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Outline

* Everything so far has been linear in the Xs.

* The approximation that the regression function is
linear might be good for some variables, but not
for others.

* The multiple regression framework can be
extended to handle regression functions that are
nonlinear in one or more X’s.
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Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application

The Test Score - STR relation looks approximately linear.

@IIITED he Estimated Regression Line for the California Data j
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Outline

General Strategy Nolinear in a Single Variable

But the Test Score - Income relation looks like it is nonlinear.

Interactions Between Independent Variables

Application

There is a positive correlation between
test scores and district income
(correlation = 0.71), but the linear OLS
regression line does not adequately
describe the relationship between these
variables.
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Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application

A General Strategy for Modeling

Nonlinear Regression Functions

If a relation between Y and X is nonlinear:

* The effect on Y of a change in X depends on the value of X -
that is, the marginal effect of X is not constant.

* A linear regression is mis-specified - the functional form is
wrong.

* The estimator of the effect on Y of X is biased - it need not
even be right on average.

* The solution to this is to estimate a regression function that
is nonlinear in X.
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General Strategy

General Nonlinear Regression Function
The General Nonlinear Population Regression Function

}fi = f(Xli’XZi)".) sz) + Ui, l =1, N
Assumptions

Q@ E(ui|Xy, Xui, -+ Xi) = o (same); implies that f is the
conditional expectation of Y given the X’s.

(X1, Xyi» -+ Xyj) are i.i.d. (same).

“enough” moments exist (same idea; the precise statement
depends on specific f).

© 00

No perfect multicollinearity (same idea; the precise
statement depends on the specific f).

7168



Outline

General Strategy Nolinear in a Single Variable Interactions Between Independent Variables

The Expected Change in Y from a Change in X;
in the Nonlinear Regression Model [Equation (8.3)]

The expected change in Y, AY, associated with the change in X}, AXj, holding
X5...., X constant, is the difference between the value of the population regres-
sion function before and after changing X, holding X5, . .., X} constant. That s,
the expected change in Y'is the difference:

AY:f( AXI! XZv ) ) f(X]:X": :X) (84)

The estimator of this unknown population difference is the difference between
the predicted values for these two cases. Let f(X 1s X, ..., X;) be the predicted
value of Y based on the estimator f of the population regression function. Then
the predicted change in Vis

AY = (0 + A X ) = fH o K). (89)

8.1

Application
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General Strategy

A General Approach to Modeling Nonlinearities Using
Multiple Regression

1. Identify a possible nonlinear relationship.

2. Specity a nonlinear function and estimate its parameters by
OLS.

3. Determine whether the nonlinear model improves upon a
linear model.

4. Plot the estimated nonlinear regression function.

5. Estimate the effect of Y of a change in X.
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Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables

Nonlinear Functions of a Single
Independent Variable

We'll look at two complementary approaches:

1. Polynomials in X
The population regression function is approximated by a

quadratic, cubic, or higher-degree polynomial.

2. Logarithmic transformations

® Y and/or X is transformed by taking its logarithm.
* This gives a “percentage” interpretation that makes
sense in many applications.

Application
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Nolinear in a Single Variable

1. Polynomials in X

Approximate the population regression function by a
polynomial.

Yi=Bo+BuXi+ X+ + B X +uy

¢ This is just the linear multiple regression model - except that
the regressors are powers of X.

* Estimation, hypothesis testing, etc. proceed as in the
multiple regression model using OLS.

* The coeflicients are difficult to interpret, but the regression
function itself is interpretable.
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Nolinear in a Single Variable

Example: the Test Score - Income relation

Income; = average district income in the ith district (thousdand
dollars per capita)

Quadratic specification:

Test Score; = o + Pilncome; + B, (Income;)* + u;

Cubic specification:

Test Score; = o+ BiIncome; + B,(Income;)*

+B;(Income;)? + u;
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Nolinear in a Single Variable

Estimation of the quadratic specification in STATA

generate avginc2 = avginc*avginc; Create a new regressor
reg testscr avginc avginc2, r;

Regression with robust standard errors Number of obs = 420
F( 2, 417) = 428.52
Prob > F = 0.0000
R-squared = 0.5562
Root MSE = 12.724

| Robust
testser | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____________ e e
avginc | 3.850995 .2680941 14.36 0.000 3.32401 4.377979
avginc2 | -.0423085 .0047803 -8.85 0.000 -.051705 -.0329119
_cons | 607.3017 2.901754 209.29 0.000 601.5978 613.0056

The t-statistic on Income” is -8.85, so the hypothesis of
linearity is rejected against the quadratic alternative at the
1% significance level.
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Outline General Strategy

Nolinear in a Single Variable

Interactions Between Independent Variables

Interpreting the estimated regression function

(a) Plot the predicted values

TestScore; =

(2.9)

607.3 + 3.85Income; — 0.0423(Income;)*

(0.27)

(0.0048)

(m Scatterplot of Test Scores vs. District Income with Linear and Quadratic Regression Functions
The quadratic OLS regression function fits the Test score
data better than the linear OLS regression 740
function. Linear regression
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Application
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Nolinear in a Single Variable

(b) Compute “effects” for different values of X.

TestScore; = 607.3+ 3.85Income; — 0.0423(Income;)*
(2.9) (0.27) (0.0048)

Predicted change in Test Score for a change in income to 6,000
from 5,000 per capita:

ATest Score = 607.3+3.85%X 6 — 0.0423 X 6>
—(607.3 +3.85 x 5 — 0.0423 x 5%)
3.4
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Nolinear in a Single Variable

TestScore; = 607.3+ 3.85Income; — 0.0423(Income;)>

Predicted “effects” for different values of X

Change in Income (ths per capita) ATest Score

fromsto 6 3.4
from 25 to 26 1.7
from 45 to 46 0.0

The “effect” of a change in income is greater at low than high
income levels (perhaps, a declining marginal benefit of an
increase in school budgets?)

Caution! What about a change from 65 to 662

Don't extrapolate outside the range of the data.
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Nolinear in a Single Variable

Estimation of the cubic specification in STATA

gen avgine3 = avginc*avginc2; Create the cubic regressor
reg testscr avgine avgine2 avgine3, r;

Regression with robust standard errors Number of obs = 420
F( 3, 416) = 270.18
Prob > F = 0.0000
R-squared = 0.5584
Root MSE = 12.707

| Robust
testscr | Coef Std. Err t P>|t| [95% Conf. Interval]
_____________ o e e
avginc | 5.018677 .7073505 7.10 0.000 3.628251 6.409104
avginec2 | -.0958052 .0289537 -3.31 0.001 -.1527191 -.0388913
avgine3 | .0006855 .0003471 1.98 0.049 3.27e-06 .0013677
_cons | 600.079 5.102062 117.61 0.000 590.0499 610.108

The cubic term is statistically significant at the 5%, but
not 1%, level

17/68



Nolinear in a Single Variable

¢ Testing the null hypothesis of linearity, against the
alternative that the population regression is quadratic and/or
cubic, that is, it is a polynomial of degree up to 3.

H,: coefficients on Income, and Income; = o.
H,: at least one of these coefficients is nonzero.

test avginc2 avginc3; Execute the test command after running the regression

(1) avginc2 = 0.0
(2) avgine3 =

F( 2, 416)
Prob > F

37.69
0.0000

The hypothesis that the population regression is linear is
rejected at the 1% significance level against the alternative that it
is a polynomial of degree up to 3.
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Nolinear in a Single Variable

Summary: polynomial regression functions

Yi=Bo+piXi+BoX;+-+ B, X] +u;

* Estimation: by OLS after defining new regressors.
* Coefficients have complicated interpretations.
* To interpret the estimated regression function:
¢ plot predicted values as a function of x.
* compute predicted AY/AX at different values of x.
* Hypotheses concerning degree r can be tested by ¢- and
F-tests on the appropriate (blocks of) variable(s).
* Choice of degree r.

* plot the data; - and F-tests, check sensitivity of
estimated effects, then judgment.
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Nolinear in a Single Variable

2. Logarithmic functions of Y and/or X

* In(X) = the natural logarithm of X.

* Logarithmic transforms permit modeling relations in
“percentage” terms (like elasticities), rather than linearly.

Here’s why:
In(x + Ax) -In(x) = In (1 + &) = Ax
X X
1
(calculus :d n(x) l)
X
Numerically :In(1.01) = .00995 % .01

In(1.10) = .0953 % .10
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Nolinear in a Single Variable
Three cases:
@ linear-log: Y; = B, + B, In(X;) + u;.
@ log-linear: In(Y;) = Bo + B X; + u;.

© log-log: In(Y;) = o + B In(X;) + u;.

* The interpretation of the slope coeflicient differs in each case.

* The interpretation is found by applying the general “before
and after" rule: “figure out the change in Y for a given change
in X."

* Each case has a natural interpretation (for small changes in
X)
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Nolinear in a Single Variable

1. Linear-log population regression function Compute Y

“before” and “after” changing X:

Y
Y +AY

Bo + B In(X) (“before")
Bo+ BiIn(X +AX) (“after")

Subtract (“after")-(“before"):

AY = B[In(X + AX) - In(X)]

In(X + AX) —In(X) = %?
AX
AY = &ff
B = g( smallAX)

X
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Nolinear in a Single Variable

For Linear-log case,

Yi = ﬁo + /31 1H(X,‘) + U

for small AX,

AY
ﬁl = AX

2

* Now 100 x =& AX = percentage change in X, or a 1% increase in

X is associated with a 0.01f3, change in Y.
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Nolinear in a Single Variable

Example: Test Score vs. In(Income)

* First defining the new regressor, In(Income).

* The model is now linear in In(Income), so the linear-log
model can be estimated by OLS.

Test Score; = 557.8+36.42 x In(Income);
(3.8)  (1.40)

SO a 1% increase in Income is associated with an increase in
Test Score of 0.36 points on the test.

e Standard errors, confidence intervals, R? - all the usual tools
of regression apply here.

* How does this compare to the cubic model?
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Outline General Strategy

Nolinear in a Single Variable

Interactions Between Independent Variables

The linear-log regression and cubic functions.

Application

The estimated cubic regression function
[Equation (8.11)] and the estimated linear-log
regression function [Equation (8.18)] are nearly
identical in this sample.

m The Linear-Log and Cubic Regression Functions
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Nolinear in a Single Variable

2. Log-linear population regression function

In(Y)
In(Y + AY)

Bo + B X (“before")
Bo + (X + AX) (“after")

Substract (“after")-(“before")

In(Y+AY)-In(Y) = pB,AX
g
Y

B

112

B.AX
AY]Y

112

( smallAX)

26/68



Nolinear in a Single Variable

For Log-linear case,
ln(Yz) = /30 + ﬁlXi +Uj

for small AX,

AY/]Y

ﬁlg X

AY

* Now 100 x 5+ = percentage change in Y, so a change in X by

one unit (AX = 1)is associated with a 100f3,% change in Y.
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Nolinear in a Single Variable

3. Log-log population regression function

In(Y) Bo + B In(X) (“before")
In(Y+AY) = Bo+pfiIn(X+AX) (“after")

Substract (“after")-(“before")

In(Y + AY) —In(Y) Bi[In(X + AX) —In(X)]

AY | AX
y X
AY]Y
B = / ( smallAX)

AX/X
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Nolinear in a Single Variable

For Log-log case,
In(Y;) = Bo + B In(X;) + u;
for small AX,

AY/]Y

ﬁl;AX/X

AY AX

* Now 100 x 5~ = percentage change in Y, and 100 x 5¢ =
percentage change in X so a 1% change in X is associated

with a 3,% change in Y.

* In the log-log specification, 8, has the interpretation of an
elasticity.

29/68



Nolinear in a Single Variable

Example: In(Test Score) vs. In(Income)

* First defining a new dependent variable, In( TestScore), and
the new regressor, In(Income).

* The model is now a linear regression of In(TestScore)
against In(Income), which can be estimated by OLS:

In Test Score =  6.336 + 0.0554 x In(Income);
(0.006) (0.0021)

An 1% increase in Income is associated with an increase of
.0554% in Test Score
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Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application

How does log-log compare to the log-linear model?

SN The Log-Linear and Log-Log Regression Functions
In the log-linear regression function, In(Y) is a In(Test score)
linear function of X. In the log-log regression 6.60 - " )
function, In(Y) is a linear function of In(X). BE-INcaniEgieson
6.55 -
.
» Log-log regression
6.50 -
6.45
Je
6.40 d | | | (I —
0 10 20 30 40 50 60
District income
(thousands of dollars)

Neither specification seems to fit as well as the linear-log and
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Nolinear in a Single Variable

Summary: Logarithmic transformations

Three cases, differing in whether Y and/or X is transformed
by taking logarithms.

After creating the new variable(s) In(Y') and/or In(X), the
regression is linear in the new variables and the coefficients
can be estimated by OLS.

Hypothesis tests and confidence intervals are now standard.
The interpretation of 3, differs from case to case.

Choice of specification should be guided by judgment
(which interpretation makes the most sense in your
application?), tests, and plotting predicted values.
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Nolinear in a Single Variable

Other nonlinear functions (and nonlinear least squares)
(Appendix 8.1)

* Polynomial: test score can decrease with income.

* Linear-log: test score increases with income, but without
bound.

® Here is a nonlinear function in which Y always increases
with X and there is a maximum (asymptote) value of Y:

Y=0,- ae PX

Bo, B: and « are unknown parameters. This is called a
negative exponential growth curve. The asymptote as
X — o0 is fBo.
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Nolinear in a Single Variable

We want to estimate the parameters of

Y;
or Y;

Bo — ae PXi 4y,

Bo [1—e‘ﬁ1(xi‘/32)] +Uj (%)

where « = B,eP-.
Compare model (*) to linear-log or cubic models

Yi = /30+ﬁ11n(X,-)+u,~
Y, = /J’o+ﬁ1Xi+ﬁ2Xf+ﬁ3X?+ui

The linear-log and polynomial models are linear in the
parameters 3, and 5,— but the model(*) is not.
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Nolinear in a Single Variable

Nonlinear Least Squares

® Models that are linear in the parameters can be estimated by
OLS.

® Models that are nonlinear in one or more parameters can be
estimated by nonlinear least squares (NLS) (but not by OLS).

* The NLS problem for the proposed specification:
n
min Y {Y; - B, [1 - e‘ﬁl(Xf_ﬁz)]}2
BosBuBs =
This is a nonlinear minimization problem (a “hill-climbing"

problem). How could you solve this?

® Guess and check.
® There are better ways ---
® Implementation in STATA ---
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General Strategy

Nolinear in a Single Variable

.l (testscr = {b0=720}*(1 - exp(-1*{b1}*(avginc-{b2})))), r

Interactions Between Independent Variables

(obs = 420)
Iteration 0: residual SS = 1.80e+08
Iteration 1: residual SS = 3.84e+07
Iteration 2: residual SS = 4637400 R
Iteration 3: residual SS = 300290.9 STATA is “climbing the hill”
Iteration 4: residual SS = 70672.13 (actually, minimizing the SSR)
Iteration 5: residual SS = 66990.31 R
Iteration 6: residual SS = 66988.4
Iteration 7: residual SS = 66988.4
Iteration 8: residual SS = 66988.4
Nonlinear regression with robust standard errors Number of obs = 420
FC 3, 417) = 687015.55
Prob > F = 0.0000
R-squared = 0.9996
Root MSE = 12.67453
Res. dev. = 3322.157
Robust
testscr | Coef. Std. Err. t P>|t]| [95% Conf. Interval]
bo | 703.2222  4.438003 158.45 0.000 694.4986 711.9459
bl | .0552339 .0068214 8.10 0.000 .0418253 .0686425
b2 | -34.00364 4.47778 -7.59 0.000 -42.80547 -25.2018

(SEs, P values, Cls, and correlations are asymptotic approximations)

SWch8

35/60/

Application
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Negative exponential growth; RMSE =12.675
Linear-log; RMSE =12.618

m The Negative Exponential Growth and Linear-Log Regression Functions

The negative exponential growth regres-

sion function [Equation (8.42)] and the
linear-log regression function [Equation
(8.18)] both capture the nonlinear rela-
tion between test scores and district
income. One difference between the
two functions is that the negative expo-
nential growth model has an asymptote
as Income increases to infinity, but the
linear-log regression function does not.

Test score

700

650

Linear-log regression

o Negative exponential
growth regression |

T T 1
20 40 60
District income
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Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application

Interactions Between Independent
Variables

® Perhaps a class size reduction is more effective in some
circumstances than in others.

® Perhaps smaller classes help more if there are many English
learners, who need individual attention.

o That is, 21%£2¢07¢ might depend on PctEL.

* More generally, mlght depend on X,.

e How to model such “interactions” between X, and X,?

* We first consider binary X’s, then continuous Xs.
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Interactions Between Independent Variables

(a) Interactions between two binary variables

Yi = /—’70 + ﬁlDli + ﬁzDzi + U
® D,;, D,; are binary.

® [, is the effect of changing D, = o to D, = 1. In this
specification, this effect doesn’t depend on the value of D,.

* To allow the effect of changing D, to depend on D,, include
the “interaction term" D,; x D,; as a regressor.

Yi = Bo + BiDyi + B2Ds,i + B3 Dyi x Dy + u;
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Interactions Between Independent Variables

Interpreting the coefficients
Yi = fo+ PiDyi + PaDai + f3Dyi x Dy + 1
General rule: compare the various cases.

E(Yi|D1i =0,D,; = dz) = ﬁo +/52d2
E(Yi|D1i = l)Dzi = dz) ﬁo +[’)1 +ﬁ2d2 + ﬁ3d2

subtract:

E(Yi|D1i =1,D,; = dl) - E(Yi|D1i =0,D,; = dz)
= /31 +ﬁ3d2

¢ The effect of D, depends on d,.

® [3; = increment to the effect of D,, when D, = 1.
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Interactions Between Independent Variables

Example: TestScore, STR, English learners

Let
1if STR > 20
HiSTR = B
! o0if STR < 20
and
i >
HiEL - 1if PctEL > 10

oif PctEL <10

Test Score = 664.1—18.2HIiEL —1.9HiSTR

(1.4) (2.3) (1.9)
-3.5(HiSTR x HiEL)

(3.1)
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Interactions Between Independent Variables

“Effect”" of HiSTR when HiEL = o is -1.9.
“Effect" of HiSTR when HiEL =11is -1.9 - 3.5 = -5.4.

Class size reduction is estimated to have a bigger effect when
the percent of English learners is large.

But, this interaction isn’t statistically significant: t = 3.5/3.1
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Interactions Between Independent Variables

(b) Interactions between continuous and binary variables

Yi = Bo+ B Xi+ B.Di + u;

® D; is binary, X is continuous.

* As specified above, the effect on Y of X (holding constant D)
= f3,, which does not depend on D.

* To allow the effect of X to depend on D, include the
“interaction term" D; x X; as a regressor.

Yi = ﬁo +ﬁ1Xi +ﬁ2Di +/—’)3(Xi X Dl) + Uj
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Interactions Between Independent Variables

Binary-continuous interactions: the two regression lines

Y,' = /))0 +ﬂ1Xi +ﬂ2Dl’ + /33(Xz' X Dz’) + U;
Observations with D; = o:
Yi=Po+ P Xi+u; TheD =oline

Observations with D; = 1:

Y; Bo + BiXi + B+ B3 Xi + u;

(/30 + ﬁz) + (ﬂl + [53)X1' +u; TheD =1line

44168



Outline

General Strategy

Nolinear in a Single Variable

Interactions Between Independent Variables

LN XX 3 Regression Functions Using Binary and Continuous Variables

Y| (Bo+B2)+B1X

Bl Bo +B1X

Bo Slope = 8,

(Bo +B2)+(B1 +B3)X
X

N
Slope = 1+ B3
Bo +B2

Bo

(a) Different intercepts, same slope

Y| Bo+ (B +B2)X

Nslope = 51+,

\SI =
,50 Bo +61X SesE)

(c) Same intercept, different slopes

(b) Different intercepts, different slopes

Interactions of binary variables and continuous variables can produce three different population regression functions:
(@) Bo + BX + B,D allows for different intercepts but has the same slope, (b) By + B1X + B,D + B3(X X D) allows
for different intercepts and different slopes, and (c) 8y + BiX + B,(X X D) has the same intercept but allows for

different slopes.

Application

A
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Interactions Between Independent Variables

Interpreting the coefficients

Yi = /30 +/31X,~+/32Di+ﬁ3(X,~ ><D,-)+u,~
AY
ax - PithD

® The effect of X depends on D.

* [, = increment to the effect of X, when D = 1.
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Interactions Between Independent Variables

Example:
TestScore, STR, HiEL (=1 if PctEL > 20)

Test Score = 682.2—-0.97STR +5.6 HIiEL

(11.9) (0.59) (19.5)
-1.28(STR x HiEL)

(0.97)
e When HiEL=o0

Test Score = 682.2 —0.97STR
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Interactions Between Independent Variables

When HiEL =1,

682.2 —0.97STR + 5.6
-1.28STR
687.8 —2.255STR

Test Score

Two regression lines: one for each HiSTR group.

Class size reduction is estimated to have a larger effect when
the percent of English learners is large.
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Interactions Between Independent Variables

Example, ctd.

Test Score = 682.2—0.97STR +5.6HiEL

(11.9) (0.59) (19.5)
~1.28(STR x HiEL)

(0.97)

Testing various hypotheses:

* The two regression lines have the same slope < the
coefficient on STR x HiEL is zero:

t = -1.28/0.97 = —1.32 = can’t reject.
* The two regression lines have the same intercept <the

coefficient on HiEL is zero: t = —5.6/19.5 = 0.29 = can’t
reject
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Interactions Between Independent Variables

Example, ctd.
Test Score = 682.2— 0.97STR + 5.6 HiEL
(11.9) (0.59) (19.5)
-1.28(STR x HiEL)
(0.97)
* Joint hypothesis that the two regression lines are the same

< population coeflicient on HiEL = o and population
coefficient on STR x HiEL = o.

F = 89.94 (p-value < .oo1) !!

* Why do we reject the joint hypothesis but neither individual
hypothesis?

* Consequence of high but imperfect multicollinearity: high
correlation between HiEL and STR x HiEL.
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Interactions Between Independent Variables

(c) Interactions between two continuous variables

Y; = ﬁo + ﬁlxli + ﬁzxzi + U

e X,, X, are continuous
* As specified, the effect of X, doesn’t depend on X,.
* As specified, the effect of X, doesn’t depend on X;.

¢ To allow the effect of X, to depend on X, include the
“interaction term" X;; x X,; as a regressor.

Y, = ﬁo + ﬁlxli + ﬁzxzi + ﬁ_"a(Xli x Xzi) +u;
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Interactions Between Independent Variables

Coefficients in continuous-continuous interactions

AY
AX, Bi+ B3 Xs.

* The effect of X, depends on X,.

* [;=increment to the effect of X, from a unit change in X,.
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Interactions Between Independent Variables

Example: TestScore, STR, PctEL

Test Score = 686.3—1.12STR — 0.67PctEL

(11.8)  (0.59) (0.37)
+.0012 (STR x PctEL)

(0.019)

The estimated effect of class size reduction is nonlinear because
the size of the effect itself depends on PctEL:

ATest Score
ASTR

= —1.12 + .0012PctEL
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Interactions Between Independent Variables

Test Score = 686.3—1.125TR — 0.67PctEL

(11.8)  (0.59) (0.37)
+.0012(STR x PctEL)

(0.019)

* Does population coefficient on STR x PctEL = o?

.0012
P =—=—=

org = -06 = can't reject at 5% level.

* Does population coefficient on STR = 0?

_ —112
t= 0.59

= -1.90 = can’t reject null at 5% level.

e Do the coefficients on both STR and STR x PctEL = 0?

F =3.89 (p-value = .021) = reject null at 5% level(!!) (Why?
high but imperfect multicollinearity)
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Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application

Nonlinear Effects on Test Scores of the
Student-Teacher Ratio

Nonlinear specifications let us examine more questions about
the Test Score- STR relations, such as

1. Are there nonlinear effects of class size reduction on test
scores? (Does a reduction from 35 to 30 have same effect as a
reduction from 20 to 15?)

2. Are there nonlinear interactions between PctEL and STR?
(Are small classes more effective when there are many
English learners?)
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Application

Strategy for Question #1 (different effects for different STR?)

* Estimate linear and nonlinear functions of STR, holding
constant relevant demographic variables.

® PctEL

® Income (remember the nonlinear Test Score-Income
relation!)

® LunchPCT (fraction on free/subsidized lunch)

® See whether adding the nonlinear terms makes an
“economically important” quantitative difference
(“economic” or "real-world" importance is different than
statistically significant).

® Test for whether the nonlinear terms are significant.
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Application

Strategy for Question #2 (nonlinear interactions between
PctEL and STR?)

e FEstimate linear and nonlinear functions of STR, interacted
with PctEL.

e [f the specification is nonlinear (with STR, STR?, STR3),
then you need to add interactions with all the terms so that
the entire functional form can be different, depending on the
level of PctEL.

* We will use a binary-continuous interaction specification by
adding HiEL x STR, HiEL x STR?, and HiEL x STR3.
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What is a good “base" specification?
The TestScore- Income relation

(m The Linear-Log and Cubic Regression Functions

| The estimated cubic regression function Test score
[Equation (8.11)] and the estimated linear-log 740 -
regression function [Equation (8.18)] are nearl
. g B . [Eq ¢ ) ¥ 720 - Linear-log regression
identical in this sample.
| 700
‘ 680 -
[
| 660 |-
|
| 640 |-
620
600 £ ! I L L I

0 10 20 30 40 50 60
District income
(thousands of dollars)

The logarithmic specification is better behaved near the ends of
the sample, especially large values of income.

Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application
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Outline General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application

ABLE 8.3 i = ion of Test Scores W
Dependent variable: average test score in district; 420 observations.
Regressor ) ) 3) (a) (s) (&) @)
Student-teacher ratio (STR) ~1.00 —0.73 —0.97 ~0.53 64.33 83.70 65.29
(027) (0.26) (0.59) (034) (24.86) (28.50) (25:26)
STR? —3.42 —4.38 —3.47
(125) (1a4) (127)
STR? X 0.0 0.060
(0.021) (0.024) (0.021)
% English learners —0.122 0.176 —0.166
(0.033)  (0.034) (0.034)
% English learners = 10%7? 5.64 5.50 —5.47
(Binary. 71iEL) (19.51) (9.80) (1.03)
HIEL > STR —1.28 —0.58
(0.97) (0.50)
HiEL < STR? 6.12
(2.54)
HIEL =< STR® —0.101
(0.043)
ic Control Vari
% eligible for subsidized lunch ¥ Y N W R ¥ Y
Average district income (logarithm) N Y N N ¥ &3 ¥
95% Confidence Intervals for the Effect of Reducing STR by 2
No HIEL interaction [0.93.3.06] [0.46.2.48]
22 to 20 [0.61.3.25] [0.54.3.26]
20to 18 [1.64,4.36] [1.55.4.30]
HIiEL = 0 [—0.38.4.25][—0.28.2.41]
22 to 20 [0.40.3.95]
200 18 [1.22.4.99]
HiEL = 1 [1.48.750] [0.80.3.63]
22 to 20 [—0.98,2.91]
2010 18 [—0.72.4.01]
i and p on Joint Hy
All STR variable: 5.64 5.92 6.31 4.96 5.91
and interactions (0.004) (0.003) (= 0.001) (= 0.001)  (0.001)
STR2. STR® = 0 6.17 5.81 5.96
(= 0.001) (0.003) (0.003)

continued on next page

- e = DaAe
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Outline

General Strategy Nolinear in a Single Variable Interactions Between Independent Variables

(1) (2) (3) (4) (5) (6) (7)

HiEL % STR lI:FL X STR?,

SER 9.08 8 64 15.88 8.63 8.56

R? ().773 0 794

0.795 0.798 0.799 0.798

These regressions were estimated using the data on K= school districts in California. described in Appendix 4.1. Regressions
include an intercept and the economic control variables indicated by *Y or exclude them if indicated by “N” (coefficients
not shown in the table). Standard errors are given in parentheses under coefficients, and p-values are given in parentheses
under Fstatistics. B

Tests of joint hypotheses:

Application
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Application

Question #1:
Investigate by considering a polynomial in STR(column 5)

TestScore
= 252.0+64.33STR — 3.42STR* + .059STR3
(163.6) (24.86) (1.25) (.021)

—5.47HiEL — .420LunchPCT +11.75In(Income)
(1.03) (.029) (1.78)
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Outline

General Strategy Nolinear in a Single Variable Interactions Between Independent Variables Application
Interpreting the regression function via plots
(preceding regression is labeled (5) in this figure)
& :
VXA Three Regression Functions Relating Test Scores and Student-Teacher Ratio
The cubic regressions from columns (5) and Test score
(7) of Table 8.3 are nearly identical. They 720
i ’ . Cubic regression (5) s
indicate a small amount of nonlinearity ) ¢
; . Cubic regression (7) ====
in the relation between test scores and 700 " ;
. Linear regression (2) mm——
student-teacher ratio.
680
660 [~ %
640 =
620 -
1 | 1 1 | 1 | |
e 16 18 20 2 24 2% %
Student-teacher ratio
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Application

Are the higher order terms in STR statistically significant?

TestScore
=  252.0+64.33STR —3.42STR* + .059STR3
(163.6) (24.86) (1.25) (.021)
—5.47HiEL — .420LunchPCT +11.75In(Income)
(1.03) (.029) (1.78)

(a) Ho: quadratic in STR v. H;: cubic in STR?
t =.059/.021 = 2.86(p = .005)
(b) Ho: linear in STR v. H;: nonlinear/up to cubic in STR?
F=6.17(p=.002)

63/68



Application

Question #2:
STR — PctEL interactions (column 4)
(to simplify things, ignore STR?, STR? terms for now)

Test Score
= 653.6 —.53STR +5.50HiEL — .58HiEL x STR

(9:9) (34) (9.80) (:50)
—.411LunchPCT + 12.12In(Income)

(.029) (1.80)
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Application

Test Score
= 653.6 —.53STR +5.50HIiEL — .58 HiEL x STR

(9-9) (:34) (9.80) (:50)
—.411LunchPCT + 12.12In(Income)
(.029) (1.80)

“Real-world" importance of the interaction term:

ATest Score
ASTR

Itis -1.12 if HiEL =1and is -.53 if HiEL = o.

=—-.53—.58HIEL

* The difference in the estimated effect of reducing the STR is
substantial; class size reduction is more effective in districts

with more English learners.
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Application

Is the interaction effect statistically significant?

Test Score
= 653.6 —.53STR +5.50HIiEL — .58 HiEL x STR
(9.9) (.34) (9.80) (.50)
—.411LunchPCT +12.12In(Income)
(.029) (1.80)

(a) Hy: coefl. on interaction=o0 v. H,: nonzero interaction
t = —0.58/0.50 = —1.17 = not significant at the 10% level.
(b) Ho: both coefls involving STR = o vs. H,: at least one
coefficient is nonzero (STR enters)

F =5.92(p = .003)
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Outline

General Strategy

Nolinear in a Single Variable

Interactions Between Independent Variables

Interpreting the regression functions via plots:

Application

Regression Functions for Districts with High and Low Percentages of English Learmarsj
Districts with low percentages of English Test score
learners (HIEL = 0) are shown by graydots, 720 -
and districts with HiEL = 1 are shown by .
colored dots. The cubic regression function 700 - .o * . %
for HIEL = 1 from regression (6) in Table 8.3 ‘e :‘ o, Regressionfunction
is approximately 10 points below the cubic 680 [~ e, o0 e 0y ¢ e (HEL=0)
regression function for HIEL = 0 for ) .
17 < STR = 23, but otherwise the two o, E
functions have similar shapes and slopes o °
. . . ° L]
in thl.s rangf.h The slopes of the regression oo, e ??:\.' o ¢
functions differ most for very large and Regression function *~ *s, ,‘;--’? %
small values of STR, for which there are few 620 | (HiEL=1) .~' % :.'::. Y .
observations. o '.'.
600 | | | I | I !
2 ¥4 16 18 20 2 24 2 28
Student—teacher ratio
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Application

Summary: Nonlinear Regression Functions

* Using functions of the independent variables such as In(X)
or X; x X, allows recasting a large family of nonlinear
regression functions as multiple regression.

* Estimation and inference proceeds in the same way as in the
linear multiple regression model.

* Interpretation of the coefficients is model-specific, but the
general rule is to compute effects by comparing different
cases (different value of the original Xs).

* Many nonlinear specifications are possible, so you must use
judgment: What nonlinear effect you want to analyze? What
makes sense in your application?
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