・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

1/28

Economic Questions and Data

Ming-Ching Luoh

2022.2.15.

Economic Questions

Causal Effects and Idealized Experiments

Cause and Effect

Data: Sources and Types

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ < ○ へ () 2/28

Economic Questions

• Economics suggests important **relationships**, often with policy implications, but virtually **never** suggests **quantitative magnitudes** of **causal effects**.

Examples of economic questions

Question #1: Does reducing class size improve elementary school education?

- Reducing class size costs money: It requires hiring more teachers and building more classrooms.
- To weigh costs and benefits, the decision maker must have a precise quantitative understanding of the likely benefits.

Data: Sources and Types

Question #2: Is there racial discrimination in the market for home loans?

- By law, U.S. lending institutions cannot take race into account when deciding to grant or deny a request for a mortgage.
- Using data from early 1990s, researchers found that 28% of black applicants are denied mortgages, while only 9% of white applicants are denied.
- Do these data indicate that there is racial bias in mortgage lending? If so, how large is it?

Question #3: How much do cigarette taxes reduce smoking?

- One of the most flexible tools for cutting smoking consumption is to increase taxes on cigarettes.
- The percentage change in the quantity demanded resulting from a 1% increase is the *price elasticity of demand*.

Causal Effects and Idealized Experiments

- In common usage, an action is said to cause an outcome if the outcome is the direct result, or consequence, of that action.
- Touching a hot stove caused you to get burned.
- Putting fertilizer on your tomato plants causes them to produce more tomatoes.

Estimation of Causal Effects

- How might we measure the causal effect on tomato yield (measured in kilograms) of applying a certain amount of fertilizer, say 100 grams of fertilizer per square meter?
- One way to measure this causal effect is to conduct an experiment.
 - Plant many plots of tomatoes.
 - Each plot is tended identically, with one exception: Some plots get 100 grams of fertilizer per square meter, while the rest get none.
 - Whether a plot is fertilized or not is determined randomly by a computer.

イロト イヨト イヨト 一日

- The difference between the average yield per square meter of the treated and untreated plots is the effect on tomato production of the fertilizer treatment.
- This is an example of a idealized controlled experiment. It is controlled in the sense that there are both a control group that receives no treatment and a treatment group that receives the treatment.
- The **causal effect** is defined to be the effect on an outcome of a given action or treatment, as measured in an ideal randomized controlled experiment.

Cause and Effect

- When graphing data from the real world, it is often more difficult to establish how one variable affects another.
- In other words, seeing correlation (相關性) between two variables does not necessarily imply the existence of causality (因果關係).
- Two problems requires us to proceed with caution when using graphs to draw conclusions about causes and effects.
 - Omitted variables (遺漏變數).
 - Reverse causality.

・ロト ・御ト ・ヨト ・ヨト 三日

Omitted Variables

• Figure A-6 shows a strong relationship between two variables: the number of cigarette lighters that a household owns and the probability that someone in the household will develop cancer.

- What should the government do to reduce the number of deaths from cancer?
 - 1 Discourage the ownership of cigarette lighters by taxing their sale?
 - 2 Require warning label on cigarette lighters: "This lighter is dangerous to your health" ?
- Are these two suggestions valid?
- Has Figure A-6 held constant every relevant variable except the one under consideration? No.
- An easy explanation for Figure A-6 is that people who own more cigarette lighters are more likely to smoke cigarettes and that cigarettes, not lighters, cause cancer.

- If Figure A-6 does not hold constant the amount of smoking, it does not tell us the true effect of owning a cigarette lighter.
- This story illustrate an important principle: When you see a graph used to support an argument about cause and effect, it is important to ask whether the movements of an omitted variable could explain the results you see.

Reverse Causality

• Figure A-7 plots the number of violent crimes per thousand people in major cities against the number of police officers per thousand people.

- The anarchists note the curve's upward slope and argue that because police increase rahter than decrease the amount of urban violence, law enforcement should be abolished.
- Is this a correct argument?
- Figure A-7 only tells that more dangerous cities have more police officers.
- The explanation for this may be that more dangerous cities hire more police.
- In otehr words, rather than police causing crime, crime may cause police.

- If we could run a controlled experiment, we could avoid the danger of reverse causality.
- To run an experiment, we would set the number of police officers in different cities randomly and then examine the correlation between police and crime.
- Unfortunately, controlled experiments are rare in social science.

- It might seem that an easy way to determine the direction of causality is to examine which variable moves first.
- If we see crime increase and then the police force expand, we reach one conclusion.
- If we see the police force expand and then crime increase, we reach the other.
- Yet there is also a flaw with this approach: Often, people change their behavior in response to a change in their *expectations* of future conditions.

- A city that expects a major crime wave in the future, for instance, might hire more police now.
- This problem is easier to see in the case of babies and minivan.
- Couples often buy a minivan in anticipation of the birth of a child.
- The minivan comes before the baby, but we wouldn't want to conclude that the sale of minivans cause the population to grow!

Randomized Trials

- *Potential outcome* Y_{1i} is the outcome for an individual under a potential *treatment*, while *potential outcome* Y_{0i} is the outcome for an individual under a potential *non-treatment*.
- For those *treated*, we observe Y_{1i} . For those not treated, we observe Y_{0i} .
- Let D_i = 1 denotes being treated (treatment group), while
 D_i = 0 denotes not being treated (control group).

• The (causal) trearment effect we want to measure is $Y_{1i} - Y_{0i}$ for individual *i*. Or the average treatment effect

$$\mathrm{E}(Y_{1i} - Y_{0i}) = \mathrm{E}(Y_i | D_i = 1) - \mathrm{E}(Y_i | D_i = 0).$$

Unfortunately, we can not observe Y_{1i} and Y_{0i} at the same time.

• We only observe one group that are treated, and another group that are not treated, and compare their mean differences.

$$Avg_n(Y_i|D_i = 1) - Avg_n(Y_i|D_i = 0)$$

= $Avg_n(Y_{1i}|D_i = 1) - Avg_n(Y_{0i}|D_i = 0)$

where $Avg_n(Y_{0i}|D_i = 0) = \frac{1}{n_0} \sum_{i=1}^{n_0} Y_i$.

+ D + + B + + E + + E + - E

• For simplicity, supple that $Y_{1i} = Y_{0i} + \kappa$, or $Y_{1i} - Y_{0i} = \kappa$ for consant treatment effect. Then

$$Avg_n(Y_{1i}|D_i = 1) - Avg_n(Y_{0i}|D_i = 0)$$

= { $\kappa + Avg_n(Y_{0i}|D_i = 1)$ } - $Avg_n(Y_{0i}|D_i = 0)$
= $\kappa + \{Avg_n(Y_{0i}|D_i = 1) - Avg_n(Y_{0i}|D_i = 0)\}$
= $\kappa + \text{selection bias}$

• When *n* is large enough, $Avg_n(Y_{oi}|D_i = 1) \xrightarrow{p} E(Y_{oi}|D_i = 1)$ and $Avg_n(Y_{oi}|D_i = 0) \xrightarrow{p} E(Y_{oi}|D_i = 0)$ (Law of Large Numbers, LLN).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• When D_i is randomly assigned, e.g. by experiments,

selection bias

$$= Avg_n(Y_{oi}|D_i = 1) - Avg_n(Y_{oi}|D_i = 0)$$

$$\stackrel{p}{\rightarrow} \quad \mathrm{E}(Y_{\mathrm{o}i}|D_i=1) - \mathrm{E}(Y_{\mathrm{o}i}|D_i=0)$$

= 0

In other words, random assignment can eliminate selection bias.

22/28

Data: Sources and Types

Experimental versus Observational Data

- **Experimental data** come from experiments designed to evaluate a treatment or policy to investigate a causal effect.
- Because of financial, practical, and ethical problems, experiments in economics are rare. Most economic data are obtained by observing real-world behavior.
- Data obtained by observing actual behavior outside an experimental setting are called **observational data**.

- In the real world, levels of "treatment" are not assigned at random, so it is difficult to sort out the effect of the "treatment" from other relevant factors.
- Much of econometrics is devoted to methods for meeting the challenges encountered when real-world data are used to estimate causal effects.

Cross-Sectional Data:

California School District Data

Observation (District)	District Average	Student-Teacher	Expenditure per	Percentage of Student			
Number	Test Score (fifth grade)	Ratio	Pupil (\$)	Learning English			
1	690.8	17.89	\$6385	0.0%			
2	661.2	21.52	5099	4.6			
3	643.6	18.70	5502	30.0			
4	647.7	17.36	7102	0.0			
5	640.8	18.67	5236	13.9			
:	:	:	:	:			
418	645.0	21.89	4403	24.3			
419	672.2	20.20	4776	3.0			
420	655.8	19.04	5993	5.0			

Time Series Data:

Growth Rate of GDP and Term Spread in the United States,

Quarterly Data, 1960:Q1-2017:Q4.

	spread in the onned states. Quarterly Data, 1900.Q1-2017.Q4					
Observation Number	Date (year: quarter)	GDP Growth Rate (% at an annual rate)	Term Spread (percentage points)			
1	1960:Q1	8.8%	0.6			
2	1960:Q2	-1.5	1.3			
3	1960:Q3	1.0	1.5			
4	1960:Q4	-4.9	1.6			
5	1961:Q1	2.7	1.4			
:	:		:			
230	2017:Q2	3.0	1.4			
231	2017:Q3	3.1	1.2			
232	2017:Q4	2.5	1.2			

Panel Data:

Cigaratte Sales, Prices, and Taxes by State and Year for U.S. States, 1985-95.

Observation Number	State	Year	Cigarette Sales (packs per capita)	Average Price per Pack (including taxes)	Total Taxes (cigarette excise tax + sales tax)
1	Alabama	1985	116.5	\$1.022	\$0.333
2	Arkansas	1985	128.5	1.015	0.370
3	Arizona	1985	104.5	1.086	0.362
:	:	:	:	1	:
47	West Virginia	1985	112.8	1.089	0.382
48	Wyoming	1985	129.4	0.935	0.240
49	Alabama	1986	117.2	1.080	0.334
:		:	:	:	:
96	Wyoming	1986	127.8	1.007	0.240
97	Alabama	1987	115.8	1.135	0.335
÷	:	:	:	:	
528	Wyoming	1995	112.2	1.585	0.360

Big Data: (大數據)

- How big is Big?
- What is it?
- ex: 教育部使用大數據分析畢業生主修科系與勞保 投保薪資的關係?

(日)