 
Analysis

1. Introduction of Microarry
2 . Statistical Analyses and Data Visualization

– Distance Measures in DNA Microarray Data Analysis

– Cluster Analysis of Genomic Data

– Analysis of Differential Gene Expression Studies

– Multiple Testing Procedures and Applications to Genomics

– Machine Learing Concepts and Tools for Statistical Genomics

3. Preprocessing
– Preprocessing High-density Oligonucleotide and Two-Color 

Spotted Arrays

– Preprocessing SELDI-TOF Mass Spectrometry Protein Data 



Microarray Platforms

• Two main classes of platforms: 

– High-density oligonucleotide array (e.g. Affymetrix
GeneChips): Contain one set of probe-level data per 
microarray; some probes for specific finding and 
others for nonspecific finding. 

– Two-color spotted array (e.g. cDNA): Two colors 
represent the two samples (experiment and reference) 
competitively hybridized.



Microarray Data

• Two-color spotted array (e.g. cDNA): Measure relative 
abundance of a probe sequence in experimental and 
reference samples
– Relative expression measure 

– log ratios of intensities

• High-density oligonucleotide array (e.g. Affymetrix
GeneChips): Measure overall abundance of a probe in 
the experimental samples
– Absolute expression measure

– log intensities



Comparison of cDNA Arrays

• Usually a common reference is used 
across multiple slides; it provides a 
baselinebaseline for direct comparison of 
expression measures between arrays.

– Comparable: Gene X in patient i and patient j 
(between-sample, within-gene)

– Incomparable: Gene X and Gene Y  in patient 
i (within-sample, between-gene)



Comparison of Affymetrix Arrays

• No common reference across slides; 
certain normalization techniques have to 
be applied before comparison. 

– Comparable after normalization: Gene X in 
patient i and patient j (between-sample, 
within-gene)

– Incomparable: Gene X and Gene Y  in patient 
i (within-sample, between-gene)



Comparison of Affymetrix Arrays

• Mimic reference sample for Affymetrix (?!)

Select a particular array to use as a 
reference and take ratios of all 
expression measures to this reference?! 

Not quite as successful as it is for cDNA arrays, with which both 
experimental and reference samples are co-hybridized to the same slide. 





Data Visualization

• Visualization is about to convey important
information to the reader accurately.

• Color is an important aspect of 
visualization. The color schemes should 
be intuitive, consistent, and ergonomic.



Example for an unergonomic
color scheme: red-green color.



Data Visualization

• Useful visualization tools:

– Showing feature of the expression level of one
particular gene (sample): histogram, box plot

– Comparing expression levels of two genes (samples): 
side-by-side box plot, scatter plot, MA plot

– Presenting the similarity among multiple genes 
(samples): side-by-side box plot, heatmap



Histogram

• Histogram: the graph shows the frequency 
distribution of the values in a given data set.

Step 1: Fractionate the entire range of values 
encountered in the data set into several intervals; 
these intervals are called bins in the histogram. 

Step2: Draw a bar for each bin and the height of the bar 
will be equal to the number of values falling in the 
interval represented by the bin.



Histogram – An Example



Histograms for log Ratios

• If the log ratios have been well normalized, differentially 
expressed genes will be found in the tails of the histogram. 
Therefore, the histogram can be used to select the genes 
that have a minimum desired fold change. 

20.5 = 1.4 
fold change

20.5 = 1.41 
fold change



Histogram – Determine Bin Size

• Too few or too many bins result in less 
informative histograms. 

How to determine the number of bins?How to determine the number of bins?



Histogram – Determine Bin Size

• To determine the number of bins:

– Rule of thumb = 

– Sturges’ rule = 1 + log2 N

– Scott’s rule = 

– Friedman-Diaconis =

Note: N = number of observations
R = range of observations = max – min

IQD = inter-quantile distance

N

( ))V(3.5 3 XNR

( )IQD2 3 ×NR



R: Histogram

> hist(x)      # Sturges’ rule by default
> hist(x,sqrt(length(x)))    # rule of thumb
> hist(x,"scott")     # Scott’s rule
> hist(x,"FD")     # Friedman-Diaconis



Histogram – Binning Artifact

• Inappropriate binning in histograms may 
cause information loss or false 
interpretation.

• Binning artifacts usually 
can be detected by 
plotting histograms given
different bin sizes.



Lower Quantile (LQ)

Upper Quantile (UQ) 

The largest observation that is 
smaller than UQ+1.5*IQD

The smallest observation that is 
greater than LQ-1.5*IQD

outlier(s): observations that are 
greater than UQ+1.5*IQD or less than 
LQ-1.5*IQD

IQD = UQ-LQMedian 

Box plots



R: Box plots

• Box plots for single variable: 
> boxplot(x)



Visualization: Single Gene

Data download: 
http://homepage.ntu.edu.tw/~lyliu/IntroBioinfo/BreastCancer_ERp.xls

.xls � .csv

> bcdata = read.csv("BreastCancer_ERp.csv")
> y = bcdata[,3]

> hist(y,xlab=names(bcdata)[3],main="")
> boxplot(y)



Data Visualization

• Useful visualization tools:

– Showing feature of the expression level of one 
particular gene (sample): histogram, box plot

– Comparing expression levels of two genes (samples): 
side-by-side box plot, scatter plot, MA plot

– Presenting the similarity among multiple genes 
(samples): side-by-side box plot, heatmap



Side-by-side Box Plots 

• Side-by-side box plots for two or more groups:
> bcdata = read.csv("BreastCancer_ERp.csv")
> x = bcdata[,3:4]
> boxplot(x)



Scatter Plots

• Suppose a gene G has an expression 
level of e1 in the 1st experiment and that of 
e2 in the 2nd experiment, the point 
representing G will be plotted at 
coordinates (e1, e2) in the scatter plot. 

Note: Genes with similar expression levels
in two experiments will appear around the 
first diagonal of the coordinate system.



Scatter Plots



Scatter Plots

• Scatter plots allow 
us to observe 
certain important 
features of the data:

Example: Dye swap -- the 
banana shaped blob 
indicates nonlinear dye 
effect.

Cy3

C
y5

banana shape (Cy3 > Cy5)



Scatter Plots v.s. MA Plots

• The MA plot (or ratio-intensity plot) is a variant 
of the scatter plot. It is commonly used for two-
channel cDNA array data.

• Let 
M = log(y) – log(x) = log(y/x)
A = (log(y) + log(x))/2

The MA plot is the scatter plot of M against A.



Scatter Plots v.s. MA Plots

M = log(y) – log(x)

A = (log(y) + log(x))/2



Scatter Plots v.s. MA Plots

• In MA plot, genes with similar expression 
levels in two experiments will appear 
around the horizontal line y = 0.

• Points off the horizontal line y = 0 indicate 
the values measured on one of the two 
channels to be higher than the values 
measured on the other channel.



R: Scatter Plots
• Scatter plots of y against x:

> bcdata = read.csv("BreastCancer_ERp.csv")

> x = bcdata[,3:4]

> plot(x,pch=16)



> y = as.matrix(x) %*% cbind(A=c(1,1), M=c(-1,1))
> plot(y,pch=16)



> library(RColorBrewer)
> hb=hexbin(x,xbins=50)
> plot(hb,colramp=colorRampPalette(brewer.pal(9,"YlGnBu")[-c(1:2)]))



Palettes names: 
Blues BuGn BuPu GnBu Greens Greys Oranges OrRd PuBu PuBuGn
PuRd Purples RdPu Reds YlGn YlGnBu YlOrBr YlOrRd





> library(geneplotter)
> library(prada)
> smoothScatter(x,nrpoints=500,colramp=colorRampPalette(brewer.pal(9,"YlGnBu")))



> plot(x,col=densCols(x),pch=20)



Data Visualization

• Useful visualization tools:

– Showing feature of the expression level of one 
particular gene (sample): histogram, box plot

– Comparing expression levels of two genes (samples): 
side-by-side box plot, scatter plot, MA plot

– Presenting the similarity among multiple genes 
(samples): side-by-side box plot, heatmap



Side-by-side Box Plot
ALLhm = read.csv("ALL_hmdemo.csv",row.names="Genes")
boxplot(ALLhm)



Heatmaps

• A heatmap is a two-dimensional, rectangular, 
colored grid. It displays data that themselves 
come in the form of a rectangular matrix: 

– The color of each rectangle is determined by the 
value of the corresponding entry in the matrix.

– The rows and columns of the matrix are rearranged
independently so that similar rows and columns are 
placed next to each other, respectively.



> ALLhm = read.csv("ALL_hmdemo.csv",row.names="Genes")
> heatmap(as.matrix(ALLhm))



> hmcol = colorRampPalette(brewer.pal(10,"RdBu"))(256)
> heatmap(as.matrix(ALLhm),col=hmcol)



> spcol = ifelse(substr(names(ALLhm),1,8) == "ALL1.AF4" ,            
+                                                      "goldenrod","skyblue")
> hmcol = colorRampPalette(brewer.pal(10,"RdBu"))(256)
> heatmap(as.matrix(ALLhm),col=hmcol)



Measure of Distance

• To group entities that are similar, we need 
to define a measure of similarity, usually 
called distance metric.

• A distance measure must satisfy:
– Symmetry:
– Positivity: 
– Triangle inequality:
– Definiteness: 
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Measure of Distance

• We wish to define the distance between two objects

• Distance metric between points:
– Euclidean distance (EUC)
– Manhattan distance (MAN)

– Pearson sample correlation (COR)
– Angle distance (EISEN – considered by Eisen et al., 1998.)
– Spearman sample correlation (SPEAR)

– Kandall’sτ sample correlation (TAU)
– Mahalanobis distance

• Distance metric between distributions:
– Kullback-Leibler information
– Hamming’s mutual information



Euclidean Distance

• The Euclidean distance:
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Euclidean Distance

• Example: the distance from O (0,0) to A (3,4)

• A change of one unit in one of the coordinates 
determined a change of 13% respect to the truth.
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Manhattan Distance

• The Manhattan distance:
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Manhattan Distance

• Example: the distance from O (0,0) to A (3,4)

• A change of one unit in one of the coordinates 
determined a change of 14% respect to the truth.
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Euclidean vs Manhattan Distances

• Manhattan distance yield a larger numerical
value for the same relative position of points. 

• Manhattan distance slightly emphasizes the 
outlier of the dataset; a outlier will appear a 
bit further away.



Pearson Correlation

• The Pearson correlation focuses on whether the two 
points change in the same way:

Note: the Pearson correlation is affected greatly if the 
measurement along a particular dimension are very 
different! 

( )

( )( )

( ) ( )
1

2 2

1 1

1R xy

n

i ixy i
xy n n

x y i ii i

d r

x x y ys
r

s s x x y y

=

= =

= −

− −
= =

− −

∑
∑ ∑

,x y

2)(0   11 ≤≤∴≤≤− yx,dr RxyQ



Angle Distance

• The angle distance:

Note: the angle distance will be the same if the point 
moves alone the line going through the original 
position and the origin (scaling). 
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• The Spearman correlation is the correlation 
of rank statistics.

• The Kendall’s τ:

Other Correlations
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Mahalanobis Distance

• The Mahalanobis distance:

• If the space warping matrix S is taken to be the 
identity matrix, the Mahalanobis distance 
reduces to the classical Euclidean distance.
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When to Use What Distance?

• Normalization process such as location-
scale normalization maybe necessary 
before calculating the distance, especially 
when different types of variables need to 
be mixed together.

• Surely, different distance measure has 
difference emphasis. Here we summarize 
all measurements introduced.



1. Euclidean distance: 
describes the geometric distance; the most commonly 
used measure. 

2. Manhattan:
slightly emphasizes the outlier of the dataset than 
Euclidean distance. 

3. Angle between vectors:
takes into consideration only the angles, not the 
magnitude. For example, (1,1) and (100,100) will have the 
distance equal to 0. ⇒ same cluster!

4. Mahalanobis:
can warp the high dimensional space in a convenient way 

A Comparison of Various Distances



A Comparison of Various Distances

5. Correlation-based distance: Correlation-based 
distances are adversely affected by outliers and 
then the non-parametric versions (SPEAR or TAU) 
are preferred. 


