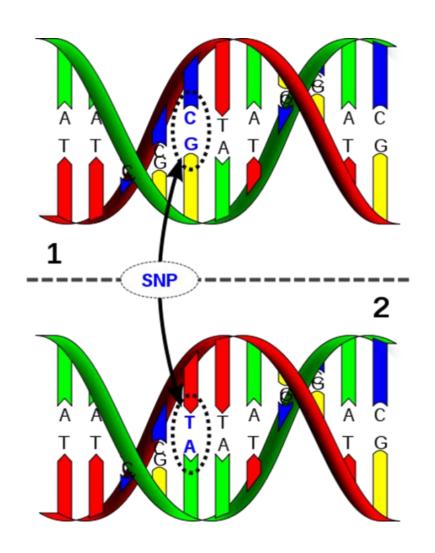
Methods and Applications in Gene-Environment Interactions

林菀俞 (Wan-Yu Lin)

2020.12.05 Taiwanese Association of Statistical Methodology

http://homepage.ntu.edu.tw/~linwy/
Institute of Epidemiology and Preventive Medicine,

College of Public Health,

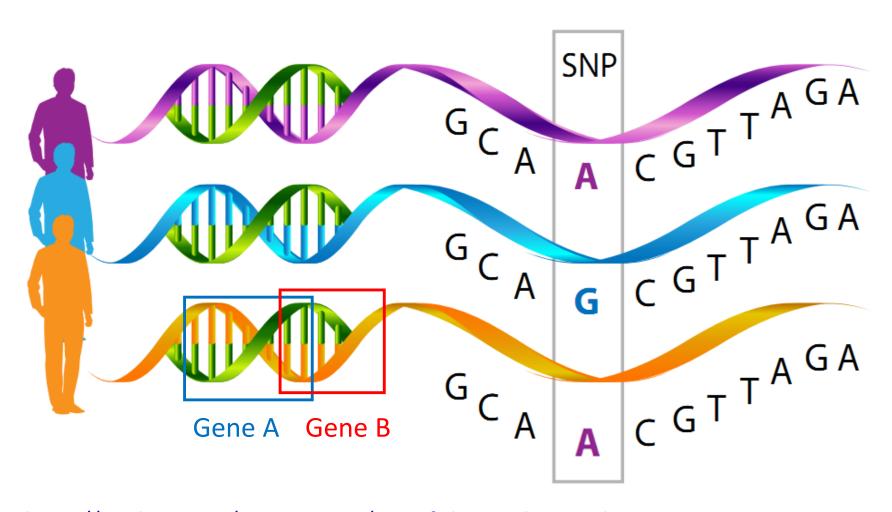

National Taiwan University, Taipei, Taiwan

Gene-environment interactions

- Genetic effects are not constant for all subjects
- While genetic materials are inborn, environmental exposures can be changed

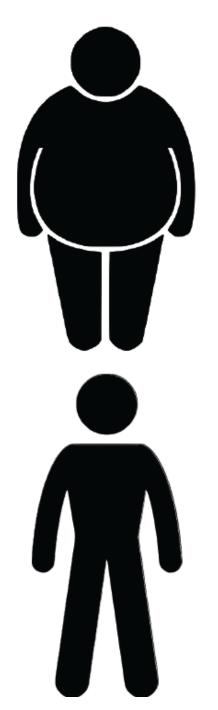
Single-nucleotide polymorphism (SNP)

Variation in DNA sequence


Changes in adenine (A), thymine (T), cytosine (C), or guanine (G)

Three possible genotypes in a SNP

For example, if a SNP has two alleles
 A and G


- \rightarrow AA (0, 0 allele of G)
- \triangleright AG (1, 1 allele of G)
- \triangleright GG (2, 2 alleles of G)

Gene: a chromosomal region

Phenotype

- A trait of interest
 - > Height
 - ➤ Body mass index (BMI)
 - ➤ Body fat percentage
 - ➤ Blood pressure levels
 - ➤ Disease status

Three scales of G x E interaction analysis

- SNP x E interaction analysis
 - \triangleright whether $p < 5 \times 10^{-8} (0.05/1,000,000)$
- Gene x E interaction analysis
 - \triangleright whether $p < 2.5 \times 10^{-6}$ (0.05/20,000)
- GRS x E interaction analysis
 - ➤ GRS: Genetic risk score
 - \triangleright whether p < 0.05 (0.05/1)

GRS: Genetic risk score

A linear combination of effect alleles

$$GRS_{i} = \sum_{j=1}^{L} \widehat{\beta}_{j} G_{ij}$$

$$\downarrow$$
0, 1, 2

- Unweighted GRS (if all $\widehat{\beta}_i = 1$)
- Weighted GRS (usually weighted by effect sizes)

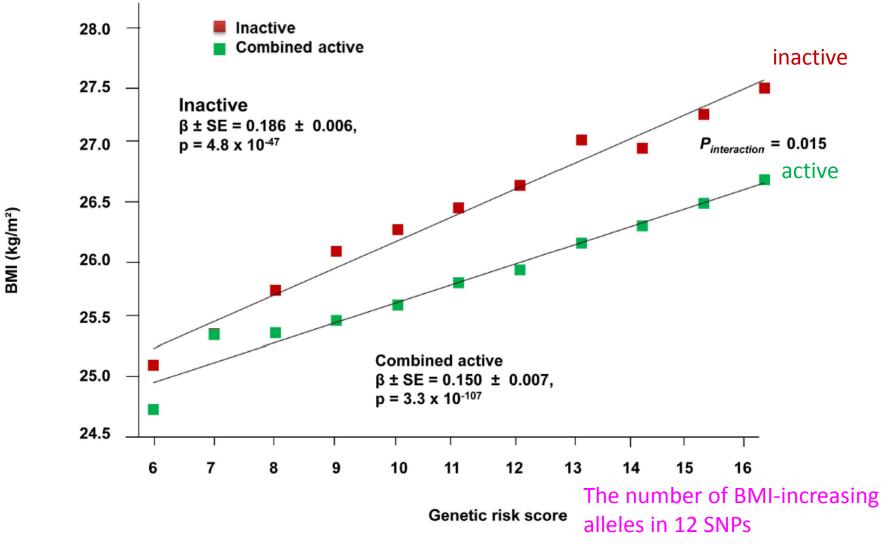
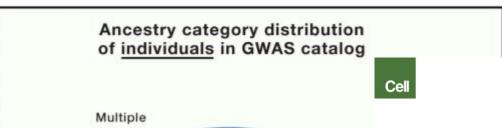
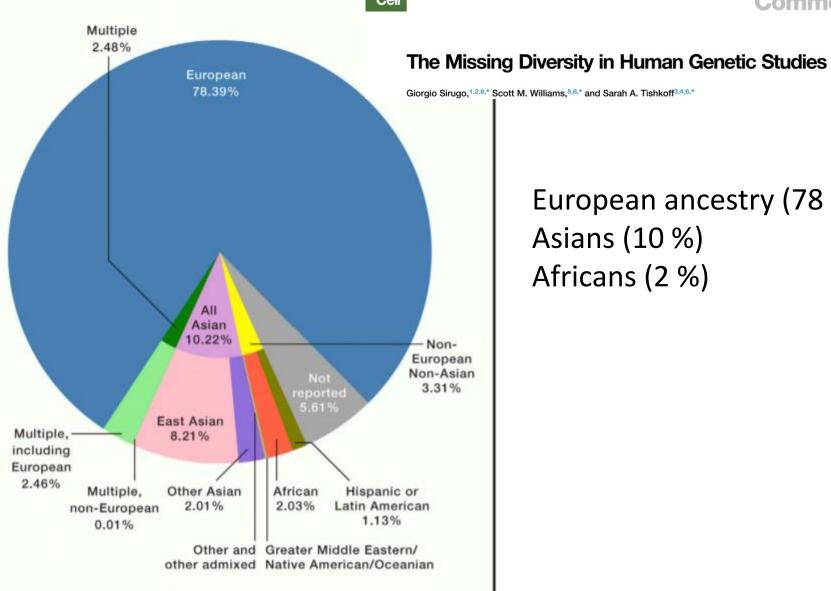




Figure 2. Association between the GRS and BMI in the inactive and 'combined active' groups (N = 111,421). Physical activity was estimated according to the Cambridge Physical Activity Index (CPAI), where the inactive group is defined as individuals with a CPAI of 1 and the 'combined active' group as individuals with a CPAI of 2–4. doi:10.1371/journal.pgen.1003607.g002

Ahmad S et al., PLoS Genet 2013;9:e1003607.

European ancestry (78 %) Asians (10 %) Africans (2 %)

External genome-wide association studies (GWASs) may not be available, especially for non-European ethnicity.

97 BMI-associated SNPs ($p < 5x10^{-8}$)

Locke AE et al. Nature, 2015; 518(7538):197-206 (for European ancestry)

In Taiwan Biobank (n=18,424)	BMI	Body fat %	Waist circumfere nce	Hip circumfere nce	Waist-to- hip ratio
Number of SNPs with $p < 5x10^{-8}$	1	0	0	0	0
Number of SNPs with $p < 0.05$	29	20	28	22	12

We need to build weights according to our data.

$$g\{E(Y)\} = \beta_0 + \beta_{SNP,i}SNP_i + \beta_c Covariates$$

$$g\{E(Y)\} = \gamma_0 + \gamma_{SNP,i}SNP_i + \gamma_c Covariates + \gamma_E E + \gamma_{Int,i}SNP_i \times E$$

Under H_0 : $\gamma_{Int,i} = 0$, the maximum likelihood estimate $\hat{\beta}_{SNP,i}$, is asymptotically independent to $\hat{\gamma}_{Int,i}$

Dai et al. Biometrika, 2012;99(4):929-44

Gene-based GxE interaction approach

Adjust for non-genetic covariates

$$g[E(Y_i)] = \alpha_0 + \alpha' X_i, i = 1, \dots, n$$

Gender, age, smoking status, ancestry principal components

$$\widehat{\mu_{0i}} = \widehat{\alpha_0} + \widehat{\alpha'} X_i \text{ (for continuous } Y_i \text{) or}$$

$$\widehat{\mu_{0i}} = \frac{exp(\widehat{\alpha_0} + \widehat{\alpha'} X_i)}{1 + exp(\widehat{\alpha_0} + \widehat{\alpha'} X_i)} \text{ (for binary } Y_i \text{)}$$

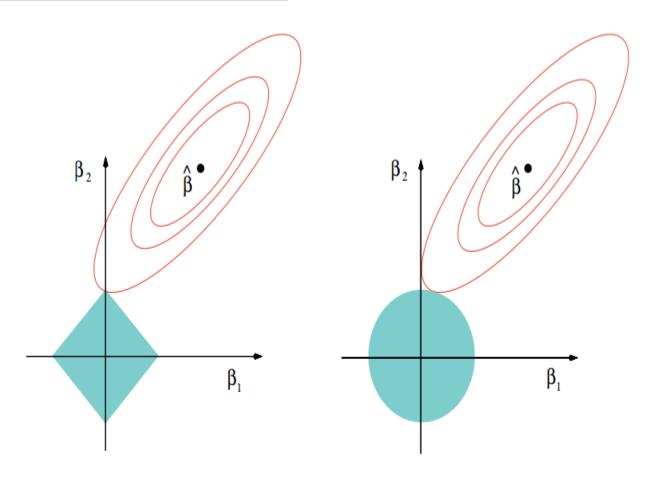
Covariate-adjusted phenotype

$$\widehat{\varepsilon_i} = Y_i - \widehat{\mu_{0i}}$$

$$g[E(\widehat{\varepsilon}_i)] = \beta_0 + \sum_{j=1}^L \beta_j G_{ij}$$
0, 1, 2

Filtering stage

Ridge regression (RIDGE)


$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \left(\widehat{\varepsilon}_{i} - \beta_{0} - \sum_{j=1}^{L} \beta_{j} G_{ij} \right)^{2} + \lambda \sum_{j=1}^{L} \beta_{j}^{2} \right]$$

LASSO (Least Absolute Shrinkage and Selection Operator)

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left[\sum_{i=1}^{n} \left(\widehat{\varepsilon}_{i} - \beta_{0} - \sum_{j=1}^{L} \beta_{j} G_{ij} \right)^{2} + \lambda \sum_{j=1}^{L} |\beta_{j}| \right]$$

LASSO and Ridge

Hastie, Trevor, Tibshirani, Robert and Friedman, Jerome. ["The Elements of Statistical Learning"]. Second Edition, Springer Series in Statistics

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

ENET (Elastic net)

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(\widehat{\varepsilon}_{i} - \beta_{0} - \sum_{j=1}^{L} \beta_{j} G_{ij} \right)^{2} + \lambda \sum_{j=1}^{L} \left[\frac{1}{2} (1 - \alpha) \beta_{j}^{2} + \alpha |\beta_{j}| \right] \right\}$$

$$\geq \alpha = 0$$
, RIDGE

$$\geq \alpha = 1$$
, LASSO

$$\geq \alpha = 1/2$$
, ENET

10-fold cross validation to select λ that leads to the minimum MSE (mean squared error)

$$GRS_{i} = \sum_{j=1}^{L} \widehat{\beta_{j}} G_{ij}$$

$$\downarrow$$
0, 1, 2

Testing stage

$$g[E(Y_i)] = \gamma_0 + \gamma_G GRS_i + \gamma_E E_i + \gamma_{Int} GRS_i \times E_i + \gamma_C X_i, i = 1, \dots, n$$

By testing H_0 : $\gamma_{Int} = 0 \ vs. H_1$: $\gamma_{Int} \neq 0$, we evaluate whether GxE exists.

If $\hat{\gamma}_{Int} > 0$, E exacerbates the adverse influence of a candidate gene.

If $\hat{\gamma}_{Int} < 0$, E attenuates the adverse influence of a candidate gene.

Competing methods

SBERIA (Jiao et al. 2013, Genet. Epidemiol.)

(Set-Based gene-EnviRonment InterAction test)

$$g[E(Y_i)] = \beta_0 + \beta_j G_{ij} + \beta'_C X_i$$

$$\downarrow H_0: \beta_j = 0 \text{ vs. } H_1: \beta_j \neq 0 \text{ One SNP at a time}$$

$$GRS_i = \sum_{j=1}^L [I(p_j < 0.1) sign(\widehat{\beta_j})] G_{ij}$$

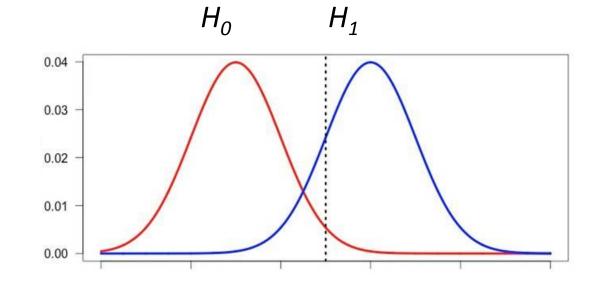
$$g[E(Y_i)] = \gamma_0 + \sum_{j=1}^{L} \gamma_{G_j} G_{ij} + \gamma_E E_i + \gamma_{Int} GRS_i \times E_i + \gamma_C X_i$$

iSKAT (Lin X.Y. et al. 2016, Biometrics)

interaction Sequence Kernel Association Test

$$g[E(Y_i)] = \delta_0 + \sum_{j=1}^{L} \delta_{G_j} G_{ij} + \delta_E E_i + \sum_{j=1}^{L} \delta_{Int_j} G_{ij} E_i + \delta_C' X_i$$

Assuming $\delta_{Int_j} s$ $(j=1,\cdots,L)$ follow a distribution with a mean of 0 and a variance of τ


$$H_0$$
: $\tau = 0$ vs. H_1 : $\tau > 0$

Adaptive Combination of Bayes Factors (ADABF) Method (Lin W.Y. et al. 2019, Front. Genet.)

$$g[E(Y_i)] = \delta_0 + \delta_{G_j}G_{ij} + \delta_E E_i + \delta_{Int_j}G_{ij}E_i + \delta'_{C}X_i$$

$$H_0: \delta_{Int_i} = 0 \text{ vs. } H_1: \delta_{Int_i} \neq 0$$

Bayes factor

$$BF = \frac{\Pr(Data \mid H_1)}{\Pr(Data \mid H_0)}$$

 \triangleright BF quantifies the 'relative' evidence in favor of H_1 .

Sort
$$BF_{(1)} \ge BF_{(2)} \ge \cdots \ge BF_{(L)}$$

Significance score
$$S_k = \sum_{l=1}^k \log(BF_{(l)}), \ k = 1, \dots, L$$

Summing the largest $k \log(BF)$, k = 1,..., L

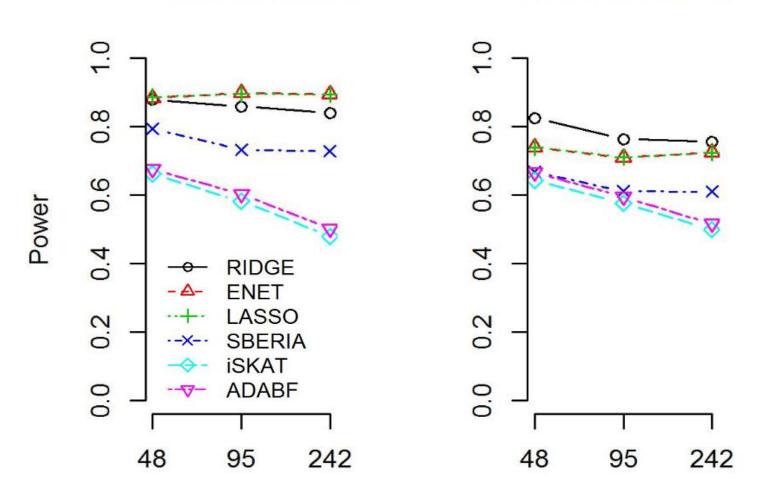
ADABF

- The significance scores will be compared with their counterparts from resampling replicates (under H_0)
- The R source code can be downloaded from http://homepage.ntu.edu.tw/~linwy/ADABFG
 EPoly.html

Simulation Study

Taiwan Biobank

- 18,424 unrelated subjects (9,093 males and 9,331 females)
- Three genes were drawn for simulations:
 - > TNNT3 (48 SNPs)
 - > RFX3 (95 SNPs)
 - > FTO (242 SNPs)


Power evaluation

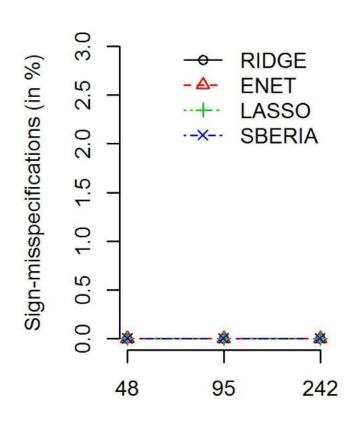
$$Y_{i} = \sum_{d=1}^{4} \beta_{G_{d}} G_{id} + \beta_{E} E_{i} + \sum_{d=1}^{D} \beta_{Int_{d}} G_{id} E_{i} + \varepsilon_{i}$$

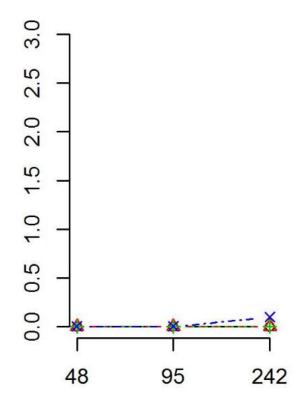
Scenario	E	β_{G_1}	$oldsymbol{eta}_{G_2}$	$oldsymbol{eta}_{G_3}$	$oldsymbol{eta_{G_4}}$	$oldsymbol{eta_{Int_1}}$	$oldsymbol{eta_{Int_2}}$	$oldsymbol{eta_{Int_3}}$	$oldsymbol{eta_{Int_4}}$
1 Exacerbation	+	+	+	+	+	+	+	+	+
2 Attenuation	+	+	+	+	+	_	_	_	_

1 Exacerbation

2 Attenuation

Power given a significance level of 0.05, for continuous traits and P(E=1)=0.2

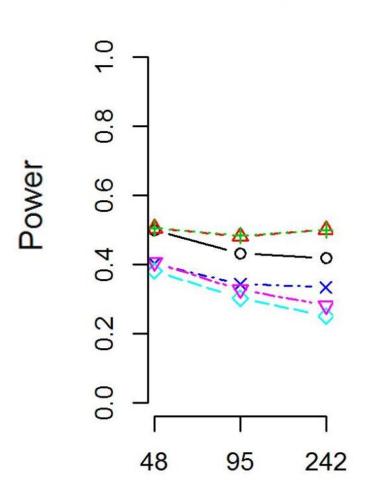

In the filtering stage

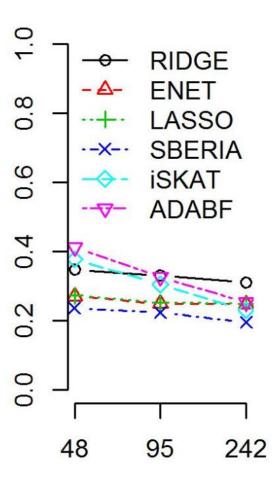

$$Y_i = \sum_{d=1}^4 \beta_{G_d} G_{id} + \beta_E E_i + \sum_{d=1}^D \beta_{Int_d} G_{id} E_i + \varepsilon_i$$

Scenario	E	$oldsymbol{eta}_{G_1}$	$oldsymbol{eta}_{G_2}$	$oldsymbol{eta}_{G_3}$	β_{G_4}	β_{Int_1}	$oldsymbol{eta_{Int_2}}$	$oldsymbol{eta_{Int_3}}$	$oldsymbol{eta_{Int_4}}$
1 Exacerbation	+	+	+	+	+	+	+	+	+
2 Attenuation	+	+	+	+	+	_	_	_	_

1 Exacerbation

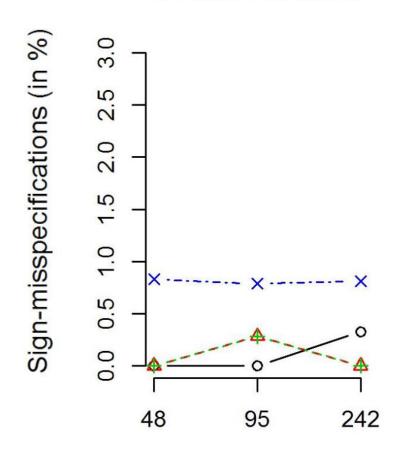
2 Attenuation

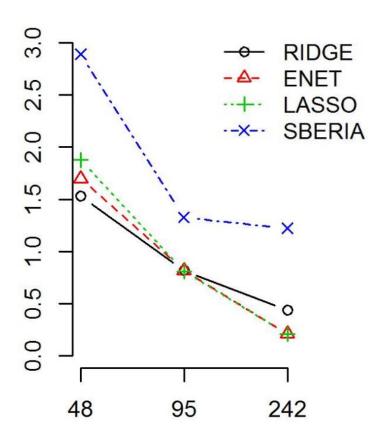

Power evaluation


$$Y_{i} = \sum_{d=1}^{4} \beta_{G_{d}} G_{id} + \beta_{E} E_{i} + \sum_{d=1}^{D} \beta_{Int_{d}} G_{id} E_{i} + \varepsilon_{i}$$

Scenario	E	$oldsymbol{eta}_{G_1}$	$oldsymbol{eta_{G_2}}$	$oldsymbol{eta}_{G_3}$	$oldsymbol{eta_{G_4}}$	$oldsymbol{eta_{Int_1}}$	$oldsymbol{eta_{Int_2}}$	$oldsymbol{eta}_{Int_3}$	$oldsymbol{eta_{Int_4}}$
3 Exacerbation	+	+	+	+	+	+	+	0	0
4 Attenuation	+	+	+	+	+	_	_	0	0

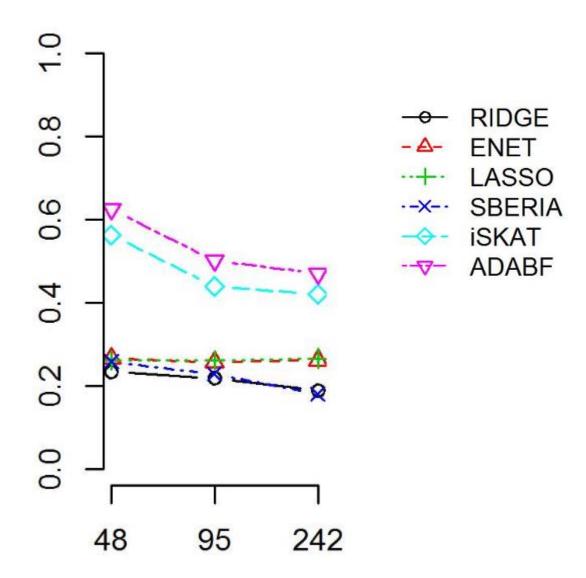
3 Exacerbation


4 Attenuation



3 Exacerbation

4 Attenuation



Power evaluation

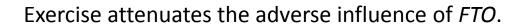
$$Y_{i} = \sum_{d=1}^{4} \beta_{G_{d}} G_{id} + \beta_{E} E_{i} + \sum_{d=1}^{D} \beta_{Int_{d}} G_{id} E_{i} + \varepsilon_{i}$$

Scenario	E	$oldsymbol{eta}_{G_1}$	$oldsymbol{eta_{G_2}}$	$oldsymbol{eta}_{G_3}$	$oldsymbol{eta_{G_4}}$	$oldsymbol{eta_{Int_1}}$	$oldsymbol{eta_{Int_2}}$	$oldsymbol{eta}_{Int_3}$	$oldsymbol{eta_{Int_4}}$
5 cross-over	+	+	+	+	+	+	+	_	-

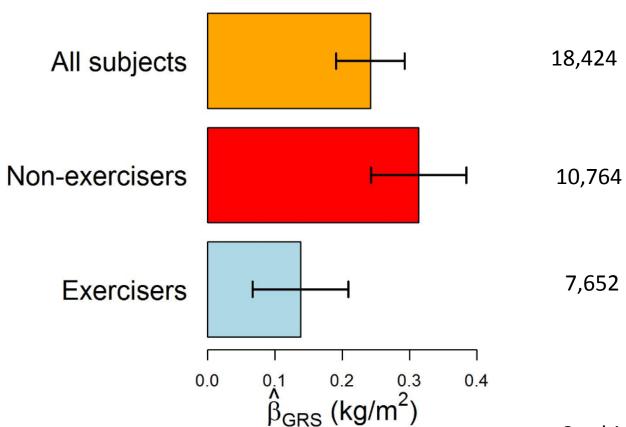
5 Cross-over

Application to the Taiwan Biobank (TWB)

Taiwan Biobank: Since October 2012


Taiwan residents aged 30 to 70 years

	Overall	Males	Females
Total, n (%)	18,424	9,093	9,331
Age (years), mean (s.d.)	48.9 (11.0)	49.0 (11.0)	48.9 (10.9)
Smoking, n (%)	2,134 (11.6)	1,882 (20.7)	252 (2.7)
Drinking, n (%)	1,345 (7.3)	1,178 (13.0)	167 (1.8)
Regular exercise, n (%)	7,652 (41.5)	3,896 (42.8)	3,756 (40.3)


FTO x exercise interaction on obesity

- The fat mass and obesity-associated (FTO) gene
- Chromosome 16 (53,737,875 54,148,379)
- 242 SNPs (minor allele frequency > 1%)
- Regular exercise: 30 minutes of exercise 3 times a week
- Covariates: sex, age, educational attainment, drinking status, smoking status, and the first 10 ancestry principal components (PCs).

Trait		RIDGE	ENET	LASSO	SBERIA	iSKAT	ADABF
BMI (kg/m²)	$\widehat{\gamma_{Int}}$	-0.1743	-0.0821	-0.0964	-0.1482		
(6)	P_{Int}	<mark>0.0009</mark>	0.1192	0.0671	0.0067	0.2043	0.1700
Body fat %	$\widehat{\gamma_{Int}}$	-0.2661	-0.2069	-0.2081	-0.2259		
·	P_{Int}	0.0031	0.0212	0.0205	0.0160	0.2430	0.2200
Waist circumference	$\widehat{\gamma_{Int}}$	-0.3854	-0.3719	-0.3760	-0.2786		
(cm)	P_{Int}	<mark>0.0052</mark>	0.0069	0.0063	0.0512	0.5369	0.3700
Hip circumference	$\widehat{\gamma_{Int}}$	-0.3868	-0.3286	-0.3291	-0.2902		
(cm)	P_{Int}	0.000 <mark>1</mark>	0.0011	0.0011	0.0055	0.5061	0.3300

(A) BMI-GRS effect on BMI P_{Int} =0.0009

8 subjects did not respond to this question

FGF5 x WHR interaction on blood pressure

- The fibroblast growth factor 5 (FGF5) gene
- Chromosome 4 (81,187,742 81,212,171)
- 38 SNPs (minor allele frequency > 1%)
- WHR: waist-hip ratio
- Covariates: sex, age, drinking status, smoking status, and the first 10 ancestry PCs.

Trait		RIDGE	ENET	LASSO	SBERIA	iSKAT	ADABF
DBP (mmHg)	$\widehat{\gamma_{Int}}$	0.2419	0.1980	0.2141	0.2378		
舒張壓	P_{Int}	0.0013	0.0082	0.0042	0.0014	<mark>0.0154</mark>	<mark>0.0096</mark>
SBP (mmHg)	$\widehat{\gamma_{Int}}$	0.3396	0.3548	0.3551	0.3261		
收縮壓	P_{Int}	<mark>0.0027</mark>	0.001 <mark>7</mark>	0.0017	0.0039	0.0482	0.0480

The *FGF5* gene has a stronger effect on blood pressure in Han Chinese with a higher waist-hip ratio

Summary

- Not only provides a p-value for a GxE test
- But also knows how E modifies the adverse effect of a gene
- We look forward to performing genomewide GxE analyses on a larger TWB cohort

Thanks for your attention!

http://homepage.ntu.edu.tw/~linwy/