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Testing Hypotheses About One of the
Regression Coefficients

Suppose a skeptic suggests that reducing the number of students
in a class has no effect on learning or, specifically, test scores.
The skeptic thus asserts the hypothesis,

Hy: =0

We wish to test this hypothesis using data— reach a tentative
conclusion whether it is correct or not.
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Testing Hypotheses

Null hypothesis and two-sided alternative:
Hy: =0 vs. H:f}#0
or, more generally,
Ho: Bi = Pio vs. Hy: B # Pio
Null hypothesis and one-sided alternative:
Hy: By = Pio vs. Hy: By < Pio

In economics, it is almost always possible to come up with
stories in which an effect could “go either way," so it is standard
to focus on two-sided alternatives.
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Testing Hypotheses

In general,

_ estimator — hypothesized value
- S.E. of the estimator

where the S.E. of the estimator is the square root of an estimator
of the variance of the estimator.
Applied to a hypothesis about f3;:

A

ﬁl - ﬁl,o

SE(B)
where f3, , is the hypothesized value of f3,.
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Testing Hypotheses

Formula for SE( [5 1)

Recall the expression for the variance of /;’1 (large n):

Var((X,- —X)ui) B 0'5-

n(o%)? ~ no}

Var([)A’l) =

where v; = (X; - X)u;.
Estimator of the variance of 3, is

2 - 1 estimator of o2
P n  (estimator of 0} )2
1 s DX - X
n

(22 (X - X)2]
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Testing Hypotheses

- Z?=1(Xi - X)zﬁlz

n—2

[2 2L (X - X)2]

X

A2
0%
B

|~

where 11; = Y; — /3’0 - ﬁlXi is the residual.
¢ There is no reason to memorize this.
* It is computed automatically by regression software.

o SE(B,) = /651 is reported by regression software.

* Itisless complicated than it seems. The numerator estimates
Var(v), the denominator estimates Var(X).
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Testing Hypotheses

The calculation of the ¢-statistic:

= l§1 _'ISIJ) _ lgl "lgLo

SEG) /7

* Reject at 5% significance level if |¢] > 1.96.

* p-valueis p = Pr(|t| > |t%¢*|)=probability in tails outside
|tactL

* Both the previous statements are based on large-n
approximation.
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Testing Hypotheses

Example: Test Scores and STR, California data
Estimated regression line: TestScore = 698.9 —2.28 x STR
Regression software reports the standard errors:

SE(Bo) =10.4, SE(f,) = 0.52

o g . _ . 31*/31,0 _ —2.28-0 _
t-statistic testing f3,,0 = 0 is SE(R) ~ os2 —4.38

* The 1% two-sided significance level is 2.58, so we reject the
null at 1% significance level.

* Alternatively, we can compute the p-value.
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m Calculating the p-Value of a Two-Sided Test When t** = —4.38

The p-value of a two-sided
test is the probability that
|Z] > |t%], where Zisa
standard normal random
variable and t** is the value
of the t-statistic calculated
from the sample. When

% = —438, the p-value is
only 0.00001.

The p-value is the area
to the left of -4.38

+
the area to the right of +4.38.

The p-value based on the large-n standard normal
approximation to the ¢-statistic is 0.00001.

10/ 40



Outline Testing Hypotheses Confidence intervals when X is Binary Heter and Homoskedasticity Weighted LS

Confidence intervals for a Regression
Coefhicient

In general, if the sample distribution of an estimator is nomal
for large n, then a 95% confidence interval can be constructed as
estimator +1.96x standard error, that is

/3’1 +1.96 x SE([?I)
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Confidence intervals

Example: Test Scores and STR, California data

Estimated regression line: TestScore = 698.9 —2.28 x STR
Regression software reports the standard errors.

SE(B,) = 10.4, SE(f,) = 0.52
95% confidence interval for ﬁlz

[3’1 +1.96 x SE(ﬁl)

{-2.28 £1.96 x 0.52}

(-3.30,-1.26)
Equivalent statements:

® The 95% confidence interval does not include zero.

* The hypothesis 3, = o is rejected at the 5% level.
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Confidence intervals

A concise (and conventional) way to report regressions:

Put standard errors in parentheses below the estimated
coefficients to which they apply.

TestScore = 698.9—2.28x STR,R” =.05,SER =18.6
(10.4) (o0.52)

This expression gives a lot of information.

* The estimated regression line is
Test Score = 698.9 —2.28 x STR.

e The standard error of /3’0 is 10.4.

e The standard error of B, is 0.52

* The R? is .05; the standard error of the regression is 18.6.
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Confidence intervals

OLS regression: STATA output

regress testscr str, robust

Regression with robust standard errors Number of obs = 420
F( 1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
| Robust

testscr | Coef. Std. Err. t P>|t] [95% Conf. Interval]
________ e
str | -2.279808 .5194892 -4.38 0.000 -3.300945 -1.258671
_cons | 698.933  10.36436 67.44 0.000 678.5602 719.3057

S0:

TestScore = 698.9 — 2.28xSTR
(10.4) (0.52)
t(f=0)=-4.38, p-value=0.000 (2-sided)
95% 2-sided conf. interval for g is (-3.30, —1.26)
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Regression When X is a Binary Variable

* Sometimes a regressor is binary:

® X =1if female, = o if male
® X =1iftreated (experimental drug), = o if not
® X =1if small class size, = o if not

* A binary variable is sometimes called a dummy variable or
an indicator variable.

* So far, 3, has been called a “slope," but that doesn’t make
much sense if X is binary. How do we interpret regression
with a binary regressor?
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Interpreting regressions with a binary regressor

Y = ﬁo +ﬁ1Xi + U,
where X is binary (X; = o or1).

When X; = o,Y;=p0+1u;
When X; = 1,Yi=f0+p+u;

that is: E(Yi|Xi=0) = fo
E(Yi|Xi=1) = Bo+p

SO: ﬁl = E(YZ|X, = 1) — E(Y,|Xl = O)

which is the population difference in group means.
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when X is Binary

Example: TestScore and STR, California data
Let

1if STR < 20
= 0if STR > 20

D;

The OLS estimate of the regression line relating Test Score to D
(with standard errors in parentheses) is:

Test Score = 650.0 +7.4%xD

(13)  (18)

Difference in means between groups = 7.4;

74 _

SE=18,t=
1.8

4.0
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when X is Binary

Compare the regression results with the group means,
computed directly:

Class Size Average Score(Y) Std. Dev. N

Small(STR < 20) 657.4 19.4 238
Large(STR > 20) 650.0 17.9 182

 Estimation: Y;,,,;; — Yla,ge = 657.4 — 650.0 = 7.4.

e Test: t = m = ; = 4.05.

This is the same as in the regression.
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Heteroskedasticity and Homoskedasticity

Heteroskedasticity, Homoskedasticity, and the Formula for
the Standard Errors of 3, and f3,

* What do these two terms mean?
* Consequences of homoskedasticity.

¢ Implication for computing standard errors.
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Heter and Homoskedasticity

What do these two terms mean?

e If Var(u|X = x) is constant— that is, the variance of the
conditional distribution of u given X does not depend on X,
then u is said to be homoskedasticity (R &% —).

e Otherwise, u is said to be heteroskedastic (&2~ 25 —).
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when X is Binary

Heter and Homoskedasticity

Homoskedasticity in a picture

The figure plots the
conditional distribu-
tion of test scores for
three different class
sizes (x). In figure (a),
the spread of these
distributions does not
depend on x; that is,
var(u|X = x) does
not depend on x, so
the errors are homo-
skedastic. In figure (b},
these distributions
become more spread

out (have a larser

@EEEED Homosked

icity and Heterc

icity

Test score
720
700 Distribution of ¥ when X = 15
Distribution of Y when X = 20
680+
Distribution of Y when X = 25
660 -
E(Y|]X=15)
640
E(Y|X = 25) +B1X

620 Bo+Pr
600 1 1 Il ]

10 15 20 25 30

(2) The errors are homoscedastic

Student—teacher ratio

E(u|X = x) = o, u satisfies Least Squares Assumption #1.

The variance of u does not depend on x.

Weighted LS
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Heteroskedasticity in a picture

out (have a larger i
3 est score
variance) wor. 70
larger class sizes,
sovar(u|X = x) 7001 Distribution of Y when X =15
depends on x and the Distribution of Y when X = 20
Distribution of Y when X = 25
u is heteroskedastic. 6801 ‘
660
640 -
i Bo +B1X
620 |
600 L L - !
10 15 20 25 30
(b) The errors are heteroskedastic Studetit=tezcher ratic

* E(u|X = x) = o, u satisfies Least Squares Assumption #1.
® The variance of u depends on x.
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m Scatterplot of Hourly Earnings and Years of Education
for 29- to 30-Year-Olds in the United States in 2015

—— Fitted values

Hourly earnings are plotted against years of education for
2731 full-time 29- to 30-year-old workers. The spread
around the regression line increases with the years of
education, indicating that the regression errors are
heteroskedastic.
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Heteroskedastic or homoskedastic?
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Heter and Homoskedasticity

The estimated regres-  Test score
sion line shows a 200
negative relationship
between testscoresand /-
the student-teacher
ratio. For wo districts 0
with class sizes that ‘
. 660 -
differ by one student
er class, the district
e 640
with the larger class
has, on average, test 620 L
scores that are lower |
by 2.28 points. 60— | iy % ! .
10 15 20 25 30
Student-teacher ratio
3

@ETED The Estimated Regression Line for the California Data

-

Is heteroskedasticity present in the class size data?

Weighted LS
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Heter and Homoskedasticity
So far we have assumed that u is heteroskedastic. Recall the
three least squares assumptions:

@ The conditional distribution of u given X has mean zero,
that is, E(u|X = x) = o.

Q@ (X,.Y),i=1,-,narei.id.
@ Large outliers are rare.
* Heteroskedasticity and homoskedasticity concern
Var(u|X = x). Because we have not explicitly assumed

homoskedastic errors, we have implicitly allowed for
heteroskedasticity.
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Heter and Homoskedasticity

What if the errors are in fact homoskedastic?

® You can prove that OLS has the lowest variance among
estimators that are linear in Y, a result called the
Gauss-Markov theorem.

e The formula for the variance of f3, and the OLS standard
error simplifies.
If Var(u;|X; = x) = 02, then

s Var[(X; — ux)u;] o2
Var(B,) = n(;zlz i _ —
X X

Note: Var(f,) is inversely proportional to Var(X). More
spread in X means more information about ;.

26/ 40



Heter and Homoskedasticity

Because the nominator of Var(f,) is

Var [(X; — ux)ui]
= E([(Xi - px)ui = E((Xi - px)ui)]’)
= E ([(X,- - yX)ui]z) , since E((X; —ux)u;) =o
= E((Xi—px)*u})
= E((Xi-px)*Var(uiX;)),
by law of iterated expectations

_ 2 2
= 0x0,
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Heter and Homoskedasticity

Gauss-Markov conditions:

i E(ui| Xy, Xn) = o.
ii. Var(u;|X;, -, X,)=020<02<ocofori=1,-,n
il E(uiuj| Xy, Xn) =0,i=1,n,i # j.

Gauss-Markov Theorem:

e Under the Gauss-Markov conditions, the OLS estimator f3, is
BLUE (Best Linear Unbiased Estimator). That is,

Var(By| X, -+ Xn) < Var(By| X, -+ Xn)

for all linear conditionally unbiased estimators f3,.
See Appendix 5.2 for proof.
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A Y (X - X)(Y; - Y)
Z?:l(Xi _X)z
Z?=1(Xi - X)Yl - YZ?:l(Xi _X)
Z:?=1()(1' _X)z
Z?:l(Xi _X)Yi
Z?:l(Xi _X)z

n
= > 4Y;
i=1
X;-X

) i (Xi—X)*"
B is a linear unbiased estimator.

where d; =
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Heter and Homoskedasticity

Proof of the Gauss-Markov Theorem

Let ﬁl

Z’j: Zf: (Bo + PuXi +u;)
Bo (Z ai) + B (ﬁ: diXi) + iai“i

is a linear unbiased estimator of f3;.

e For f3, to be conditionally unbiased,

E(p.IX
(i )+/51(Za X ) + Za E(ui| Xy, Xn)
g

Z )+[31(ZaX):/31,
weneed Y7 a;=oand Y a;X; =1
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Heter and Homoskedasticity

With the above two conditions for a;, f, — B, = 1, a;u;.
n

E((Z aiui)2|X1>"'an)
i=1

n n

Y > aiaB (ujuj|X,, -, X)) = 0p - a

i=1j=1 i=1

Var(B1|X1,~~~,Xn)

Leta; =d; +d;,then Y7_ a} = Y1 ar+ Y., d; +2X 0, d;d;, and

Z?=1(Xi - X)dl

Il
—
M=
2
2
|
M=
=
2
~—
|
><I
—
M=
2
|
M=
Q>
~
I
o
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Heter and Homoskedasticity

Therefore,

™=
.
N

2 2 2 A2 _
i=1 i=1

Var(ﬁ1|X1, T Xn) - Var(ﬁlp(p P Xn) =

éﬁo

n

|
—

=
QU
=N

Q
NN

i

!

B, has a greater conditional variance than f, if d; # o for any
i=1,--,n. Ifd; = o forall i, then 5, = 8;, which proves that OLS
is BLUE.
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General formula for the standard error of 31 is the square root
of
ﬁ Z?:l(Xi - X)zﬁlz

(22X - X)]

>

X

Fm}
=

Special case under homoskedasticity is

1 n A2
n—2 Zi=1 Ui

% Z?:l(Xi - X)2

A

X

2 1
B n

Weighted LS
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Heter and Homoskedasticity

* The homoskedasticity-only formula for the standard error of
f3, and the “heteroskedasticity-robust” formula (the formula
that is valid under heteroskedasticity) differ. In general, you
get different standard errors using the different formulas.

* Homoskedasticity-only standard errors are the default
setting in regression software - sometimes the only setting
(e.g. Excel). To get the general “heteroskedasticity-robust"
standard errors you must override the default.

* Ifyou don't override the default and there is in fact
heteroskedasticity, will get the wrong standard errors (and
wrong t-statistics and confidence intervals).
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Heter and Homoskedasticity

Heteroskedasticity-robust standard errors in STATA

wowowowon
o
. o
o
o
)

Interval]

-1.258671

regress testscr str, robust
Regression with robust standard errors Number of obs
F( 1, 418)
Prob > F
R-squared
Root MSE
| Robust
testser | Coef. Std. Err. t P>|t] [95% Conf.
________ A
str | -2.279808  .5194892 -4.39  0.000 -3.300945
_cons | 698.933 10.36436 67.44 0.000 678.5602

719.3057

Use the “, robust” option!!!

* If you use the  robust" option, the STATA computes

heteroskedasticity-robust standard errors.

* Otherwise, STATA computes homoskedasticity-only

standard errors.
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Heter and Homoskedasticity

The critical points:

* If the errors are homoskedastic and you use the
heteroskedastic formula for standard errors (the one we
derived), you are OK.

e If the errors are heteroskedastic and you use the
homoskedasticity-only formula for standard errors, the
standard errors are wrong.

* The two formulas coincide (when 7 is large) in the special
case of homoskedasticity.

* The bottom line: you should always use the
heteroskedasticity-based formulas- these are conventionally
called the heteroskedasticity-robust standard errors.
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Weighted Least Squares

* Since OLS under homoskedasticity is efficient, traditional

approach is trying to transform a heteroskedastic model into
a homoskedastic model.

® Suppose the conditional variance of u; is known as a
function of X;

Var(u;|X;) = Ah(X;)
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Weighted LS

* Then we can divide both sides of the single-variable

regression model by \/h(X;) to obtain
?z' = ﬁoXoi + ﬁlei + 1

where

d 3:71 = Yi/\/h(Xi), Xoi = 1/v/h(X;),
* X, =Xi/[\/Jh(Xi), i; = ui[\/h(X;),

* Var(ilX;) = sl = A

* The WLS estimator is the OLS estimator obtained by
regressing Y; on X,; and X;.
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Weighted LS

* However, h(X;) is usually unknown, then we have to

R

estimate h(X;) first to obtain h(X;), then replace h(X;)
with h(X;). This is called feasible WLS.

* More importantly, the function form of /() is usually
unknown, then there is no way to systematically estimate
h(X;). This is why, in practice, we usually only run OLS with
robust standard error.
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Summary and Assessment

* The initial policy question:

Suppose new teachers are hired so the student-teacher ratio
talls by one student per class. What is the effect of this policy
intervention (this “treatment”) on test scores?

* Does our regression analysis give a convincing answer? Not
really - districts with low STR tend to be ones with lots of
other resources and higher income families, which provide
kids with more learning opportunities outside school. This
suggests that corr(u;, STR;) < o, so E(u;|X;) # o.
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