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Estimation of the Population Mean

* One natural way to estimate the population mean,
Uy, is simply to compute the sample average Y
from a sample of # i.i.d. observations. This can
also be motivated by law of large numbers.
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Estimation of py

Estimators ({&551T\) and Their Properties

e The sample average Y is a natural way to estimate
Uy, but, Y is not the only way. For example, the
first observation Y, can be another estimator of
Hy-

* What makes one estimator “better” than another?
What are desirable characteristics of the sampling
distribution of an estimator?
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* In general, we want an estimator that gets as close
as possible to the unknown true value, at least in
some average sense.

* In other words, we want the sampling distribution
of an estimator to be as tightly centered around
the unknown value as possible.

e This leads to three specific desirable characteristics
of an estimator: unbiasedness, consistency, and
efficiency.
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Estimation of py

Three desirable characteristics of an estimator.

Let iy denote some estimator of py,
e Unbiasedness: E(fiy) = py.
. A P
* Consistency: gy — py.
e Efficiency.
Let fiy be another estimator of yy, and suppose

both fiy and iy are unbiased. Then fy is said to
be more efficient than iy if Var(gy) < Var(gy).
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Estimation of py

Properties of Y

o It can be shown that E(¥) = yy and ¥ 5 4y
(from law of large numbers), Y is both unbiased
and consistent.

e But,is Y efficient?
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Estimation of py

Examples of alternative estimators.

Example 1: The first observation Y;?
Since E(Y;) = uy, Y; is an unbiased estimator of uy.
But,

2

Var(Y;) = 02 > Var(Y) = &,
n

if n > 2, Y is more efficient than Y,.
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Estimation of py

Example 2:

Y

1 3 1 3
(—Y1 +=Y,++ =Y, + —Yn),
n\2 2 2 2

where 7 is assumed to be an even number.
The mean of Y is yy and its variance is

2502

Var(Y) = > Var(Y)

Thus Y is unbiased and, because Var(Y) — o as
n — oo, Y is consistent.
However, Y is more efficient than Y.
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Estimation of py

e In fact, Y is the most efficient estimator of uy
among all unbiased estimators that are weighted
averages of Yy, -+, Y,,. (Weighted average implies
that the estimators are all unbiased.)

* Said differently, Y is the Best Linear Unbiased
Estimator (BLUE).

e It is the most efficient (best) estimator among all
estimators that are unbiased and are linear
function of Y, ---, Y,,.
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Estimation of py

Y is the least squares estimator of uy.

* The sample average Y provides the best fit to the
data in the sense that the average squared
differences between the observation and Y are the
smallest of all possible estimators.

* The solution to the problem of minimizing
n

> (Yi—m)?

i=1

is 11 = Y, which is called the least squares
estimator.
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Hypothesis Tests Concerning the

Population Mean
Null and Alternative Hypotheses

The hypothesis testing problem: make a provisional
decision, based on the evidence at hand, whether a
null hypothesis is true, or instead that some
alternative hypothesis is true.

Ho: E(Y) = uyo v.s. Hi: E(Y) > uy,o (1-sided,>)
H,: E(Y) pyo v.s. Hi E(Y)<uy,o (1-sided, <)
H,: E(Y) Pyo v.s. Hi: E(Y) # py,o (2 -sided)
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Hypothesis Tests

e If the null hypothesis is “accepted," this does not
mean that it is true. It is accepted tentatively with
the recognition that it might be rejected later
based on additional data.

* The p-value is the probability of drawing a statistic
(e.g.Y) at least as adverse to the null as the value
actually computed with your data, assuming that
the null hypothesis is true.

e For the case of population mean, the p-value is the
probability of drawing Y at least as far in the tails
of its distribution under the null hypothesis as the
sample average you actually computed.
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Hypothesis Tests

Calculating the p-value based on Y:

),

where Y4 is the value of Y actually observed.

p —value = gr(\f/ —Uy.o > Y — Uy,

* To compute the p-value, we need to know the
sampling distribution of Y under the null
hypothesis.

e If nislarge, Y is well approximated by a normal
distribution.
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Hypothesis Tests

(‘Y ~ Uy,ol > |Ya6t - I"Y,O‘)

Il
J
.,

p — value

1R

probability under left + right N(o,1) tails

where oy denotes the standard deviation of the
distribution of Y.
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The p-value is the
probability of drawing a
value of ¥ that differs from
Ly by at least as much

as Y2, In large samples,
Vs distributed N(pyg, 0%)
under the null hypothesis,
s0 (Y — o) [0y

is distributed N (0,1).
Thus the p-value is the
shaded standard normal
tail probability outside

H| (v - I-Lv‘o)/”'?‘-

.
m Calculating a p-value

The p-value is the shaded

area in the graph

Dac
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Hypothesis Tests

The Sample Variance, Sample Standard Deviation,
and Standard Error

* In practice, oy is unknown and needs to be
estimated.

e Estimator of the variance of Y:

n

S(Y;-Y)

n—1i5

1

2 _
Sy =
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Hypothesis Tests

Fact: If (Y;,---, Y,) are i.i.d. and E(Y#) < oo, then

sy EA oy
* Why does the law of large numbers apply?

5
Because Sy1sa sample average.

® Technical note: we assume E(Y#) < oo because
here the average is not of Y}, but of its square.
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Hypothesis Tests

Prove that s3, = .= i (Vi — Y)Z-e-ay

First, (Y;-Y)?
= [(Yi_["Y)_(?_#Y)]Z
(Yi—uy)*—2(Yi—uy)(Y —py) + (Y — py)?

3

i=1

L

n-1|n‘

- [1 i(m—w)ﬂ—ﬁ(?—mz
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Hypothesis Tests

For the first term,

* Define W; = (Y; — uy)?, then E(W;) = 02,and W;, -, W,
are i.i.d.

e E(W?)=E[(Yi- py)*] < oo because E(Y}) < co.

* Thus W;,---, W, are i.i.d. and Var(W;) < oo, so
w2 E(W;) = 0}, and ;% - 1.

o Therefore, - [2 Y0 (Y; —puy)?*]| = LW L4 oy

For the second term, because ¥ > ty, (Y — py)? Lo.

p
2 2
Therefore, sy = o7
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Hypothesis Tests

Computing the p-value with estimated o3:

( ~ y,ol > | YaCt_# 0|)

) (|Y Bro Ya“—w,o)
UY/\/_ oy/\/n

PlYo YaCt —Uy,o roe n
re (1> ) e

Pr (|t > [£2<*])

p — value

112

112

probablhty under normal tails ( large n)

where t = Y110 s the f-statistic or {-ratio.
sy//n
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Hypothesis Tests

The p-value and the significance level

Type I error: the null hypothesis (F£3E) is rejected
when in fact it is true. (GR¥)

Type II error: the null hypothesis ($£3E) is not
rejected when in fact it is false. (#¢5%)

The prespecified probability of type I error is the
significance level of the test.
With a prespecified significance level (e.g. 5%):

* rejectif [t| > 1.96.

® equivalently: reject if p < 0.05.
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Hypothesis Tests

* The probability that the test actually incorrectly
rejects the null hypothesis when it is true is the
size of the test.

* The probability that the test correctly rejects the
null hypothesis when the alternative is true is the
power of the test.
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Hypothesis Tests

Digression: The Student ¢-distribution

If Y is distributed N (uy, 03 ), then the ¢-statistic has the Student
t-distribution (tabulated in back of all stats books)

Some comments:

* For n > 30, the t-distribution and N(o,1) are very close.

* The assumption that Y is distributed N (uy, 03) is rarely
plausible in practice (income? number of children?)

* The ¢-distribution is an historical artifact from days when
sample sizes were very small.

* In this class, we won't use the ¢ distribution - we rely solely
on the large-n approximation given by the Central Limit
Theorem.
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Confidence Intervals for the Population
Mean

* Because of random sampling error, it is impossible
to learn the exact value of the population mean of
Y using only the information in a sample.

e [t is possible to use data from a random sample to
construct a set of values that contains the true
population mean py with a certain prespecified
probability.
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Confidence Intervals

* A 95% confidence interval for yy is an interval
that contains the true value of Y in 95% of repeated
samples.

* Digression: What is random here?
the confidence interval— it will differ from one
sample to the next; the population parameter, uy,
is not random.
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Confidence Intervals

A 95% confidence interval can always be constructed
as the set of values of yy not rejected by a hypothesis
test with a 5% significance level.

~ |<1.96}

{uy] \ Y/\/—

Y -
{uy|:-1.96 < Hy

sy/\/ﬁ
{uy|: 1. 96 <Y - Uy < 1. 96—
\/_ \/_

<1.96}

Y +1. 96—)}

7

= {/,lyE(Y—196

\/_
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Confidence Intervals

Summary: From the assumptions of:

(1) simple random sampling of a population, that is,
{Y;,i=1,-,n}areiid.

(2) 0<E(Y#4) < 0.
we developed, for large samples (large n):
* Theory of estimation (sampling distribution of Y)

* Theory of hypothesis testing (large-# distribution of
t-statistic and computation of the p-value).

* Theory of confidence intervals (constructed by inverting test
statistic).
Are assumptions (1) & (2) plausible in practice? Yes
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Comparing Means from Different
Populations

Let y,, be the mean hourly earning in the population of women
recently graduated from college and let 1, be population mean
for recently graduated men. Consider the null hypothesis that
earnings for these two populations differ by certain amount d,
then

Ho: by — phw =d v.s. Hy: i — o # d.
Since Yy, ~ N(tm> %) and Y,, ~ N(uy, %), then

) ) o2 o2
Ym_YwNN(Hm_[/‘w,n_m+_W

m w
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Comparing Means

Replace population variances by sample variances, we
have the standard error (SE)

- sz s2
SE(Y, - V,) =1 /2 +22
Ny Ny
and the t-statistic is
R .
SE(Y,, - Y,)

If both n,, and n,, are large, the ¢-statistic has a
standard normal distribution.
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-

LUK Trends in Hourly Earnings in the United States of Working College Graduates,

Ages 25-34, 1992 to 2012, in 2012 Dollars
Men Women Difference, Men vs. Women

95%

Confidence
Interval

Year Y. 5 N Y S n, Y,-V, SE¥,-Y,) ford
1992 248 1085 1594 2139 839 1368 344 0.35 275-4.14
199 2397 1079 1380 2026 848 1230 3715 0.38 2.97-4.46
2000 2655 1238 1303 2213 998 1181 442%% 045 3.54-530
2004 2680 1281 1894 2243 999 1735 437+ 0.38 3.63-5.12
2008 2663 1257 1839 2226 1030 1871 4.36%* 0.38 3.62-5.10
2012 2530 1209 2004 2150 999 1951 3.80% 0.35 3.11-4.49
These estimates are computed using data on all full-time workers ages 25-34 surveyed in the Current Population Survey
conducted in March of the next year (for example, the data for 2012 were collected in March 2013). The difference is sig-

nificantly different from zero at the **1% significance level.
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Father's NS-SEC = Higher

Father's NS-SEC = Routine

11051 Differences in Household Income According to Childhood Socioeconomic
Circumstances, Grouped by Level of Highest Qualification

Difference, Higher vs. Routine

95% Confidence
Qualification ¥, A My ¥ 5 ne Yo=Y SEY,-Y) Intervalford
None 20313 21512 1129 £18098  £148729 6383 £38005  £6564  £5138  £50893
GCSE/O-Level  £283718  £181973 1962 £2.596.93 £173847 4042 £24025  £4935  £14349  £33700
AcLevel D599 45181 1206 27570 £191250 1169 £30030 L8985 £l £47649
Undergraduate ~ £3690.51 274335 4359 £337096  £244358 2505 £31955  g641l L19386  £44503
degree or more
Allcategories  £321571  £249773 8666 £240545  £188686 14099 £81025  £3LIS  £M9M3  £87138

Source: Understanding Society,
N

Dac
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Scatterplots, the Sample Covariance, and
the Sample Correlation

Three ways to summarize the relationship between
two variables

* scatterplot,
* sample covariance,

e sample correlation coefficient.
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Scatterplots

m Scatterplot of Average Hourly Earnings vs. Age

Average hourly earnings
120 -

110

T
°
°

100

90

60 -

1 1 1 1 1 1 J
20 25 30 35 40 45 50 55 60 65 70 75 80
Age

Each point in the plot represents the age and average earnings of one of the 200 workers in the
sample. The highlighted dot corresponds to a 45-year-old worker who earns $49.15 per hour. The
data are for computer and information systems managers from the March 2016 CPS.

34/ 41



Scatterplots and Sample Correlation

Sample Covariance and Correlation

* The population covariance and correlation can be
estimated by the sample covariance and sample
correlation.

e The sample covariance is

sxr = == (X, - X)(¥i- V)

i=1

e The sample correlation is

Y
rxy = —, ny‘ <1

SXSy
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Scatterplots and Sample Correlation

e [t can be shown that under the assumptions that
(X;,Y;) are i.i.d. and that X; and Y; have finite

fourth moments,

p
sy — oy
p
Sxy — Oxy
p
rxy = Corr(X,Y)
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Scatterplots and Sample Correlation

p
Prove that sxy — oyxy.

SXYy
n

[(Xi = ux) = (X = px) ] [(Yi = py) = (Y = py) ]

X -

i
i

Z(X ux)(Y - w)+n—Z(X ux)(Y - py)

n- = 1=1
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Scatterplots and Sample Correlation

o Use the fact that Y7 (Y; — py) = n(Y - uy),
> (X; - ux) = n(X - ux) and collect terms, we have

sxy = (L_) : Zﬁ;(xi_VX)(Yi_I/‘Y)

n—-1) n

() o (F - )

n-1

* It is easy to see that the second term converges in probability
to zero because X > pxand Y 5 Hy SO

(X - ux)(Y - uy) Lo by Slutsky’s theorem.
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Scatterplots and Sample Correlation

® By the definition of covariance, we have
E ((X; - pux)(Y; — py)) = oxy. To apply the law of large
numbers on the first term, we need to have

Var ((X; — ux)(Yi—py)) < oo

which is satisfied since

Var ((X; - ux)(Y; - uy))
E((Xi - px)*(Yi - py)*)
VE(X; — px)*E(Y; — py)* < 0

IN

The second inequality follows by applying the
Cauchy-Schwartz inequality, and the last inequality follows

because of the finite fourth moments for (X;, Y;).
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Scatterplots and Sample Correlation

® The Cauchy-Schwartz inequality is

E(XY)] < VE(X*)E(Y?)
* Applying the law of large numbers, we have
% é(Xi - ux)(Yi = py)
S E((X-ux)(Y ~py) = oxy
* Also, ;= — 1, therefore
SXY 5 Oxy
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The scatterplots in
Figures 3.3a and
3.3b show strong
linear relationships
between X and Y.

In Figure 3.3c, X is
independent of Y
and the two variables
are uncorrelated. In
Figure 3.3d, the two
variables also are
uncorrelated even
though they are
related nonlinearly.

m Scatterplots for Four Hypothetical Data Sets

Y ¥
70, 70
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50| 50+
40 40+
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20 o 20+ s :
10 10
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(a) Correlation = +0.9 (b) Correlation = —0.8
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(c) Correlaton = 0.0

(d) Correlation = 0.0 (quadratc)

Scatterplots and Sample Correlation




