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Random Variables and Probability
Distributions

Probabilities, the Sample Space and Ramdom Variables

® Qutcomes: The mutually exclusive potential results
of a random process.

* Probability: The proportion of the time that the
outcome occurs in the long run.

e Sample space: The set of all possible outcomes.
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Random Varialbes

e Event: A subset of the sample space.

e Random variables:
A random variable is a numerical summary of a
random outcome.
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Probability Distribution of a Discrete Random Variable

Two Random Variable  Distributions ~Random Sampling

* Probability distribution.

e Probabilities of events.

* Cumulative probability distribution.

Large-Sample

(L1 A Probability of Your Wireless Network Connection Failing M Times

Outcome (number of failures)

0 1 2 3 4|
Probability distribution 0.80 0.10 0.06 0.03 0.01 ‘
Cumulative probability distribution 0.80 0.90 0.96 0.99 100 )‘
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-
m Probability Distribution of the Number of Wireless Network Connection Failures

The height of each bar is the probability that the Probability

wireless connection fails the indicated number of 08
times. The height of the first bar is 0.8, so the prob-
ability of O connection failures is 80%. The height 07+

of the second bar is 0.1, so the probability of

1 failure is 10%, and so forth for the other bars. 06

0.0




Random Varialbes

Example: The Bernoulli distribution.

Let G be the gender of the next new person you meet,
where G = o indicates that the person is male and

G =1indicates that she is female.

The outcomes of G and their probabilities are

G 1 with probability p

o with probability 1 - p
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Probability Distribution of a Continuous Random Variable

® Cumulative probability distribution.

m Cumulative Probability Distribution and Probability Density Functions
of Commuting Time

Probability
1.0 Pr (Commuting time = 20) = 0.78

0.8 -

04 L | Pr (Commuting time = 15) = 0.20

0.0 L L 1 )
10 15 20 25 30 35 40
Commuting time (minutes)
(a) Cumulative probability distribution function of commuting times
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Probability density

* Probability density function (p.d.f.).

0.15 ~
Pr (Commuting time = 15) = 0.20
0121
Pr (15 < Commuting time = 20) = 0.58
0.09
0.06
Pr (Commuting time > 20) = 0.22
P 0.58
0.20

0.00

10 15

| |
20 30 35

40
Commuting time (minutes)

(b) Probability density function of commuting times




Outline  Random Varialbes Mean and Variance Two Random Variable Distributions Random Sampling  Large-Sample

Expected Values, Mean, and Variance

(G448 Expected Value and the Mean
21 Suppose that the random variable Y takes on k possible values, y, ... , y, where
vy denotes the first value, y, denotes the second value, and so forth, and that the
probability that Y takes on y; is py, the probability that Y takes on y, is p,,and so
forth. The expected value of Y, denoted E(Y),is

k
E(Y)=yptyappt ot yepe = 21)’;/7# (23)
=

where the notation E,-k=| y;p; means “the sum of y;p; for i running from 1 to k.”
The expected value of ¥ is also called the mean of Y or the expectation of ¥ and
is denoted py.
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Expected value of a Bernoulli random variable

E(G)=1xp+ox(1—-p)=p

Expected value of a continuous random variable
Let f(Y) is the p.d.f of random variable Y, then the
expected value of Y is

E(Y) - [:Y-f(Y) dy
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Variance and Standard Deviation

Variance and Standard Deviation

The variance of the discrete random variable Y, denoted o, s 22
k

(fzy = var(¥) =E[ (¥~ My)z] = 2(.\";' ™ PY)ZP;'- (26)

i=1
The standard deviation of Y is o, the square root of the variance. The units of the

standard deviation are the same as the units of V.

12/ 65



Variance of a Bernoulli random variable

The mean of the Bernoulli random variable G is
UG = p, S0 its variance is

Var(G) = o2=(0-p)*xp
+(o—-p)*x(1-p)
p(1-p)

The standard deviation of random variable G is

o = \/p(i-p).

13/ 65



Moments

* The expected value of Y is called the r moments
of the random variable Y.
That is, the 7 moment of Y is E(Y").

e The mean of Y, E(Y), is also called the first
moment of Y.
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Mean and Variance

Mean and Variance of a Linear Function of a

Random Variable

Suppose X is a random variable with mean px and
variance 0%, and

Y=a+bX,

then the mean and variance of Y are

Uy a+bux

2 2 -2
oy = b’oy

and the standard deviation of Y is oy = boy.
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Two Random Variable

Two Random Variables

Joint and Marginal Distributions

e The joint probability distribution of two discrete
random variables, say X and Y, is the probability
that the random variables simultaneously take on
certain values, say x and y.

* The joint probability distribution can be written as
the function Pr(X = x,Y = y).
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The marginal probability distribution of a random
variable Y is just another name for its probability
distribution.

I
Pr(Y=y) = ZPr(X: xi, Y =)

i=1

4.3 ¥ 8 |oint Distribution of Weather Conditions and Commuting Times 1

Rain (X = 0) NoRain (X =1) Total i
Long commute (Y = 0) 0.15 ] 0.07 0.22 ]
Short commute (Y = 1) - 0.15 0.63 0.78
Total o 030 0.70 Lo
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Conditional distribution of Y given X = x is

Pr(X=x,Y=y)
Pr(X = x)

Pr(Y=y|X=x)=
Conditional expectation of Y given X = x is

k
E(Y|X=x) = > y:Pr(Y = y;|X =x)

i=1
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f Jointand Conditional Distributions of Number of Wireless Connection N
Failures (M) and Network Age (A)

A. Joint Distribution

M=0 M=1 M=2 M=3 M=4 Total
Old network (A = 0) 0.35 0.065 0.05 0.025 0.01 050
New network (A = 1) 0.45 0.035 0.01 0.005 0.00 0.50
Total 0.80 0.10 0.06 0.03 0.01 1.00
B. Conditional Distributions of M given A

M=0 M=1 M=2 M=3 M=4 Total
Pr(M|4 = 0) 0.70 0.13 0.10 005 0.02 100
Pr(M|A =1) 0.90 007 0.02 001 0.00 100

Ha
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Two Random Variable

The mean of Y is the weighted average of the
conditional expectation of Y given X, weighted by
the probability distribution of X.

1
E(Y) = Y E(Y|X =x;)Pr(X =x;)

i=1
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Two Random Variable

e Stated differently, the expectation of Y is the
expectation of the conditional expectation of Y
given X, that is,

BE(Y) =E[E(Y]X)],

where the inner expectation is computed using the
conditional distribution of Y given X and the
outer expectation is computed using the marginal
distribution of X.

e This is known as the law of iterated expectations.
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Proof: E(Y) = YL E(Y|X = x;) Pr(X = x;)

E(Y)

k
Y. yiPr(Y =yj)

j=1

k l

Zyj Y Pr(Y =y;, X =x;)
j=1 i=1

koo
2. 7i 2 Pr(Y = yj|X = x;) Pr(X = x;)

j=1 i=1
I k
Y yiPr(Y = yj|X = x;) Pr(X = x;)

i=1 j=1

I
Y E(Y|X = x;) Pr(X = x;)

i=1
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Two Random Variable

Conditional variance

e The variance of Y conditional on X is the variance
of the conditional distribution of Y given X.

k
Var(Y|X = x) = g[yi—E(Y|X=x)]2

x Pr(Y = y;|X = x)
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Two Random Variable

Bayes’ Rule

Pr(y =i =) < SR SO

* The conditional probability of Y given X is the
conditional probability of X given Y times the
relative marginal probability of Y and X. (Exercise
2.28)
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Two Random Variable

¢ The conditional mean is the minimum mean
squared error prediction.

Loss = E{[Y - g(X)*}

It can be shown that the loss is minimized when
¢g(X) = E(Y|X). (Appendix 2.2)
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Two Random Variable

* Consider the simpler problem of finding a number, m, that
minimizes E[(Y — m)?]. For the case of discrete random
variable Y, E[(Y - m)2] = ¥ (¥; - m)?p;.

k
_ZZ(Yi - m)p,
k k
= —Z(Z YiPi_mZPi)
k
= —2(2}’1~p,~—m) =0

d k
%Z(Y" - m)?p;

e It follows that the squared error prediction loss is minimized
by m = T, Yipi = E(Y).
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Two Random Variable

To find the predictor g(X) that minimizes the loss
E{[Y - g(X)]?}, use the law of iterated expectations to write
the loss as,

Loss = E{[Y -g(X)]*} = E(E{[Y - g()]*X})

Thus, if the function g(X) minimize
E (E{[Y - g(X)]*|X = x}) for each value of x, it minimize
the loss function.

But, for a fixed value X = x, g(X) = g(x) is a fixed number.
This problem is the same as the one just solved for m, and
the loss is minimized by choosing g(x) to be the mean of Y,
given X = x. This is true for every value of x.

Thus the squared error loss is minimized by g(X) = E(Y|X).
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Two Random Variable

Independence

* Two random variable X and Y are independently
distributed, or independent, if knowing the value
of one of the variables provides no information
about the other.

e Thatis, X and Y are independent if for all values
of x and y if

Pr(Y =y|X=x)=Pr(Y =y)
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Two Random Variable

e State differently, X and Y are independent if

Pr(X=x,Y=y) _
Pr(X =x) = Pr(Y=y)
Pr(X=x,Y=y) = Pr(X=x)Pr(Y =y)

e That is, the joint distribution of two independent
random variables is the product of their marginal
distributions.
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Two Random Variable

Covariance and Correlation

Covariance:

¢ One measure of the extent to which two random
variables move together is their covariance.

COV(X, Y) = 0Xxy
E[(X - ux)(Y - py)]

|k
P> (xi—px) (yj—py) Pr(X =x;, Y = y;)

i=1 j=1
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Two Random Variable

Correlation

e The correlation is an alternative measure of
dependence between X and Y that solves the
“unit" problem of covariance.

COV(X, Y) _ oxy
V/Var(X)Var(Y) 0x0y

Corr(X,Y) =

e The random variables X and Y are said to be
uncorrelated if Corr(X,Y) = o.

* The correlation is always between -1 and 1.
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Two Random Variable

Correlation and Conditional Mean

e [f the conditional mean of Y does not depend on
X, then Y and X are uncorrelated. That is,

if E(Y|X) = py,then Cov(Y,X) =o,
Corr(Y,X) = o,

because
Cov(Y, X)

E(YX) - pypx
E(E(Y|X)X) - pypx
E(X)E(Y[X) - pypx=o
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Two Random Variable

e [t is not necessarily true, however, that if X and Y
are uncorrelated, then the conditional mean of Y
given X does not depend on X. (Exercise 2.23)

33/65



Two Random Variable

The Mean and Variance of Sums of Random Variables

E(X+Y)
Var(X+Y)

E(X) + E(Y) =Ux + Uy
Var(X) + Var(Y) +2Cov(X,Y)

o + Oy +20xy
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Means, Variances, and Covariances of Sums
2 3 of Random Variables

Let X, Y, and V be random variables; let uy and 0% be the mean and variance
of X and let oyy be the covariance between X and Y (and so forth for the other
variables); and let a, b, and ¢ be constants. Equations (2.30) through (2.36) follow

from the definitions of the mean, variance, and covariance:

E(a + bX +cY) =a + buy + cuy,
var (a + bY) = b’o%,
var (aX + bY) = d*o% + 2abayy + b*o?,
E(Y?) = 0% + b,
cov(a + bX + ¢V, Y) = boyy + coyy,

E(XY) = oxy + pxtiy,

(2.30)

(2.31)

(232)

(2.33)

(2.34)

(2.35)

[corr(X, Y)| = 1 and |oyy| = Voko¥ (correlation inequality). (2.36)

Large-Sample
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Normal, Chi-Squared, F,, -, and t Distributions

The Normal Distribution
The probability density function of a normal distributed

random variable (the normal p.d.f.) is

fr(7) = ——=—exp [—l (m)z]

2710y 2 Oy

where exp(x) is the exponential function of x.

The factor —~— ensures that

oy\/2m

Pr(-co <Y <o) = [ fr(y)dy=

36/ 65
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The normal distribution with mean g and variance o2

is expressed as N (u, 02).

(m The Normal Probability Density

The normal probability density function
with mean  and variance o is a bell-
shaped curve, centered at ju. The area under
the normal p.d.f. between u — 1.960 and

w + 1960 i5 0,95, The normal distribution is
denoted N(p, o).

4 ! I. >
- 1.9 W wt 1960
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Distributions

* The standard normal distribution is the normal
distribution with mean y = o and variance 0% = 1
and is denoted as N (o, 1).

e The standard normal distribution is often denoted
by Z and its cumulative distribution function is
denoted by @. Accordingly, Pr(Z < ¢) = ®(¢),
where c is a constant.
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@ETFXAD Calculating the Probability That Y = 2 When Y Is Distributed N(1, 4)

To calculate Pr(Y = 2), standardize Y,

then use the standard normal distribution

table. Y is standardized by subtracting its

mean (. = 1) and dividing by its stan-

dard deviation (o = 2). The probability

that Y = 2 is shawn in Figure 2.6a, and the

corresponding probability after standard- Pr(y =2)
izing Y is shown in Figure 2.6b. Because the
standardized random variable, (Y — 1) /2,
is a standard normal (2) random variable,
Pr(y = 2) = pr(5t =251 = |
Pr(Z = 0.5). From Appendix Table 1, 1.0 2.0 s 4
Pr(Z = 05) = ®(0.5) — 0.691. (=) N(1,:4)

N(1, 4) distribution

Pr(Z = 0.5)

N(0, 1) distribution

1
(){0 0.5 2
(b) N(O, 1)




Distributions

The bivariate normal distribution
The bivariate normal p.d.f. for the two random
variables X and Y is

gx,y(x, )
1
270X 0Y\/1- Py
Sl Ca) e ()
X ex -2

p{—z(l—pg(y) [( ox pxy ox
() ()

Oy Oy

where pxy is the correlation between X and Y.
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Distributions

Important properties for normal distribution:

1. If X and Y have a bivariate normal distribution with
covariance oyy, and if a and b are two constants, then

aX +bY ~ N(aux + buy,a’ox + b*oy + 2aboxy)

2. 'The marginal distribution of each of the two variables is
normal. This follows by settinga =1,b =0 in1.

3. If oxy = o, then X and Y are independent.
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Distributions

The Chi-squared distribution

e The Chi-squared distribution is the distribution
of the sum of m squared independent standard
normal random variables.

e The distribution depends on m, which is called the
degrees of freedom of the chi-squared distribution.

* A chi-squared distribution with m degrees of
freedom is denoted y2,.
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Distributions

The Student ¢ Distribution

* The Student ¢ distribution with m degrees of
freedom is defined to be the distribution of the
ratio of a standard normal random variable,

divided by the square root of an independently
distributed chi-squared random variable with m

degrees of freedom divided by m.
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Distributions

e That is, let Z be a standard normal random
variable, let W be a random variable with a
chi-squared distribution with m degrees of
freedom, and let Z and W be independently
distributed. Then

z
\/E

e When m is 30 or more, the Student t distribution

~ty

is well approximated by the standard normal
distribution, and the ¢, distribution equals the
standard normal distribution Z.

44165



Distributions

F distribution

® Fpuu= %;;ﬂ, where y2, and 2 are independent.

e When nis oo, y2/n ~ 1.

e The F,, -, distribution is the distribution of a
random variable with a chi-squared distribution

with m degrees of freedom, divided by m.

* Equivalently, the F,, « distribution is the
distribution of the average of m squared standard
normal random variables.
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Random Sampling and the Distribution
of the Sample Average

* Almost all the statistical and econometric
procedures used in this course invlove averages or
weighted averages of a sample of data.

* The act of random sampling— randomly drawing
a sample from a larger population— has the effect
of making the sample average itself a random
variable that has a probability distribution called
sampling distribution.
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Random Sampling

Random Sampling

e Simple random sampling is the simplest
sampling scheme in which n objects are selected at
random from a population and each member of
the population is equally likely to be included in
the sample.

e Since the members of the population included in
the sample are selected at random, the values of
the observations Y;, --+, Y,, are themselves random.

47165



Random Sampling

* Because Y},-+, Y, are randomly drawn from the
same population, the marginal distribution of Y; is
the same foreach i =1,---,n. Y, -+, Y, are said to
be identically distributed.

e WhenY,,:, Y, are drawn from the same
distribution and are indepently distributed, they
are said to be independently and identically
distributed, or i.i.d.
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Random Sampling

The Sampling Distribution of the Sample Average

e The sample average of the n observations Y}, -+, Y,
is

- 1 1
Ve (G X)) =2,

* Because Y,, -, Y, are random, their average, Y, is
random and has a probability distribution.

e The distribution of Y is called the sampling
distribution of Y.
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Random Sampling

Mean and Variance of Y
Suppose Y, -+, Y, are i.i.d. and let yy and o} denote
the mean and variance of Y;. Then

B(Y) = LB =y
Var(Y) = Var(%il@)

1 2 1 n

= ;ZV&I‘(YZ)-F;Z z COV(YZ',Y]‘)
i=1 i=1 j=1,j#i

o2

X

n
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Large-Sample Approximations to
Sampling Distributions

There are two approaches to characterizing sample
distributions.

e Exact distribution, or finite sample distribution
when the distribution of Y is known.

e Asymptotic distribution, large-sample (K#7)
approximation to the sampling distribution.
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Large-Sample

Law of Large Numbers and Consistency

* The law of large numbers (K &%8l) states that,
under general conditions, Y will be near uy with

very high probability when 7 is large.

e The property that Y is near yy with increasing
probability as n increases is called convergence in
probability, or consistency.
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e The law of large numbers states that, under certain
conditions, Y converges in probability to uy, or, Y
is consistent for uy.

The conditions for the law of large numbers are
e Y,i=1,--,n,areliid.

* The variance of Y;, 07, is finite.
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Large-Sample

Formal definitions of consistency and law of large numbers

Consistency and convergency in probability.

® LetS,,S,, -, Sy, - be a sequence of random variables. For
example, S, could be the sample average Y of a sample of n
observations of the randome variable Y.

* The sequence of randome variables {S, } is said to converge
in probability to a limit, y, if the probability that S, is
within +6 of y tends to one as n — oo, as long as the constant
d is positive.
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Large-Sample

e That s,
S, > u if and only if Pr[|S, — u|>d] — o

as n — oo for every § > o.

e IfS, £ u, then S, is said to be a consistent
estimator of y.

* The law of large numbers.
IfY,-, Y, areiid., E(Y;) = yuy and Var(Y;) < oo,
then

ygll/ly
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Large-Sample

The Central Limit Theorem

e The central limit theorem says that, under
general conditions, the distribution of Y is well
approximated by a normal distribution when # is

large.
* Since the mean of Y is uy and its variance if
02 = 2L, when n is large the distribution of Y is

Y
approximately N ( Uy,0%).

. Accordlngly, = * is well approximated by the
standard normal distribution N(o,1).
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p=078 ‘

0.50 975 1.00
Value of sample average

=078

0.50 0.75 1.00
Value of sample average

Probability
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0.0
@ n=2
Probability
0.25
0.20
0.15
0.10
0.05
0.00
0.0 0.25
(c) n=25
= 0.78, as the sample size n increases.

@GEIETETEEXD sampling Distribution of the Sample Average of n Bernoulli Random Variables

Probability

0.5

0.4

=078

0.3

0.2

0.1

0.0

0.0 0.25 0.50 0.75 1.00
Value of sample average

by n=>5

bability
5

0.100 =078
0.075

0.050

0.025

0.00
0.0 0.25 0.50 0.75 1.00

Value of sample average
(d) n=100

The distributions are the sampling distributions of ¥, the sample average of n independent Bernoulli random variables
with p = Pr(Y, = 1) = 0.78 (the probability of a short commute is 78%). The variance of the sampling distribution
of ¥ decreases as n gets larger, so the sampling distribution becomes more tightly concentrated around its mean,

Large-Sample

DA
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Variables with p =

@ESLEEED Distribution of the Standardized Sample Average of n Bernoulli Random
0.78

Probability

0.20

0.15

0.10

0.05

0.00
—3. 0.0 10 20 3.0
Staudnrdlzed value of

sample average
(© n=25

Probability
Probability
0.7
05
0.6
0.5 0.4
0.4 0.3
0.3
0.2
0.2
o.
0.1 :
0.0 . 0.0 " ! £
230 =20 -0 00 | 10 20 30 30 20 —10 00 | 1o | 20 30
Standardized value of Standardized value of
mple average ple average
(a) n (b)

Probability

Standardized value of
mple average

(d) n=100

The sampling distributions of ¥ in Figure 2.8 are plotted here after standardizing ¥. Standardization centers the distri-
butions in Figure 2.8 and magnifies the scale on the horizontal axis by a factor of \/n. When the sample size is large,
the sampling distributions are increasingly well approximated by the normal distribution (the solid line), as predicted
by the central limit theorem. The normal distribution is scaled so that the height of the distribution is approximately
the same in all figures.

[m] = =

Large-Sample



Large-Sample

Convergence in Distribution

® LetF,-, F,,-- be a sequence of cumulative
distribution functions corresponding to a
sequence of random variables, S,, -+, S, ---.

* Then the sequence of random variables §,, is said
to converge in distribution to S (denoted as
Sp S ) if the distribution functions { F,, }
converge to F.
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Large-Sample

e That is,

Sy % Sifand only if lim F,(t) = F(t),

n—>o0o
where the limit holds at all points ¢ at which the
limiting distribution F is continuous.

e The distribution F is called the asymptotic
distribution of S,,.
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The central limit theorem

IfY,-, Y, arei.i.d. and o < 0} < oo, then

V(Y - py) 5 N(o, 03)

In other words, the asymptotic distribution of

is N(o,1).

Large-Sample
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Large-Sample

Slutsky’s theorem

* Slutsky’s theorem combines consistency and

convergence in distribution.

e Suppose that a, £ 4, where a is a constant, and
d
S,, = S. Then

d
a,+S, - a+S§,

a,Sy
Snlan
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Large-Sample

Continuous mapping theorem

If g is a continuous function, then
o if S, > a, then 2(Sn) £ g(a), and
o ifS, 25, then g2(Sn) 4 g(8).
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Large-Sample

But, how large of n is “large enough?"

e The answer is: it depends on the distribution of
the underlying Y; that make up the average.

* At one extreme, if the Y; are themselves normally
distributed, then Y is exactly normally distributed
for all n.

* In contrast, when Y; is far from normally
distributed, then this approximation can require

n =30 Or even more.
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Population Distribution

Probability
0.50
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Distribution of the Standardized Sample Average of n Draws from a Skewed
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The figures show sampling distributions of the standardized sample average of n draws from the skewed (asymmetric)
| population distribution shown in Figure 2.10a. When n is small (n =
= 100), the sampling distribution is well appro:
normal distribution (solid line), as predicted by the central limit theorem. The normal distribution is scaled so that the
height of the distribution is approximately the same in all figures.

5), the sampling distribution, like the population
ated by a standard

Large-Sample



