・ロト ・ 日本・ キョン・ ヨン・ ヨ

1/40

Regression with One Regressor: Hypothesis Tests and Confidence Intervals

Ming-Ching Luoh

2022.2.21.

Testing Hypotheses

Confidence intervals

Regression When X is Binary

Heteroskedasticity and Homoskedasticity

Weighted Least Squares

Summary and Assessment

<ロト < 部ト < 言ト < 言ト 言 の Q (や 2/40

Testing Hypotheses About One of the Regression Coefficients

Suppose a skeptic suggests that reducing the number of students in a class has no effect on learning or, specifically, test scores. The skeptic thus asserts the hypothesis,

$$H_0: \beta_1 = 0$$

We wish to test this hypothesis using data— reach a tentative conclusion whether it is correct or not.

Null hypothesis and **two-sided** alternative:

$$H_0: \beta_1 = 0 \ vs. \ H_1: \beta_1 \neq 0$$

or, more generally,

$$H_0: \beta_1 = \beta_{1,0} \ vs. \ H_1: \beta_1 \neq \beta_{1,0}$$

Null hypothesis and **one-sided** alternative:

$$H_{\rm o}: \beta_1 = \beta_{1,\rm o} \ vs. \ H_1: \beta_1 < \beta_{1,\rm o}$$

In economics, it is almost always possible to come up with stories in which an effect could "go either way," so it is standard to focus on two-sided alternatives.

In general,

$$t = \frac{\text{estimator} - \text{hypothesized value}}{\text{S.E. of the estimator}}$$

where the *S*.*E*. of the estimator is the square root of an estimator of the variance of the estimator.

Applied to a hypothesis about β_1 :

$$t = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE(\hat{\beta}_1)}$$

where $\beta_{1,0}$ is the hypothesized value of β_1 .

Formula for $SE(\hat{\beta}_1)$

Recall the expression for the variance of $\hat{\beta}_1$ (large *n*):

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\operatorname{Var}\left((X_i - \bar{X})u_i\right)}{n(\sigma_X^2)^2} = \frac{\sigma_v^2}{n\sigma_X^4}$$

where $v_i = (X_i - \bar{X})u_i$. Estimator of the variance of $\hat{\beta}_1$ is

$$\hat{\sigma}_{\hat{\beta}_1}^2 = \frac{1}{n} \times \frac{\text{estimator of } \sigma_v^2}{(\text{estimator of } \sigma_X^2)^2} \\ = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2\right]^2}$$

$$\hat{\sigma}_{\hat{\beta}_1}^2 = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n (X_i - \bar{X})^2 \hat{u}_i^2}{\left[\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2\right]^2}$$

where $\hat{u}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$ is the residual.

- There is no reason to memorize this.
- It is computed automatically by regression software.
- $SE(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\hat{\beta}_1}^2}$ is reported by regression software.
- It is less complicated than it seems. The numerator estimates Var(v), the denominator estimates Var(X).

The calculation of the *t*-statistic:

$$t = \frac{\hat{\beta}_{1} - \beta_{1,0}}{SE(\hat{\beta}_{1})} = \frac{\hat{\beta}_{1} - \beta_{1,0}}{\sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}}}$$

- Reject at 5% significance level if |t| > 1.96.
- *p*-value is $p = \Pr(|t| > |t^{act}|) = \text{probability in tails outside} |t^{act}|.$
- Both the previous statements are based on large-*n* approximation.

Example: Test Scores and STR, California data

Estimated regression line: $TestScore = 698.9 - 2.28 \times STR$ Regression software reports the standard errors:

$$SE(\hat{eta}_{0})$$
 = 10.4, $SE(\hat{eta}_{1})$ = 0.52

t-statistic testing $\beta_{1,0} = 0$ is $\frac{\hat{\beta}_1 - \beta_{1,0}}{SE(\hat{\beta}_1)} = \frac{-2.28 - 0}{0.52} = -4.38$

- The 1% two-sided significance level is 2.58, so we reject the null at 1% significance level.
- Alternatively, we can compute the *p*-value.

The *p*-value based on the large-*n* standard normal approximation to the *t*-statistic is 0.00001.

イロト イロト イヨト イヨト 二日

11/40

Confidence intervals for a Regression Coefficient

In general, if the sample distribution of an estimator is nomal for large *n*, then a 95% confidence interval can be constructed as estimator $\pm 1.96 \times$ standard error, that is

 $\hat{\beta}_1 \pm \mathbf{1.96} \times SE(\hat{\beta}_1)$

Example: Test Scores and STR, California data

Estimated regression line: $TestScore = 698.9 - 2.28 \times STR$ Regression software reports the standard errors.

$$SE(\hat{eta}_{0})$$
 = 10.4, $SE(\hat{eta}_{1})$ = 0.52

95% confidence interval for $\hat{\beta}_1$:

$$\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1) = \{-2.28 \pm 1.96 \times 0.52\}$$

= (-3.30, -1.26)

Equivalent statements:

- The 95% confidence interval does not include zero.
- The hypothesis β_1 = 0 is rejected at the 5% level.

A concise (and conventional) way to report regressions: Put standard errors in parentheses below the estimated coefficients to which they apply.

$$TestScore = 698.9 - 2.28 \times STR, R^2 = .05, SER = 18.6$$

(10.4) (0.52)

This expression gives a lot of information.

- The estimated regression line is $Test Score = 698.9 2.28 \times STR.$
- The standard error of $\hat{\beta}_0$ is 10.4.
- The standard error of $\hat{\beta}_1$ is 0.52
- The *R*² is .05; the standard error of the regression is 18.6.

OLS regression: STATA output

regress testscr str, robust

Regression	n with	robust	standard	errors			Number of c	bs =	=	420
							F(1, 41	L8) =	=	19.26
							Prob > F	-	= 0	.0000
							R-squared	-	= 0	.0512
							Root MSE	-	= 1	8.581
1			Robust							
testscr		Coef.	Std. Err	· ·	t 1	?> t	[95% Cor	ıf. :	Inte	rval]
str	-2.27	9808	.5194892	-4.3	38 (0.000	-3.300945	5.	-1.2	58671
_cons	698	3.933	10.36436	67.4	44 (0.000	678.5602	2	719	.3057

so:

$$\overline{TestScore} = 698.9 - 2.28 \times STR$$

(10.4) (0.52)

 $t (\beta_1 = 0) = -4.38$, *p*-value = 0.000 (2-sided) 95% 2-sided conf. interval for β_1 is (-3.30, -1.26)

・ロト・日本・モート ヨー シタク

Regression When X is a Binary Variable

- Sometimes a regressor is binary:
 - X = 1 if female, = 0 if male
 - *X* = 1 if treated (experimental drug), = 0 if not
 - X = 1 if small class size, = 0 if not
- A binary variable is sometimes called a dummy variable or an indicator variable.
- So far, β₁ has been called a "slope," but that doesn't make much sense if X is binary. How do we interpret regression with a binary regressor?

Interpreting regressions with a binary regressor

$$Y_i = \beta_0 + \beta_1 X_i + u_i,$$

where *X* is binary ($X_i = 0$ or 1).

When
$$X_i = 0$$
, $Y_i = \beta_0 + u_i$
When $X_i = 1$, $Y_i = \beta_0 + \beta_1 + u_i$

that is: E(

$$E(Y_i|X_i = 0) = \beta_0$$

$$E(Y_i|X_i = 1) = \beta_0 + \beta_1$$

so: $\beta_1 = E(Y_i | X_i = 1) - E(Y_i | X_i = 0)$

which is the population difference in group means.

Example: TestScore and STR, California data

Let

$$D_i = 1 \text{ if } STR < 20$$
$$= 0 \text{ if } STR \ge 20$$

The OLS estimate of the regression line relating *Test Score* to *D* (with standard errors in parentheses) is:

$$Test Score = 650.0 +7.4 \times D$$

(1.3) (1.8)

Difference in means between groups = 7.4;

$$SE = 1.8, t = \frac{7.4}{1.8} = 4.0$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ペ
17/40

-

Compare the regression results with the group means, computed directly:

Class Size	Average Score(\bar{Y})	Std. Dev.	Ν
$Small(STR < 20)$ $Large(STR \ge 20)$	657.4	19.4	238
	650.0	17.9	182

• Estimation: $\bar{Y}_{small} - \bar{Y}_{large} = 657.4 - 650.0 = 7.4.$

• Test:
$$t = \frac{\bar{Y}_s - \bar{Y}_l}{SE(\bar{Y}_s - \bar{Y}_l)} = \frac{7.4}{1.83} = 4.05.$$

This is the same as in the regression.

イロト イロト イヨト イヨト 二日

19/40

Heteroskedasticity and Homoskedasticity

Heteroske dasticity, Homoske dasticity, and the Formula for the Standard Errors of $\hat{\beta}_0$ and $\hat{\beta}_1$

- What do these two terms mean?
- Consequences of homoskedasticity.
- Implication for computing standard errors.

What do these two terms mean?

- If Var(u|X = x) is constant— that is, the variance of the conditional distribution of *u* given *X* does not depend on *X*, then *u* is said to be homoskedasticity (變異數齊一).
- Otherwise, *u* is said to be **heteroskedastic** (變異數不齊一).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Homoskedasticity in a picture

- E(u|X = x) = 0, *u* satisfies Least Squares Assumption #1.
- The variance of *u* does **not** depend on *x*.

Heteroskedasticity in a picture

- E(u|X = x) = 0, *u* satisfies Least Squares Assumption #1.
- The variance of *u* depends on *x*.

FIGURE 5.3 Scatterplot of Hourly Earnings and Years of Education for 29- to 30-Year-Olds in the United States in 2015

Hourly earnings are plotted against years of education for 2731 full-time 29- to 30-year-old workers. The spread around the regression line increases with the years of education, indicating that the regression errors are heteroskedastic.

Heteroskedastic or homoskedastic?

Is heteroskedasticity present in the class size data?

So far we have assumed that u is heteroskedastic. Recall the three least squares assumptions:

• The conditional distribution of u given X has mean zero, that is, E(u|X = x) = 0.

2
$$(X_i, Y_i), i = 1, \dots, n, \text{ are } i.i.d.$$

Heteroskedasticity and homoskedasticity concern
 Var(u|X = x). Because we have not explicitly assumed homoskedastic errors, we have implicitly allowed for heteroskedasticity.

What if the errors are in fact homoskedastic?

- You can prove that OLS has the lowest variance among estimators that are linear in *Y*, a result called the Gauss-Markov theorem.
- The formula for the variance of $\hat{\beta}_1$ and the OLS standard error simplifies.

If $\operatorname{Var}(u_i|X_i = x) = \sigma_u^2$, then

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\operatorname{Var}\left[(X_i - \mu_X)u_i\right]}{n(\sigma_X^2)^2} = \dots = \frac{\sigma_u^2}{n\sigma_X^2}$$

Note: $Var(\hat{\beta}_1)$ is inversely proportional to Var(X). More spread in X means more information about $\hat{\beta}_1$.

Because the nominator of $Var(\hat{\beta}_1)$ is

$$\begin{aligned} &\operatorname{Var}\left[(X_i - \mu_X)u_i\right] \\ &= \operatorname{E}\left(\left[(X_i - \mu_X)u_i - \operatorname{E}((X_i - \mu_X)u_i)\right]^2\right) \\ &= \operatorname{E}\left(\left[(X_i - \mu_X)u_i\right]^2\right), \text{ since } \operatorname{E}((X_i - \mu_X)u_i) = \mathrm{o} \\ &= \operatorname{E}\left((X_i - \mu_X)^2u_i^2\right) \\ &= \operatorname{E}\left((X_i - \mu_X)^2\operatorname{Var}(u_i|X_i)\right), \\ &\quad \text{by law of iterated expectations} \end{aligned}$$

$$= \sigma_X^2 \sigma_u^2$$

Gauss-Markov conditions:

i.
$$\mathrm{E}(u_i|X_1,\cdots,X_n) = \mathrm{o}.$$

ii.
$$\operatorname{Var}(u_i|X_1, \dots, X_n) = \sigma_u^2, o < \sigma_u^2 < \infty \text{ for } i = 1, \dots, n$$

iii. $E(u_i u_j | X_1, \dots, X_n) = 0, i = 1, \dots, n, i \neq j.$

Gauss-Markov Theorem:

 Under the Gauss-Markov conditions, the OLS estimator β₁ is BLUE (Best Linear Unbiased Estimator). That is,

$$\operatorname{Var}(\hat{\beta}_1|X_1,\dots,X_n) \leq \operatorname{Var}(\tilde{\beta}_1|X_1,\dots,X_n)$$

for all linear conditionally unbiased estimators $\tilde{\beta}_1$.

See Appendix 5.2 for proof.

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})Y_{i} - \bar{Y}\sum_{i=1}^{n} (X_{i} - \bar{X})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})Y_{i}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$= \sum_{i=1}^{n} \hat{a}_{i}Y_{i}$$

where $\hat{a}_i = \frac{X_i - \bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2}$. $\hat{\beta}_1$ is a linear unbiased estimator.

Proof of the Gauss-Markov Theorem

is a linear unbiased estimator of β_1 .

• For $\tilde{\beta}_1$ to be conditionally unbiased,

$$E(\tilde{\beta}_{1}|X_{1},\dots,X_{n})$$

$$= \beta_{0}\left(\sum_{i=1}^{n}a_{i}\right) + \beta_{1}\left(\sum_{i=1}^{n}a_{i}X_{i}\right) + \sum_{i=1}^{n}a_{i}E(u_{i}|X_{1},\dots,X_{n})$$

$$= \beta_{0}\left(\sum_{i=1}^{n}a_{i}\right) + \beta_{1}\left(\sum_{i=1}^{n}a_{i}X_{i}\right) = \beta_{1},$$

we need $\sum_{i=1}^{n} a_i = 0$ and $\sum_{i=1}^{n} a_i X_i = 1$.

30/40

With the above two conditions for a_i , $\tilde{\beta}_1 - \beta_1 = \sum_{i=1}^n a_i u_i$.

$$\begin{aligned} \operatorname{Var}(\tilde{\beta}_{1}|X_{1},\cdots,X_{n}) &= & \operatorname{E}\left((\sum_{i=1}^{n}a_{i}u_{i})^{2}|X_{1},\cdots,X_{n}\right) \\ &= & \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}a_{j}\operatorname{E}\left(u_{i}u_{j}|X_{1},\cdots,X_{n}\right) = \sigma_{u}^{2}\sum_{i=1}^{n}a_{i}^{2}\end{aligned}$$

Let $a_i = \hat{a}_i + d_i$, then $\sum_{i=1}^n a_i^2 = \sum_{i=1}^n \hat{a}_i^2 + \sum_{i=1}^n d_i^2 + 2 \sum_{i=1}^n \hat{a}_i d_i$, and

$$\sum_{i=1}^{n} \hat{a}_{i} d_{i} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}) d_{i}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$

$$\sum_{i=1}^{n} (X_{i} - \bar{X}) d_{i} = \sum_{i=1}^{n} (a_{i} - \hat{a}_{i}) X_{i} - \bar{X} \sum_{i=1}^{n} (a_{i} - \hat{a}_{i})$$

$$= \left(\sum_{i=1}^{n} a_{i} X_{i} - \sum_{i=1}^{n} \hat{a}_{i} X_{i}\right) - \bar{X} \left(\sum_{i=1}^{n} a_{i} - \sum_{i=1}^{n} \hat{a}_{i}\right) = 0$$

31/40

Therefore,

$$\sigma_{u}^{2} \sum_{i=1}^{n} a_{i}^{2} - \sigma_{u}^{2} \sum_{i=1}^{n} \hat{a}_{i}^{2} = \sigma_{u}^{2} \sum_{i=1}^{n} d_{i}^{2}$$
$$\operatorname{Var}(\tilde{\beta}_{1} | X_{1}, \dots, X_{n}) - \operatorname{Var}(\hat{\beta}_{1} | X_{1}, \dots, X_{n}) = \sigma_{u}^{2} \sum_{i=1}^{n} d_{i}^{2}$$

 $\tilde{\beta}_1$ has a greater conditional variance than $\hat{\beta}_1$ if $d_i \neq 0$ for any $i = 1, \dots, n$. If $d_i = 0$ for all i, then $\tilde{\beta}_1 = \hat{\beta}_1$, which proves that OLS is BLUE.

General formula for the standard error of $\hat{\beta}_1$ is the square root of

$$\hat{\sigma}_{\hat{\beta}_{1}}^{2} = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \hat{u}_{i}^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}\right]^{2}}$$

Special case under homoskedasticity is

$$\hat{\sigma}^2_{\hat{\beta}_1} = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n \hat{u}_i^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}.$$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q (や 33 / 40

- The homoskedasticity-only formula for the standard error of $\hat{\beta}_1$ and the "heteroskedasticity-robust" formula (the formula that is valid under heteroskedasticity) differ. In general, you get *different standard errors using the different formulas*.
- Homoskedasticity-only standard errors are the default setting in regression software - sometimes the only setting (e.g. Excel). To get the general "heteroskedasticity-robust" standard errors you must override the default.
- If you don't override the default and there is in fact heteroskedasticity, will get the wrong standard errors (and wrong t-statistics and confidence intervals).

when X is Binar

Heteroskedasticity-robust standard errors in STATA

regress te	stscr str, r	obust					
Regression	with robust	standard er	rors		Number of obs F(1, 418) Prob > F R-squared Root MSE	= = = =	420 19.26 0.0000 0.0512 18.581
 testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	In	terval]
str _cons	-2.279808 698.933	.5194892 10.36436	-4.39 67.44	0.000	-3.300945 678.5602	-1 7	.258671 19.3057

Use the ", robust" option!!!

- If you use the ", robust" option, the STATA computes heteroskedasticity-robust standard errors.
- Otherwise, STATA computes homoskedasticity-only standard errors.

The critical points:

- If the errors are homoskedastic and you use the heteroskedastic formula for standard errors (the one we derived), you are OK.
- If the errors are heteroskedastic and you use the homoskedasticity-only formula for standard errors, the standard errors are wrong.
- The two formulas coincide (when *n* is large) in the special case of homoskedasticity.
- The bottom line: you should always use the heteroskedasticity-based formulas- these are conventionally called the heteroskedasticity-robust standard errors.

37/40

イロト イロト イヨト イヨト 三日

Weighted Least Squares

- Since OLS under homoskedasticity is efficient, traditional approach is trying to transform a heteroskedastic model into a homoskedastic model.
- Suppose the conditional variance of u_i is known as a function of X_i

 $\operatorname{Var}(u_i|X_i) = \lambda h(X_i)$

• Then we can divide both sides of the single-variable regression model by $\sqrt{h(X_i)}$ to obtain

$$\tilde{Y}_i = \beta_{\rm o} \tilde{X}_{{\rm o}i} + \beta_{\rm i} \tilde{X}_{{\rm i}i} + \tilde{u}_i$$

where

- $\tilde{Y}_i = Y_i / \sqrt{h(X_i)}, \tilde{X}_{oi} = 1 / \sqrt{h(X_i)},$ • $\tilde{X}_{1i} = X_i / \sqrt{h(X_i)}, \tilde{u}_i = u_i / \sqrt{h(X_i)},$ • $\operatorname{Var}(\tilde{u}|X_i) = \frac{\operatorname{Var}(u_i)}{h(X_i)} = \lambda.$
- The WLS estimator is the OLS estimator obtained by regressing *Y*_i on *X*_{oi} and *X*_{1i}.

- However, $h(X_i)$ is usually unknown, then we have to estimate $h(X_i)$ first to obtain $\widehat{h(X_i)}$, then replace $h(X_i)$ with $\widehat{h(X_i)}$. This is called **feasible** WLS.
- More importantly, the function form of $h(\cdot)$ is usually unknown, then there is no way to systematically estimate $h(X_i)$. This is why, in practice, we usually only run OLS with **robust** standard error.

Summary and Assessment

• The initial policy question:

Suppose new teachers are hired so the student-teacher ratio falls by one student per class. What is the effect of this policy intervention (this "treatment") on test scores?

Does our regression analysis give a convincing answer? Not really - districts with low *STR* tend to be ones with lots of other resources and higher income families, which provide kids with more learning opportunities outside school. This suggests that *corr*(*u_i*, *STR_i*) < 0, so E(*u_i*|*X_i*) ≠ 0.