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Testing Hypotheses About One of the
Regression Coeõcients

Suppose a skeptic suggests that reducing the number of students
in a class has no eòect on learning or, speciûcally, test scores.
ae skeptic thus asserts the hypothesis,

H0: β1 = 0

We wish to test this hypothesis using data— reach a tentative
conclusion whether it is correct or not.
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Null hypothesis and two-sided alternative:

H0: β1 = 0 vs. H1: β1 ≠ 0

or, more generally,

H0: β1 = β1,0 vs. H1: β1 ≠ β1,0

Null hypothesis and one-sided alternative:

H0: β1 = β1,0 vs. H1: β1 < β1,0

In economics, it is almost always possible to come up with
stories in which an eòect could “go either way," so it is standard
to focus on two-sided alternatives.
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In general,

t = estimator − hypothesized value
S.E. of the estimator

where the S .E . of the estimator is the square root of an estimator
of the variance of the estimator.
Applied to a hypothesis about β1:

t = β̂1 − β1,0
SE(β̂1)

where β1,0 is the hypothesized value of β1.
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Formula for SE(β̂1)
Recall the expression for the variance of β̂1 (large n):

Var(β̂1) =
Var ((Xi − X̄)ui)

n(σ2X)2
= σ2v
nσ4X

where vi = (Xi − X̄)ui .
Estimator of the variance of β̂1 is

σ̂2
β̂1
= 1

n
× estimator of σ2v
(estimator of σ2X)2

= 1
n
×

1
n−2 ∑

n
i=1(Xi − X̄)2û2i

[ 1n ∑
n
i=1(Xi − X̄)2]

2
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σ̂2
β̂1
= 1

n
×

1
n−2 ∑

n
i=1(Xi − X̄)2û2i

[ 1n ∑
n
i=1(Xi − X̄)2]

2

where ûi = Yi − β̂0 − β̂1Xi is the residual.

● aere is no reason to memorize this.

● It is computed automatically by regression so�ware.

● SE(β̂1) =
√

σ̂2
β̂1
is reported by regression so�ware.

● It is less complicated than it seems. ae numerator estimates
Var(v), the denominator estimates Var(X).
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ae calculation of the t-statistic:

t = β̂1 − β1,0
SE(β̂1)

= β̂1 − β1,0√
σ̂2
β̂1

● Reject at 5% signiûcance level if ∣t∣ > 1.96.

● p-value is p = Pr (∣t∣ > ∣tact ∣)=probability in tails outside
∣tact ∣.

● Both the previous statements are based on large-n
approximation.
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Example: Test Scores and STR, California data
Estimated regression line: ̂TestScore = 698.9 − 2.28 × STR
Regression so�ware reports the standard errors:

SE(β̂0) = 10.4, SE(β̂1) = 0.52

t-statistic testing β1,0 = 0 is β̂1−β1,0
SE(β̂1)

= −2.28−00.52 = −4.38

● ae 1% two-sided signiûcance level is 2.58, so we reject the
null at 1% signiûcance level.

● Alternatively, we can compute the p-value.
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ae p-value based on the large-n standard normal
approximation to the t-statistic is 0.00001.
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Conûdence intervals for a Regression
Coeõcient

In general, if the sample distribution of an estimator is nomal
for large n, then a 95% conûdence interval can be constructed as
estimator ±1.96× standard error, that is

β̂1 ± 1.96 × SE(β̂1)
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Example: Test Scores and STR, California data
Estimated regression line: ̂TestScore = 698.9 − 2.28 × STR
Regression so�ware reports the standard errors.

SE(β̂0) = 10.4, SE(β̂1) = 0.52

95% conûdence interval for β̂1:

β̂1 ± 1.96 × SE(β̂1) = {−2.28 ± 1.96 × 0.52}
= (−3.30,−1.26)

Equivalent statements:

● ae 95% conûdence interval does not include zero.

● ae hypothesis β1 = 0 is rejected at the 5% level.
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A concise (and conventional) way to report regressions:
Put standard errors in parentheses below the estimated
coeõcients to which they apply.

̂TestScore = 698.9 − 2.28 × STR, R2 = .05, SER = 18.6
(10.4) (0.52)

ais expression gives a lot of information.

● ae estimated regression line is
̂Test Score = 698.9 − 2.28 × STR.

● ae standard error of β̂0 is 10.4.

● ae standard error of β̂1 is 0.52

● ae R2 is .05; the standard error of the regression is 18.6.
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Regression When X is a Binary Variable

● Sometimes a regressor is binary:

● X = 1 if female, = 0 if male
● X = 1 if treated (experimental drug), = 0 if not
● X = 1 if small class size, = 0 if not

● A binary variable is sometimes called a dummy variable or
an indicator variable.

● So far, β1 has been called a “slope," but that doesn’t make
much sense if X is binary. How do we interpret regression
with a binary regressor?
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Interpreting regressions with a binary regressor

Yi = β0 + β1Xi + ui ,

where X is binary (Xi = 0 or 1).

When Xi = 0,Yi = β0 + ui
When Xi = 1,Yi = β0 + β1 + ui

that is: E(Yi ∣Xi = 0) = β0
E(Yi ∣Xi = 1) = β0 + β1

so: β1 = E(Yi ∣Xi = 1) −E(Yi ∣Xi = 0)

which is the population diòerence in group means.
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Example: TestScore and STR, California data
Let

Di = 1 if STR < 20
= 0 if STR ≥ 20

ae OLS estimate of the regression line relating Test Score to D
(with standard errors in parentheses) is:

̂Test Score = 650.0 +7.4 × D
(1.3) (1.8)

Diòerence in means between groups = 7.4;

SE = 1.8, t = 7.4
1.8
= 4.0
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Compare the regression results with the group means,
computed directly:

Class Size Average Score(Ȳ) Std. Dev. N

Small(STR < 20) 657.4 19.4 238
Large(STR ≥ 20) 650.0 17.9 182

● Estimation: Ȳsmal l − Ȳl arge = 657.4 − 650.0 = 7.4.

● Test: t = Ȳs−Ȳl
SE(Ȳs−Ȳl )

= 7.4
1.83 = 4.05.

ais is the same as in the regression.
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Heteroskedasticity and Homoskedasticity

Heteroskedasticity, Homoskedasticity, and the Formula for
the Standard Errors of β̂0 and β̂1

● What do these two terms mean?

● Consequences of homoskedasticity.

● Implication for computing standard errors.
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What do these two terms mean?

● If Var(u∣X = x) is constant— that is, the variance of the
conditional distribution of u given X does not depend on X,
then u is said to be homoskedasticity (變異數齊一).

● Otherwise, u is said to be heteroskedastic (變異數不齊一).
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Homoskedasticity in a picture

● E(u∣X = x) = 0, u satisûes Least Squares Assumption #1.

● ae variance of u does not depend on x.
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Heteroskedasticity in a picture

● E(u∣X = x) = 0, u satisûes Least Squares Assumption #1.

● ae variance of u depends on x.
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Heteroskedastic or homoskedastic?
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Is heteroskedasticity present in the class size data?
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So far we have assumed that u is heteroskedastic. Recall the
three least squares assumptions:

1 ae conditional distribution of u given X has mean zero,
that is, E(u∣X = x) = 0.

2 (Xi ,Yi), i = 1,⋯, n, are i .i .d.

3 Large outliers are rare.

● Heteroskedasticity and homoskedasticity concern
Var(u∣X = x). Because we have not explicitly assumed
homoskedastic errors, we have implicitly allowed for
heteroskedasticity.
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What if the errors are in fact homoskedastic?

● You can prove that OLS has the lowest variance among
estimators that are linear in Y , a result called the
Gauss-Markov theorem.

● ae formula for the variance of β̂1 and the OLS standard
error simpliûes.
If Var(ui ∣Xi = x) = σ2u , then

Var(β̂1) =
Var [(Xi − µX)ui]

n(σ2X)2
= ⋯ = σ2u

nσ2X

Note: Var(β̂1) is inversely proportional to Var(X). More
spread in X means more information about β̂1.
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Because the nominator of Var(β̂1) is

Var [(Xi − µX)ui]
= E ([(Xi − µX)ui −E((Xi − µX)ui)]2)
= E ([(Xi − µX)ui]2) , since E((Xi − µX)ui) = 0
= E ((Xi − µX)2u2i )
= E ((Xi − µX)2Var(ui ∣Xi)) ,

by law of iterated expectations
= σ2Xσ

2
u
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Gauss-Markov conditions:

i. E(ui ∣X1,⋯, Xn) = 0.

ii. Var(ui ∣X1,⋯, Xn) = σ2u , 0 < σ2u < ∞ for i = 1,⋯, n

iii. E(uiu j∣X1,⋯, Xn) = 0, i = 1,⋯, n, i ≠ j.

Gauss-Markovaeorem:

● Under the Gauss-Markov conditions, the OLS estimator β̂1 is
BLUE (Best Linear Unbiased Estimator). aat is,

Var(β̂1∣X1,⋯, Xn) ≤ Var(β̃1∣X1,⋯, Xn)

for all linear conditionally unbiased estimators β̃1.

See Appendix 5.2 for proof.
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β̂1 =
∑n

i=1(Xi − X̄)(Yi − Ȳ)
∑n

i=1(Xi − X̄)2

= ∑
n
i=1(Xi − X̄)Yi − Ȳ ∑n

i=1(Xi − X̄)
∑n

i=1(Xi − X̄)2

= ∑
n
i=1(Xi − X̄)Yi
∑n

i=1(Xi − X̄)2

=
n
∑
i=1

âiYi

where âi = X i−X̄
∑n

i=1(X i−X̄)2
.

β̂1 is a linear unbiased estimator.
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Proof of the Gauss-Markovaeorem
●

Let β̃1 =
n
∑
i=1

aiYi =
n
∑
i=1

ai(β0 + β1Xi + ui)

= β0 (
n
∑
i=1

ai) + β1 (
n
∑
i=1

aiXi) +
n
∑
i=1

aiui

is a linear unbiased estimator of β1.

● For β̃1 to be conditionally unbiased,
E(β̃1∣X1 ,⋯, Xn)

= β0 (
n
∑
i=1

a i) + β1 (
n
∑
i=1

a iX i) +
n
∑
i=1

a iE(u i ∣X1 ,⋯, Xn)

= β0 (
n
∑
i=1

a i) + β1 (
n
∑
i=1

a iX i) = β1 ,

we need∑n
i=1 ai = 0 and∑n

i=1 aiXi = 1.
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With the above two conditions for a i , β̃1 − β1 = ∑n
i=1 a iu i .

Var(β̃1∣X1 ,⋯, Xn) = E((
n
∑
i=1

a iu i)2∣X1 ,⋯, Xn)

=
n
∑
i=1

n
∑
j=1

a ia jE (u iu j ∣X1 ,⋯, Xn) = σ 2u
n
∑
i=1

a2i

Let a i = â i + d i , then∑n
i=1 a2i = ∑

n
i=1 â2i +∑

n
i=1 d2i + 2∑

n
i=1 â id i , and

n
∑
i=1

â id i =
∑n

i=1(X i − X̄)d i
∑n

i=1(X i − X̄)2
n
∑
i=1
(X i − X̄)d i =

n
∑
i=1
(a i − â i)X i − X̄

n
∑
i=1
(a i − â i)

= (
n
∑
i=1

a iX i −
n
∑
i=1

â iX i) − X̄ (
n
∑
i=1

a i −
n
∑
i=1

â i)= 0
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aerefore,

σ2u
n
∑
i=1

a2i − σ2u
n
∑
i=1

â2i = σ2u
n
∑
i=1

d2i

Var(β̃1∣X1,⋯, Xn) −Var(β̂1∣X1,⋯, Xn) = σ2u
n
∑
i=1

d2i

β̃1 has a greater conditional variance than β̂1 if di ≠ 0 for any
i = 1,⋯, n. If di = 0 for all i, then β̃1 = β̂1, which proves that OLS
is BLUE.
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General formula for the standard error of β̂1 is the square root
of

σ̂2
β̂1
= 1

n
×

1
n−2 ∑

n
i=1(Xi − X̄)2û2i

[ 1n ∑
n
i=1(Xi − X̄)2]

2

Special case under homoskedasticity is

σ̂2
β̂1
= 1

n
×

1
n−2 ∑

n
i=1 û2i

1
n ∑

n
i=1(Xi − X̄)2

.
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● ae homoskedasticity-only formula for the standard error of
β̂1 and the “heteroskedasticity-robust" formula (the formula
that is valid under heteroskedasticity) diòer. In general, you
get diòerent standard errors using the diòerent formulas.

● Homoskedasticity-only standard errors are the default
setting in regression so�ware - sometimes the only setting
(e.g. Excel). To get the general “heteroskedasticity-robust"
standard errors you must override the default.

● If you don’t override the default and there is in fact
heteroskedasticity, will get the wrong standard errors (and
wrong t-statistics and conûdence intervals).
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● If you use the “, robust" option, the STATA computes
heteroskedasticity-robust standard errors.

● Otherwise, STATA computes homoskedasticity-only
standard errors.
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ae critical points:

● If the errors are homoskedastic and you use the
heteroskedastic formula for standard errors (the one we
derived), you are OK.

● If the errors are heteroskedastic and you use the
homoskedasticity-only formula for standard errors, the
standard errors are wrong.

● ae two formulas coincide (when n is large) in the special
case of homoskedasticity.

● ae bottom line: you should always use the
heteroskedasticity-based formulas- these are conventionally
called the heteroskedasticity-robust standard errors.
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Weighted Least Squares

● Since OLS under homoskedasticity is eõcient, traditional
approach is trying to transform a heteroskedastic model into
a homoskedastic model.

● Suppose the conditional variance of ui is known as a
function of Xi

Var(ui ∣Xi) = λh(Xi)

37 / 40



Outline Testing Hypotheses Confidence intervals when X is Binary Heter and Homoskedasticity Weighted LS

● aen we can divide both sides of the single-variable
regression model by

√
h(Xi) to obtain

Ỹi = β0X̃0i + β1X̃1i + ũi

where

● Ỹi = Yi/
√
h(Xi), X̃0i = 1/

√
h(Xi),

● X̃1i = Xi/
√
h(Xi), ũi = ui/

√
h(Xi),

● Var(ũ∣Xi) = Var(u i)
h(X i) = λ.

● aeWLS estimator is the OLS estimator obtained by
regressing Ỹi on X̃0i and X̃1i .
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● However, h(Xi) is usually unknown, then we have to
estimate h(Xi) ûrst to obtain ĥ(Xi), then replace h(Xi)
with ĥ(Xi). ais is called feasibleWLS.

● More importantly, the function form of h(⋅) is usually
unknown, then there is no way to systematically estimate
h(Xi). ais is why, in practice, we usually only run OLS with
robust standard error.
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Summary and Assessment

● ae initial policy question:

Suppose new teachers are hired so the student-teacher ratio
falls by one student per class. What is the eòect of this policy
intervention (this “treatment") on test scores?

● Does our regression analysis give a convincing answer? Not
really - districts with low STR tend to be ones with lots of
other resources and higher income families, which provide
kids with more learning opportunities outside school. ais
suggests that corr(ui , STRi) < 0, so E(ui ∣Xi) ≠ 0.
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