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Introduction

Introduction

Empirical problem:
Class size and educational output

* Policy question:
What is the effect of reducing class size by one student per
class? by 8 students/class?

® What is the right output (performance) measure?

® parent satisfaction.

® student personal development.

* future adult earnings.

¢ performance on standardized tests.
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Introduction

What do data say about class sizes and test scores?

The California Test Score Data Set
All K-6 and K-8 California school districts (n = 420)

Variables:

* sth grade test scores (Stanford-9 achievement test, combined
math and reading), district average.

e Student-teacher ratio (STR)
= number of students in the district divided by number of
full-time equivalent teachers.
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An initial look at the California test score data

5
LV R Summary of the Distribution of Student-Teacher Ratios and Fifth-Grade
Test Scores for 420 K-8 Districts in Californiain 1999
Percentile
Standard 50%
Average Deviation 10%  25%  40% (median) 60% 75%  90%

Student-teacher ratio 19.6 19 173 18.6 193 19.7 201 209 219
62 191 604 600 691 6545 6594 6667 67ﬂ

Test score
L

Sampling Distribution of OLS
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Question:

Measures of Fit

Least Squares Assumptions ~ Sampling Distribution of OLS

Do districts with smaller classes (lower STR) have

higher test scores? And by how much?

Data from 420 California
school districts. There
isa weak negative
relationship between
the student-teacher
ratio and test scores:
The sample correlation
is—0.23.

Test score

720

700 |

680 -
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640

620

600

m Scatterplot of Test Score vs. Student-Teacher Ratio (California School District Data)
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Introduction

The class size/test score policy question:

* What is the effect of reducing STR by one
student/teacher on test scores ?

e Object of policy interest: ATet Score,

e This is the slope of the line relating test score and
STR.
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Outline Introduction Linear Regression Model

This suggests that we want to draw a line through the Test Score

v.s. STR scatterplot.

Data from 420 California  Test score

m Scatterplot of Test Scare vs. Student-Teacher Ratio (California School District Data)

school districts. There 720
isa weak negative
relationship between 700 - .
the student-teacher
ratio and test scores: 680 -
The sample correlation . #
is ~0.23. e . :
.
640+ .
6201 .
B
. 2 .
600 1 1 e e ]
10 5 20 - =
Student-teacher ratio
But how?

Measures of Fit ~ Least Squares Assumptions ~ Sampling Distribution of OLS
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Linear Regression: Some Notation and
Terminology

The population regression line is

Test Score = Po+f-STR
B, = slope of population regression line
_ ATest Score
- ASTR

= change in test score for a

unit change in STR

9/54



Linear Regression Model

Test Score = Po+p,-STR

* B, and f3, are “population” parameters.
* We would like to know the population value of f3,.

* We don't know f3,, so we must estimate it using
data.
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The Population Linear Regression
Model— general notation

Yi=Bo+pXi+uj i=1,-n

X is the independent variable or regressor.

Y is the dependent variable.

Bo = intercept.

B. = slope.
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Figure 4.1 Scatter Plot of Test Score vs.
Student-Teacher Ratio (Hypothetical Data)

m Scatterplot of Test Score vs. Student-Teacher Ratio (Hypothetical Data)
The scatterplot shows hypothetical observations Test score (Y)
for seven school districts. The population regression 700 -
line is By + fB1X. The vertical distance from the
i point to the population regression line is -
Y, = (By + BiX;), which is the population error B
term u; for the /™" observation.
660 -
640 -
620
600 L 1 | ]
10 15 20 25 30
Student-teacher ratio (X)
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® u; = the regression error.

* The regression error u; consists of omitted factors,
or possibly measurement error in the
measurement of Y. In general, these omitted
factors are other factors that influence Y, other
than the variable X.
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The Ordinary Least Squares Estimator

How can we estimate 3, and 3, from data?

We will focus on the least squares (“ordinary least squares” or
“OLS") estimator of the unknown parameters 3, and f3,, which
solves

min Z (Y, - (BO + ﬁAIX,'))z
Bo,ﬁl i=1
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Linear Regression Model

The OLS estimator solves:
n A N 2
min Y (Y; - (Bo + BiXi))
o

® The OLS estimator minimizes the sum of squared difference
between the actual values of Y; and the prediction (predicted
value) based on the estimated line.

* This minimization problem can be solved.

* The result is the OLS estimators of 3, and ;.
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Linear Regression Model

Why use OLS, rather than some other estimator?

® The OLS estimator has some desirable properties. Under
certain assumptions, it is unbiased (that is, F( ﬁl) = f3,), and
it has a tighter sampling distribution than some other
candidate estimators of f3,.

* This is what everyone uses— the common “language” of
linear regression.
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Derivation of the OLS Estimators

min § = Z(Yi—bo—blxi)2

bo,by i=1
0S 1
db, ) _zg(n_bo_blxi)zo (1)
aa—: = _ZZ(Yi_bo_blxl')Xi:O (2)

B, and B, are the values of b, and b, that solve the above two
normal equations.
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Linear Regression Model

From equations (1) and (2), and divide each term by n, we have

- A A

Y- fo- o (3)

Y XY - poX - B Z 2 = o ()

><I
I

N

1
n

From (3), ﬁo =Y - /§1)_(, substitute ﬁo in (4) and collect terms,
we have

1 B . L1
— XY - (Y- BX)X-Bi=>. X =0
- niz

and

—ZXY XY = ( ZX2 XZ)/S

i=1 i=1
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1 - 1 & -
Y XY -XY ==Y X:-X*| B
nis niz

Therefore,

. Lyr XY - XY
w Lin X7 - X2
Z?:l Xi Yi - I’IXY
YXiX; - nXX
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The numerator can be rewritten as

n
ZXl-Yi - nXY -nYX+nXY

zxy zxy z ifn‘z

Z(XiY,- - X;Y - Y, X+ XY)

i=1

> (X~ X)(¥i - 7)
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Linear Regression Model

Similarily, the denominator can be written as
n _ _ n _
Y (Xi-X)(X;-X) =) (Xi-X)
i=1 i=1

Therefore,
YL (Xi—-X)(Y;-Y)

YL -X)r
ﬁ 27:1(Xi _X)(Yi - Y) _ SXyY

B, =

ﬁZ?zl(Xi _X)Z Sg(
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The OLS Estimator, Predicted Values, and Residuals

4.2

The OLS estimators of the slope B, and the intercept 3 are

n

> (%-X)(%-7)

fi= Fl”t_ T i{f (4.5)
PSSR
ho=Y- X (46)

The OLS predicted values ﬁ and residuals u; are

}7[.:5“0+[§1X,._ il (4.7)
ﬁi=yia?iv I‘=L.‘.,l1. (48)

The estimated intercept (ﬁG)A, slope (By). and residual (i) are computed from a
sample of n observations of X; and Y, i = 1,...,n. These are estimates of the
unknown true population intercept (f3), slope (8;), and error term (ur;).
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Application to the California Test Score-Class Size data

@IITED The Estimated Regression Line for the California Data
The estimated regres-  Test score
sion line shows a 720 -
negative relationship R .
between test scoresand UV T w® . MRS s
the studant-teacher o« . TestScore = 698.9 - 2.28 x STR
ratio. For two districts B8
with class sizes that [
. 660 -
differ by one student
pér class, the district sd0l.
with the larger class
has, on average, test 620 L
scores that are lower |
by 2.28 points. 600 | | ! ,
10 15 20 25 30
Student-teacher ratio

Estimated slope = ﬁl =-2.28
Estimated intercept = f, = 698.9

Estimated regression line: Score = 698.9 - 2.28 STR
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Linear Regression Model

Interpretation of the estimated slope and intercept

Test Score = 698.9 —2.28 STR

* Districts with one more student per teacher on average have
test scores that are 2.28 points lower.

e That is, %%mf =—2.28.

* The intercept (taken literally) means that, according to this
estimated line, districts with zero students per teacher would
have a (predicted) test score of 698.9.

* This interpretation of the intercept makes no sense - it
extrapolates the line outside the range of the data - in this
application, the intercept is not itself economically
meaningful.
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Predicted values and residuals:

m The Estimated Regression Line for the California Data.

The estimated regres-  Test score

sion line shows a 720 -
negative relationship
between testscoresand /00 —
the Etidant-laacher . TestScore = 698.9 - 2.28 x STR
ratio. For two districts 6801 .
with class sizes that
differ by one student 680
per class, the district

= 640 |
with the larger class
has, on average, test 6201
scores that are lower
by 2.28 points. 600

1

25 )
Student-teacher ratio

One of the districts in the data set is Antelope, CA, for which
STR =19.33 and Score = 657.8

predicted value : YAntelope = 698.9 —2.28 x19.33

654.8
residual : @aue1ope = 657.8 = 654.8 =3.0
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Linear Regression Model

OLS regression: STATA output

regress testscr str, robust

Regression with robust standard errors Number of obs = 420
F( 1, 418) = 19.26
Prob > F = 0.0000
R-squared = 0.0512
Root MSE = 18.581
| Robust
testscr | Coef. Std. Err. t P>t [95% Conf. Interval]

str | -2.279808  .5194892 -4.39 0.000 -3.300945 -1.258671
_cons | 698.933  10.36436 67.44  0.000 678.5602 719.3057

TestScore = 698.9 — 2,28 X STR
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Measures of Fit

Measures of Fit

A natural question is how well the regression line “fits" or
explains the data. There are two regression statistics that provide
complementary measures of the quality of fit.

* The regression R* measures the fraction of the variance of Y
that is explained by X it is unitless and ranges between zero
(no fit) and one (perfect fit).

* The standard error of the regression (SER) measures the
magnitude of a typical regression residual in the units of Y.
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Measures of Fit
The R?:

* The regression R? is the fraction of the sample variance of Y;

“explained” by the regression.
L]

TSS
Z(Y Y)Z_Z( ?i+?i_i/)2

i=1

= Z(Y Y)2+Z(Y Y)2+zz (Y -Y)

i=1
= Z(Yi - V) + Z(ﬁ- ~Y)*>=SSR+ESS
i=1 i=1
where ¥ 0, YV; = Y7 i1;(Bo + P X;) =oand ¥ 4;Y = o,
becasue Y7 ii; =oand Y.} 4;X; = o from equations (1)
and (2).
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Measures of Fit

Definition of R2:

ESS _Ti(Yi-Y)

R*= -
7SS SIL(Yi-¥)?

® R?2=0means ESS =o.
® R2=1means ESS = TSS.
® 0<R*<1.

* For regression with a single X, R?= the square of the
correlation coeflicient between X and Y. (Exercise 4.12)
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Measures of Fit

The Standard Error of the Regression (SER)

The SER measures the spread of the distribution of u. The SER
is (almost) the sample standard deviation of the OLS residuals:

SER

\

N
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Measures of Fit

The SER:

e has the units of u, which are the units of Y.

* measures the average “size" of the OLS residual (the average
“mistake” made by the OLS regression line)

* The root mean squared error (RMSE) is closely related to
the SER:

RSME = = \ Iy

This measures the same thing as the SER— the minor
difference is division by 1/n instead of 1/(n-2).
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Measures of Fit

Technical note: why divide by n — 2 instead of n —1?

* Division by n-2 is a “degrees of freedom" correction— just
like division by n-1in s3,, except that for the SER, two
parameters have been estimated ( 3, and S,, by 8, and ,),
whereas in s only one has been estimated (uy, by Y).

* When # is large, it makes negligible difference whether n,
n —1, or n — 2 are used— although the conventional formula
uses n — 2 when there is a single regressor.
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Example of the R? and the SER

m The Estimated Regression Line for the California Data.

The estimated regres-  Test score
sion line shows a 720
negative relationship .
| between testscoresand 700 mEe L e L o
the student-teacher » ¢ . s TestScore = 698.9 - 2.28 x STR
ratio. For two districts 0801
with class sizes that
differ by one student eo0r:
per class, the district 640l
with the larger class
has, on average, test 6201
scores that are lower

by 2.28 points. 600
1(

) 15 20 25 30
Student—teacher ratio

®* R?=0.05, SER =18.6 STR explains only a small fraction of
the variation in test scores.

e Does this make sense? Does this mean the STR is
unimportant in a policy sense? No.
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The Least Squares Assumptions

* What, in a precise sense, are the properties of the OLS
estimator? We would like it to be unbiased, and to have a
small variance. Does it? Under what conditions is it an
unbiased estimator of the true population parameters?

* To answer these questions, we need to make some
assumptions about how Y and X are related to each other,
and about how they are collected (the sampling scheme).

® These assumptions— there are three— are known as the
Least Squares Assumptions.
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Least Squares Assumptions

The Least Squares Assumptions

* The conditional distribution of u given X has mean zero,
that is, E(u|X = x) = o. This implies that /3, is unbiased.
° (X;,Y;),i=1,-,n,arei.i.d.

® This is true if X, Y are collected by simple random
sampling.
e This delivers the sampling distribution of 8, and ;.

® Large outliers in X and/or Y are rare.

® Technically, X and u have four moments, that is:
E(X4) <ocoand E(u4) < oo
® Outliers can result in meaningless values of f3,.
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Least Squares Assumptions

Least squares assumption #1: E(u|X = x) = o.
For any given value of X, the mean of u is zero. This implies that
X; and u; are uncorrelated, or Corr(X;, u;) = o.

Test Score; = Bo + 1STR; + u;, u; = other factors
“Other factors" include

* parental involvement

* outside learning opportunities (extra math class,..)

* home environment

* family income is a useful proxy for many such factors

So, E(u|X = x) = o means E(Family Income|STR) = constant
(which implies that family income and STR are uncorrelated).
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Least Squares Assumptions

Least squares assumption #2:
(X;,Y;),i=1,--,narei.i.d.

* This arises automatically if the entity (individual, district) is
sampled by simple random sampling.

* The entity is selected then, for that entity, X and Y are
observed (recorded).

37/54



Least Squares Assumptions

Least squares assumption #3: Large outliers are rare.
Technical statement: E(X4) < oo and E(u#) < oo.

* A large outlier is an extreme value of X or Y.

® On atechnical level, if X and Y are bounded, then they have
finite fourth moments. (Standardized test scores
automatically satisfy this; STR, family income, etc. satisfy
this too).

* However, the substance of this assumption is that a large
outlier can strongly influence the results.
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OLS can be sensitive to an outlier

@GISTEX The sensitivity of OLS to Large Outliers )
[
|

This hypothetical data set has one out- Y |

lier. The OLS regression line estimated 2000 |

with the outlier shows a strong positive . ‘
relationship between X and Y, butthe 1700 |

OLS regression line estimated without

the outlier shows no relationship. 1400 — r

1100 1
800 — ‘
OLS regression line ‘
- including outlier ‘
|
|
200 |- g |
= OLS regression line”” ‘
excluding outlier
0 . i . )

30 40 50 60 70

x|
L

® Is the lone point an outlier in X or Y?

* In practice, outliers often are data glitches (coding/recording
problems)— so check your data for outliers! The easiest way

is to produce a scatterplot.
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Sampling Distribution of the OLS
Estimators

The OLS estimator is computed from a sample of data; a
different sample gives a different value of f3,. This is the source of
the “sampling uncertainty" of f3,.

We want to:

e quantify the sampling uncertainty associated with f3,.

* use [?1 to test hypotheses such as H, : 3, = o.

® construct a confidence interval for f3;.
All these require figuring out the sampling distribution of the
OLS estimator.

40/54



Sampling Distribution of OLS

Probability Framework for Linear Regression

The Probability framework for linear regression is summarized
by the three least squares assumption.

* Population
population of interest (ex: all possible school districts)

e Random variables: Y, X (ex: Test Score, STR)

* Joint distribution of (Y, X)
The population regression function is linear.
E(ulX)=0
X, Y have finite fourth moments.

* Data collection by simple random sampling
{(X,Y;)},i=1,, narei.i.d.
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Sampling Distribution of OLS

The Sampling Distribution of 3,

Like Y, f3, has a sampling distribution.
* Whatis E( Bl)? (where is it centered?)
e What is Var(f;)? (measure of sampling uncertainty)
* What is its sampling distribution in small samples?

* What is its sampling distribution in large samples?
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The mean and variance of the sampling distribution of ﬁl

Thus

= ﬁo +ﬁ1Xi +U;
Bo + X + 1
/31(X,' —X) + (Lli — l/_l)

o= <
I

Y (Xi - X)(Yi-Y)
Z?zl(xi _X)Z
Y (Xi = X) (ui — @)
Z?:1(Xi _X)Z
Yim (Xi = X)u;
Y (Xi - X)?

= ﬁ1+

Pt

because Y7 (X; - X)u=ua Y (X;-X) =o.
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Sampling Distribution of OLS

- Y (X = X)u;
Pro= P L3 (X - X)>
% Z?=1(Xi B X)ui:|
1 E %
Pir [%z:’_xxi—X)z
%27—1(Xi—X)E(uiIXu“'>Xn)]
G o (X - X)?

t
~
=
~

|

= ﬁ1+E[
= ﬁl

/§1 is unbiased.
Law of Iterated Expectations: E(Y) = E(E(Y|X)).
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Sampling Distribution of OLS

Calculate the variance of /;1.

5 _ %Z;lei
SR COF
n X
wherev; = (X;-X)u;
2 _ 1 - v )2
= X;-X

The calculation is simplified by supposing that # is large (so that
s% can be replaced by 07%), the result is
Var(v)

n(oz)>

Var(f,) =

45/54



Sampling Distribution of OLS

e The central limit theorem.

IfY), -, Y, arei.i.d. and o < 03, < oo, then

is N(0,1).
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Sampling Distribution of OLS

Because

when 7 is large

® v; = (X; - X)u;isi.i.d. and has two moments. That is

Var(v;) < oo. Thus + »i, v; is distributed N (o, Var(V))
when n is large. (central limit theorem)

* s is approximately equal to o} when n is large.

o N1

—q_ 1 :
— =1-, —1when nis large.

Putting these together we have:
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Sampling Distribution of OLS

Large-n approximation to the distribution of j;:

ﬁ ﬁ _ 121 1vl ~ %Z?:lvi
1 (n )Sx O'; ,

which is approximately distributed N (o, 2)2 ).

Because v; = (X; — X)u;, we can write this as:
/§1 is approximately distributed N ( [ w)

noy
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Sampling Distribution of OLS

Fact:
The larger the variance of X, the smaller the variance of /§1
The math:

y Var [(X; — ux)ui]

1
n oy

Var(B,) =

where 0% = Var(X;). The variance of X appears in its square in
the denominator— so increasing the spread of X decreases the
variance of f3;.

The intuition

If there is more variation in X, then there is more information in
the data that you can use to fit the regression line. This is most
easily seen in a figure.
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The larger the variance of X, the smaller the variance of /3’1

@G The Variance of B, and the Variance of X }

The colored dots repre- %

sent a set of X;'s with a 206 —

small variance. The black

dots represent a set of |

X/s with a large variance.  20* [ ° e L
The regression line can . ‘
be estimated more accu- (5 | % . Pl e e
rately with the black dots plil ’ < . ‘
o
than with the colored s N
N ° ° o4 °
dots. 200 — ° e ®g 0
° e %°
* o
[ 198 [— o o ® }
.
. \

There are the same number of black and blue dots— using
which would you get a more accurate regression line?
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Sampling Distribution of OLS

Another apporach to obtain an estimator:
Apply Law of Large Number

e Under certain conditions on Y;, -+, Y,,, the sample average Y
converges in probability to the population mean.

IfY,-, Yyarei.i.d., E(Y;) = py,and Var(Y;) < oo, then
5 P
Y > Uy.
* The least square assumption #1 E(u;|1, X;) = o implies
E(u;-1) = o
E(Lli XI)

|
o
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Sampling Distribution of OLS

Apply Law of Large Nnumber, we have

L3 i)

%Zn:(Yi ~Bo — BiXi) -1

I~

E(ui'l)ZO
%i(ui‘Xi) = %i(Yi_ﬁo_ﬁlXi)'Xi

I~

E(uiXi) =0

* Replacing the population mean with sample average is called
the analogy principle.

* This leads to the two normal equations in the bivariate least
squares regression.
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Sampling Distribution of OLS

Summary for the OLS estimator [%1:

Under the three Least Squares Assumptions,

* The exact (finite sample) sampling distribution of f, has
mean f3, (B, is an unbiased estmator of 8,), and Var(,) is
inversely proportional to n.

e Other than its mean and variance, the exact distribution of
3, is complicated and depends on the distribution of (X, u).

° [3’1 £ Bi. (law of large numbers)
o /BIL((I;)) is approximately distributed N(o,1). (CLT)
Var(f,
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Large-Sample Distributions of Byand B,

44 If the least squares assumptions in Key Concept 4.3 hold, then in large samples
fyand ﬁl have a jointly normal sampling distribution. The large-sample normal

distribution of ﬁl is N(B,, 0,23_), where the variance of this distribution, ‘7!231’ is

y _ Lvar(X - ]

k 419
0 ()P i
The large-sample normal distribution of Byis N(B, 0%“), where
1 var(Hy; /
o} = Wf(v;w),‘ where Hy = 1 - {L}X, (420)
' ME(H;)) E(X7)
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