Outline Estimation of μ_Y Hypothesis Tests Confidence Intervals Comparing Means Scatterplots and Sample Correlation

Review of Statistics

Ming-Ching Luoh

2022.2.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

1/41

Estimation of the Populaiton Mean

Hypothesis Tests Concerning the Population Mean

Confidence Intervals for the Population Mean

Comparing Means from Different Populations

Scatterplots and Sample Correlation

Estimation of the Population Mean

One natural way to estimate the population mean, μ_Y, is simply to compute the sample average Y
 from a sample of *n* i.i.d. observations. This can
 also be motivated by law of large numbers.

Estimators (估計式) and Their Properties

- The sample average *Y* is a natural way to estimate μ_Y, but, *Y* is not the only way. For example, the first observation Y₁ can be another estimator of μ_Y.
- What makes one estimator "better" than another? What are desirable characteristics of the sampling distribution of an estimator?

- In general, we want an estimator that gets as close as possible to the unknown true value, at least in some average sense.
- In other words, we want the sampling distribution of an estimator to be as **tightly** centered around the unknown value as possible.
- This leads to three specific desirable characteristics of an estimator: unbiasedness, consistency, and efficiency.

Three desirable characteristics of an estimator.

Let $\hat{\mu}_Y$ denote some estimator of μ_Y ,

- Unbiasedness: $E(\hat{\mu}_Y) = \mu_Y$.
- Consistency: $\hat{\mu}_Y \xrightarrow{p} \mu_Y$.
- Efficiency.

Let $\tilde{\mu}_Y$ be another estimator of μ_Y , and suppose both $\hat{\mu}_Y$ and $\tilde{\mu}_Y$ are unbiased. Then $\hat{\mu}_Y$ is said to be more efficient than $\tilde{\mu}_Y$ if $Var(\hat{\mu}_Y) < Var(\tilde{\mu}_Y)$.

Properties of \bar{Y}

- It can be shown that E(Y
 ^Ŷ) = μ_Y and Y
 ^Ŷ → μ_Y
 (from law of large numbers), Y
 ^Ŷ is both unbiased
 and consistent.
- But, is \overline{Y} efficient?

Examples of alternative estimators.

Example 1: The first observation Y_1 ? Since $E(Y_1) = \mu_Y$, Y_1 is an unbiased estimator of μ_Y . But,

$$\operatorname{Var}(Y_1) = \sigma_Y^2 \ge \operatorname{Var}(\bar{Y}) = \frac{\sigma_Y^2}{n},$$

if $n \ge 2$, \overline{Y} is more efficient than Y_1 .

Outline Estimation of μ_Y Hypothesis Tests Confidence Intervals Comparing Means Scatterplots and Sample Correlation

Example 2:

$$\tilde{Y} = \frac{1}{n} \left(\frac{1}{2} Y_1 + \frac{3}{2} Y_2 + \dots + \frac{1}{2} Y_{n-1} + \frac{3}{2} Y_n \right),$$

where *n* is assumed to be an even number. The mean of \tilde{Y} is μ_Y and its variance is

$$\operatorname{Var}(\tilde{Y}) = \frac{1.25\sigma_Y^2}{n} > \operatorname{Var}(\tilde{Y})$$

Thus \tilde{Y} is unbiased and, because $Var(\tilde{Y}) \rightarrow o$ as $n \rightarrow \infty$, \tilde{Y} is consistent. However, \bar{Y} is more efficient than \tilde{Y} .

- In fact, Y is the most efficient estimator of μ_Y among all unbiased estimators that are weighted averages of Y₁, …, Y_n. (Weighted average implies that the estimators are all unbiased.)
- Said differently, \overline{Y} is the Best Linear Unbiased Estimator (BLUE).
- It is the most efficient (best) estimator among all estimators that are unbiased and are linear function of *Y*₁, ..., *Y*_n.

\bar{Y} is the least squares estimator of μ_Y .

- The sample average \bar{Y} provides the best fit to the data in the sense that the average squared differences between the observation and \bar{Y} are the smallest of all possible estimators.
- The solution to the problem of minimizing

$$\sum_{i=1}^n (Y_i - m)^2$$

is $\hat{m} = \bar{Y}$, which is called the least squares estimator.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Hypothesis Tests Concerning the Population Mean Null and Alternative Hypotheses

The **hypothesis testing** problem: make a provisional decision, based on the evidence at hand, whether a null hypothesis is true, or instead that some alternative hypothesis is true.

- If the null hypothesis is "accepted," this does not mean that it is true. It is accepted tentatively with the recognition that it might be rejected later based on additional data.
- The *p*-value is the probability of drawing a statistic (e.g. \bar{Y}) at least as adverse to the null as the value actually computed with your data, assuming that the null hypothesis is true.
- For the case of population mean, the *p*-value is the probability of drawing \bar{Y} at least as far in the tails of its distribution under the null hypothesis as the sample average you actually computed.

Calculating the *p***-value** based on \bar{Y} :

$$p-\text{value} = \Pr_{H_o}\left(\left|\bar{Y}-\mu_{Y,o}\right| > \left|\bar{Y}^{act}-\mu_{Y,o}\right|\right),$$

where \bar{Y}^{act} is the value of \bar{Y} actually observed.

- To compute the *p*-value, we need to know the sampling distribution of \overline{Y} under the null hypothesis.
- If *n* is large, \overline{Y} is well approximated by a normal distribution.

$$\begin{aligned} p - \text{value} &= \Pr_{H_o} \left(|\bar{Y} - \mu_{Y,o}| > |\bar{Y}^{act} - \mu_{Y,o}| \right) \\ &= \Pr_{H_o} \left(|\frac{\bar{Y} - \mu_{Y,o}}{\sigma_Y / \sqrt{n}}| > |\frac{\bar{Y}^{act} - \mu_{Y,o}}{\sigma_Y / \sqrt{n}}| \right) \\ &= \Pr_{H_o} \left(|\frac{\bar{Y} - \mu_{Y,o}}{\sigma_{\bar{Y}}}| > |\frac{\bar{Y}^{act} - \mu_{Y,o}}{\sigma_{\bar{Y}}}| \right) \\ &\cong \text{ probability under left + right } N(o, 1) \text{ tails} \end{aligned}$$

where $\sigma_{\bar{Y}}$ denotes the standard deviation of the distribution of \bar{Y} .

(ロト 4 団ト 4 巨ト 4 巨ト 巨 のへで 16/41

The Sample Variance, Sample Standard Deviation, and Standard Error

- In practice, σ_Ȳ is unknown and needs to be estimated.
- Estimator of the variance of Y:

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

イロト イロト イヨト イヨト 二日

17/41

Fact: If (Y_1, \dots, Y_n) are i.i.d. and $E(Y^4) < \infty$, then

$$s_Y^2 \xrightarrow{p} \sigma_Y^2$$

- Why does the law of large numbers apply?
 Because s²_V is a sample average.
- Technical note: we assume E(Y⁴) < ∞ because here the average is not of Y_i, but of its square.

Outline Estimation of μ_Y Hypothesis Tests Confidence Intervals Comparing Means Scatterplots and Sample Correlation

Prove that $s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2 \xrightarrow{p} \sigma_Y^2$.

First,
$$(Y_i - \bar{Y})^2$$

= $[(Y_i - \mu_Y) - (\bar{Y} - \mu_Y)]^2$
= $(Y_i - \mu_Y)^2 - 2(Y_i - \mu_Y)(\bar{Y} - \mu_Y) + (\bar{Y} - \mu_Y)^2$

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

= $\frac{1}{n-1} \sum_{i=1}^n (Y_i - \mu_Y)^2 - \frac{2}{n-1} \sum_{i=1}^n (Y_i - \mu_Y) (\bar{Y} - \mu_Y)$
 $+ \frac{1}{n-1} \sum_{i=1}^n (\bar{Y} - \mu_Y)^2$
= $\frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^n (Y_i - \mu_Y)^2 \right] - \frac{n}{n-1} (\bar{Y} - \mu_Y)^2$

19/41

For the first term,

- Define $W_i = (Y_i \mu_Y)^2$, then $E(W_i) = \sigma_Y^2$, and W_i, \dots, W_n are i.i.d.
- $\operatorname{E}(W_i^2) = \operatorname{E}\left[(Y_i \mu_Y)^4\right] < \infty$ because $\operatorname{E}(Y_i^4) < \infty$.
- Thus W_i, \dots, W_n are i.i.d. and $\operatorname{Var}(W_i) < \infty$, so $\overline{W} \xrightarrow{p} \operatorname{E}(W_i) = \sigma_Y^2$, and $\frac{n}{n-1} \to 1$.
- Therefore, $\frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i \mu_Y)^2 \right] = \frac{n}{n-1} \bar{W} \xrightarrow{p} \sigma_Y^2$.

For the second term, because $\bar{Y} \xrightarrow{p} \mu_Y$, $(\bar{Y} - \mu_Y)^2 \xrightarrow{p} 0$. Therefore, $s_Y^2 \xrightarrow{p} \sigma_Y^2$.

20/41

(ロ) (回) (三) (三) (三) (○)

Computing the *p*-value with estimated σ_Y^2 :

$$\begin{aligned} p - \text{value} &= \Pr_{H_o} \left(|\bar{Y} - \mu_{Y,o}| > |\bar{Y}^{act} - \mu_{Y,o}| \right) \\ &= \Pr_{H_o} \left(|\frac{\bar{Y} - \mu_{Y,o}}{\sigma_Y / \sqrt{n}}| > |\frac{\bar{Y}^{act} - \mu_{Y,o}}{\sigma_Y / \sqrt{n}}| \right) \\ &\cong \Pr_{H_o} \left(|\frac{\bar{Y} - \mu_{Y,o}}{s_Y / \sqrt{n}}| > |\frac{\bar{Y}^{act} - \mu_{Y,o}}{s_Y / \sqrt{n}}| \right) (\text{ large } n) \\ &= \Pr_{H_o} \left(|t| > |t^{act}| \right) \end{aligned}$$

 \cong probability under normal tails (large n)

where
$$t = \frac{\bar{Y} - \mu_{Y,0}}{s_Y / \sqrt{n}}$$
 is the *t*-statistic or *t*-ratio.

The p-value and the significance level

- Type I error: the null hypothesis (無罪) is rejected when in fact it is true. (誤判)
- Type II error: the null hypothesis (無罪) is not rejected when in fact it is false. (縱放)
- The prespecified probability of type I error is the significance level of the test.
- With a prespecified significance level (e.g. 5%):
 - reject if |t| > 1.96.
 - equivalently: reject if $p \le 0.05$.

- The probability that the test actually incorrectly rejects the null hypothesis when it is true is the **size** of the test.
- The probability that the test correctly rejects the null hypothesis when the alternative is true is the **power** of the test.

Digression: The Student *t*-distribution

If *Y* is distributed $N(\mu_Y, \sigma_Y^2)$, then the *t*-statistic has the Student *t*-distribution (tabulated in back of all stats books) Some comments:

- For n > 30, the *t*-distribution and N(0, 1) are very close.
- The assumption that *Y* is distributed $N(\mu_Y, \sigma_Y^2)$ is rarely plausible in practice (income? number of children?)
- The *t*-distribution is an historical artifact from days when sample sizes were very small.
- In this class, we won't use the *t* distribution we rely solely on the large-*n* approximation given by the Central Limit Theorem.

Confidence Intervals for the Population Mean

- Because of random sampling error, it is impossible to learn the exact value of the population mean of *Y* using only the information in a sample.
- It is possible to use data from a random sample to construct a set of values that contains the true population mean µ_Y with a certain prespecified probability.

- A 95% **confidence interval** for μ_Y is an interval that contains the true value of Y in 95% of repeated samples.
- *Digression:* What is random here? the confidence interval— it will differ from one sample to the next; the population parameter, μ_Y, is not random.

A 95% confidence interval can always be constructed as the set of values of μ_Y not rejected by a hypothesis test with a 5% significance level.

$$\{\mu_{Y} | : | \frac{\bar{Y} - \mu_{Y}}{s_{Y}/\sqrt{n}} | \le 1.96\}$$

$$= \{\mu_{Y} | : -1.96 \le \frac{\bar{Y} - \mu_{Y}}{s_{y}/\sqrt{n}} \le 1.96\}$$

$$= \{\mu_{Y} | : -1.96 \frac{s_{Y}}{\sqrt{n}} \le \bar{Y} - \mu_{Y} \le 1.96 \frac{s_{Y}}{\sqrt{n}}\}$$

$$= \{\mu_{Y} \in (\bar{Y} - 1.96 \frac{s_{Y}}{\sqrt{n}}, \bar{Y} + 1.96 \frac{s_{Y}}{\sqrt{n}})\}$$

Summary: From the assumptions of:

- (1) simple random sampling of a population, that is, $\{Y_i, i = 1, \dots, n\}$ are i.i.d.
- (2) o < E(Y^4) < ∞ .

we developed, for large samples (large *n*):

- Theory of estimation (sampling distribution of \bar{Y})
- Theory of hypothesis testing (large-*n* distribution of *t*-statistic and computation of the *p*-value).
- Theory of confidence intervals (constructed by inverting test statistic).

Are assumptions (1) & (2) plausible in practice? Yes

Comparing Means from Different Populations

Let μ_w be the mean hourly earning in the population of women recently graduated from college and let μ_m be population mean for recently graduated men. Consider the null hypothesis that earnings for these two populations differ by certain amount *d*, then

$$H_{0}: \mu_{m} - \mu_{w} = d \ v.s. \ H_{1}: \mu_{m} - \mu_{w} \neq d.$$

Since $\bar{Y}_{m} \sim N(\mu_{m}, \frac{\sigma_{m}^{2}}{n_{m}})$ and $\bar{Y}_{w} \sim N(\mu_{w}, \frac{\sigma_{w}^{2}}{n_{w}})$, then
 $\bar{Y}_{m} - \bar{Y}_{w} \sim N(\mu_{m} - \mu_{w}, \frac{\sigma_{m}^{2}}{n_{m}} + \frac{\sigma_{w}^{2}}{n_{w}})$

・ロト・日本・モート 中国・シュウト

Replace population variances by sample variances, we have the standard error (*SE*)

$$SE(\bar{Y}_m - \bar{Y}_w) = \sqrt{\frac{s_m^2}{n_m} + \frac{s_w^2}{n_w}}$$

and the *t*-statistic is

$$t = \frac{\bar{Y}_m - \bar{Y}_w - d}{SE(\bar{Y}_m - \bar{Y}_w)}$$

If both n_m and n_w are large, the *t*-statistic has a standard normal distribution.

	Men				Women		Difference, Men vs. Women				
Salnos (6.020) Annos	s i cifi L	รถ (วิษุญี่สูงสียา (ร.ศ. 511 (ค.ศ. 511)			niquuis Autoni	s tot sins 1 oct size	linde e alte s restre const	disə təsələr Stə	95% Confidence Interval		
Year	<u>Y</u> m	s _m	n _m	Ϋ́w	Sw	n _w	$\overline{\mathbf{Y}}_m - \overline{\mathbf{Y}}_w$	$SE(\overline{Y}_m - \overline{Y}_w)$	for d		
1992	24.83	10.85	1594	21.39	8.39	1368	3.44**	0.35	2.75-4.14		
1996	23.97	10.79	1380	20.26	8.48	1230	3.71**	0.38	2.97-4.46		
2000	26.55	12.38	1303	22.13	9.98	1181	4.42**	0.45	3.54-5.30		
2004	26.80	12.81	1894	22.43	9.99	1735	4.37**	0.38	3.63-5.12		
2008	26.63	12.57	1839	22.26	10.30	1871	4.36**	0.38	3.62-5.10		
2012	25.30	12.09	2004	21.50	9.99	1951	3.80**	0.35	3.11-4.49		

Another Example.

TABLE 3.1	Differences in Household Income According to Childhood Socioeconomic Circumstances, Grouped by Level of Highest Qualification										
	Father's NS-SEC = Higher			Father's NS-SEC = Routine			Difference, Higher vs. Routine				
Qualification	Y _h	Sh	n _h	Y,	Sr	n _r	$Y_h - Y_r$	SE(Y _h - Y _r)	95% Confidence Interval for d		
None	£2,223.13	£2,115.12	1129	£1,842.98	£1,487.29	6383	£380.15	£65.64	£251.38	£508.93	
GCSE/O-Level	£2,837.18	£1,819.73	1962	£2,596.93	£1,738.47	4042	£240.25	£49.35	£143.49	£337.00	
A-Level	£3,045.99	£2,451.81	1216	£2,745.70	£1,912.50	1169	£300.30	£89.85	£124.11	£476.49	
Undergraduate degree or more	£3,690.51	£2,743.55	4359	£3,370.96	£2,443.58	2505	£319.55	£64.11	£193.86	£445.23	
All categories	£3,215.71	£2,497.73	8666	£2405.45	£1,886.86	14099	£810.25	£31.18	£749.13	£871.38	

Scatterplots, the Sample Covariance, and the Sample Correlation

Three ways to summarize the relationship between two variables

33/41

- scatterplot,
- sample covariance,
- sample correlation coefficient.

Scatterplots

Each point in the plot represents the age and average earnings of one of the 200 workers in the sample. The highlighted dot corresponds to a 45-year-old worker who earns \$49.15 per hour. The data are for computer and information systems managers from the March 2016 CPS.

Sample Covariance and Correlation

- The population covariance and correlation can be estimated by the **sample covariance** and **sample correlation**.
- The **sample covariance** is

$$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})$$

• The sample correlation is

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}, |r_{XY}| \le 1$$

It can be shown that under the assumptions that (X_i, Y_i) are i.i.d. and that X_i and Y_i have finite fourth moments,

$$\begin{array}{cccc} s_Y^2 & \stackrel{p}{\rightarrow} & \sigma_Y^2 \\ s_{XY} & \stackrel{p}{\rightarrow} & \sigma_{XY} \\ r_{XY} & \stackrel{p}{\rightarrow} & \operatorname{Corr}(X, Y) \end{array}$$

Prove that
$$\underline{s_{XY}} \xrightarrow{p} \sigma_{XY}$$
.

$$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} [(X_i - \mu_X) - (\bar{X} - \mu_X)] [(Y_i - \mu_Y) - (\bar{Y} - \mu_Y)]$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu_X) (Y_i - \mu_Y) - \frac{1}{n-1} \sum_{i=1}^{n} (\bar{X} - \mu_X) (Y_i - \mu_Y)$$

$$- \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu_X) (\bar{Y} - \mu_Y) + \frac{1}{n-1} \sum_{i=1}^{n} (\bar{X} - \mu_X) (\bar{Y} - \mu_Y)$$

<ロト < 合 ト < 言 ト < 言 ト ミ の < (ペ 37 / 41 • Use the fact that $\sum_{i=1}^{n} (Y_i - \mu_Y) = n(\bar{Y} - \mu_Y)$, $\sum_{i=1}^{n} (X_i - \mu_X) = n(\bar{X} - \mu_X)$ and collect terms, we have

$$s_{XY} = \left(\frac{n}{n-1}\right) \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_X) (Y_i - \mu_Y)$$
$$- \left(\frac{n}{n-1}\right) (\bar{X} - \mu_X) (\bar{Y} - \mu_Y)$$

It is easy to see that the second term converges in probability to zero because X
 ^p→ μ_X and Y
 ^p→ μ_Y so
 (X
 - μ_X)(Y
 - μ_Y)
 ^p→ o by Slutsky's theorem.

By the definition of covariance, we have
 E ((X_i - μ_X)(Y_i - μ_Y)) = σ_{XY}. To apply the law of large numbers on the first term, we need to have

$$\operatorname{Var}\left((X_i-\mu_X)(Y_i-\mu_Y)\right)<\infty$$

which is satisfied since

$$\begin{aligned} &\operatorname{Var}\left((X_i-\mu_X)(Y_i-\mu_Y)\right)\\ &= &\operatorname{E}\left((X_i-\mu_X)^2(Y_i-\mu_Y)^2\right)\\ &\leq &\sqrt{\operatorname{E}(X_i-\mu_X)^4\operatorname{E}(Y_i-\mu_Y)^4} < \infty\end{aligned}$$

The second inequality follows by applying the Cauchy-Schwartz inequality, and the last inequality follows because of the finite fourth moments for (X_i, Y_i) .

39 / 41

• The Cauchy-Schwartz inequality is

$$|\mathrm{E}(XY)| \le \sqrt{\mathrm{E}(X^2)\mathrm{E}(Y^2)}$$

• Applying the law of large numbers, we have

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu_X) (Y_i - \mu_Y)$$

$$\stackrel{p}{\to} \operatorname{E} \left((X - \mu_X) (Y - \mu_Y) \right) = \sigma_{XY}$$

• Also, $\frac{n}{n-1} \rightarrow 1$, therefore $s_{XY} \xrightarrow{p} \sigma_{XY}$

Scatterplots and Sample Correlation

うく(~ 41/41