Language Identifier: A Computer Program for
Automatic Natural-Language Identification of
On-line Text

Kenneth R. Beesley
Address from 1988:
Automated Language Processing Systems
(a.l.p. Systems)
190 West 800 North
Provo, UT 84604
USA

Originally published in
Languages at Crossroads:
Proceedings of the 29th Annual Conference
of the American Translators Association,

12-16 October 1988, pp. 47-54.

Address 1999:
Xerox Research Centre Europe
6, chemin de Maupertuis

38240 MEYLAN, France

ken.beesley@xrce.xerox.com

Abstract

Keywords: Language Identification, Machine Translation, Com-
puter Translation, Machine-Assisted Translation, Computer-Assisted
Translation, Cryptology, Cryptanalysis.

The first step in translating any text is to identify the language in
which it is written. Several useful methods have already appeared for
language identification where the mystery texts are properly spelled
and accented paper documents. Unfortunately, in machine-translation
environments, where texts are on-line and may exhibit a variety of
conventions for character-mapping and accentuation, the problem is far
more difficult. This paper outlines a generalized approach to language
identification of on-line text based on techniques of cryptanalysis. A
working prototype has been built, and the results are promising.

1 The Language Identification Problem

For most translation jobs, the first step of language identification is resolved
so quickly that it is virtually ignored. Given, however, that there are an
estimated three or four thousand languages in the world, even professional
translators are sometimes stumped by mystery texts. Recently, a.l.p. Sys-
tems found that this can be an especially challenging problem for machine-
translation systems, where texts are on-line, and we wrote a program called
the Language Identifier to perform automatic language identification.

Preliminary research has found a few papers by translators on language
identification. There appear to be two basic strategies. One provides lists of
letters, especially accented letters, that appear in various languages (Keesan,
Ref. 1; Newman, Ref. 2; Bokor, Ref. 3). By matching up the letters found
in a document with the letters in an identification list, the language can
often be identified quite quickly and easily. The second strategy provides
lists of short words that appear in various languages—one then matches
short words in the document with short words in the list to find the language
(Ingle, Ref. 4). Individual methods may include mixtures of these strategies
and also some examples of typical word endings for various languages. These
methods, which I will call “translator approaches,” are usually formalized
in short tables.

The translator approaches are interesting and useful in their intended ap-
plications, but they are not directly applicable to on-line text. The problem
lies in the following assumptions:

A. Translator approaches require a human evaluator manually to com-
pare a document with the information in the tables. The purpose of
the Language Identifier is to automate this process for on-line text.
In addition, the translator approaches require the mystery document
to be available in standard printed form; that is, the text must be
completely and correctly displayed. On-line text, however, is stored
in computer memory, where each letter is actually stored as a fairly
arbitrary integer value. In general, the computer and its software will
be able to display or print the integer values correctly only AFTER
the language has been identified.

B. Translator approaches assume that the mystery text is correctly spelled,
including any accentuation. In fact, the presence or absence of cer-
tain kinds of accentuation is often the vital key in the tables. On-line
text, on the other hand, may have separate integers to represent ac-
cented letters, may represent accented letters with arbitrary integer
sequences, or may have the accentuation completely deleted or neu-
tralized. The accented letter 'a’, for example, may simply be repre-
sented with the same integer as for unaccented ’a’, however incorrect
this may be from a formal point of view. Deaccented French, Spanish,

and Portuguese are not at all uncommon inside computer systems.
The lack of accents can result from laziness during data entry, the lack
of accenting capabilities in the hardware or software, or from entering
the text in all capital letters.

C. In addition, the automatic Language Identifier will have to handle
texts that have been entered into the computer with a variety of
character-to-integer mappings. EBCDIC and ASCII represent two
such mappings. For example, the ASCII representation of the let-
ter A’ is the decimal integer 65 while the EBCDIC representation is
decimal 193. In the end, such mappings are really quite arbitrary, and
compatibility among computers depends on different manufacturers
adhering to a common standard or providing conversion programs to
map from one standard to another.

There are also different “flavors” of EBCDIC and ASCII for represent-
ing languages other than FEnglish. The decimal value 123, for instance,
is used to represent '#’ in the English flavor of EBCDIC, 'N’ in Span-
ish, ’A’ in Continental Portuguese, 0’ in Brazilian Portuguese, and
"’ in Danish/Norwegian, to mention just a few possibilities.

Even worse, the internal mappings for exotic languages, such as Arabic,
can differ completely with each machine or word processor program.
To handle such diversity, a scheme far more open-ended and flexible
than the translator tables will be needed. It goes without saying that
the program cannot be told in advance which mapping convention
was used—the whole idea of the Language Identifier is to identify the
language of genuine mystery texts.

D. The short-word approach assumes that you have a complete running
text with short words to identify. In practice, automatic language
identification will have to deal with sample texts that lack short words.
This could happen when the sample text is very short, perhaps a single
word, or when the sample is telegraphic or just a “word salad.”

E. Translator approaches collect ad-hoc features to look for; they provide
no mechanism for adding new languages to the lists. The Language
Identifier must be generalized to allow reasonably competent users to
add languages with a minimum of effort.

2 Language Identification at a.l.p. Systems

A.l.p. Systems is an established vendor of computer-assisted translation soft-
ware and is the largest translation-services company in the world. We are
perhaps best known for our interactive translation programs AutoTerm and
TransActive, which are packaged in translation workstations and which are

UMl

ASK

uM2 ASK

y Spanish

Scheduler

UM3 ™
UM4 ™
UM5 ASK
UMG6 ASK

{ Portuguese
umM7 Scheduler N —————— 1M
UMn ™

available for a number of language pairs. Because such interactive trans-
lation workstations are used by skilled translators, usually in production
environments, language identification has never been much of a problem.

More recently, a.l.p. Systems has started building totally automatic
translation programs that can be interfaced to almost any user environ-
ment. One such program, called ASK, receives a source text and performs
baseform reduction and dictionary look-up, returning lists of possible trans-
lations for each term. A more ambitious program, called TransMatic, goes
on to perform syntactic analysis, transfer and synthesis for each sentence,
returning first-draft translations. So far, ASK and TransMatic have been
built for Spanish-to-English and Portuguese-to-English, and other language
pairs are in planning.

An ASK/TransMatic configuration looks like this [see Figure 1],
where a UM is a user machine and a TM is a TransMatic machine. These
“machines” are not separate pieces of hardware but virtual machines in
an IBM mainframe computer. There might be dozens or hundreds of user
machines, which could be editors, scanners, data-base drivers, or almost
anything. There may also be numerous scheduler machines, but each one is
dedicated to a specific language pair. Each scheduler may, in turn, control
up to 50 slave machines, each containing ASK and/or TransMatic for the
particular language pair.

Technically speaking, each scheduler and slave is a disconnected virtual
machine, and all the machines communicate back and forth using VMCF
(Virtual Machine Communication Facility), a standard IBM interface pro-
tocol for virtual machines.

In a typical scenario, a user might be scanning a file using IBM XEDIT
and find a sentence that he or she wants translated. The user then invokes
user-supported software that generates a VMCF translation request and
directs it to an appropriate scheduler. The request will include a copy of
the text to be translated, anything from a single word to an entire file,
and a number of parameters set as desired by the user. The scheduler
knows which, if any, slaves are available, and it either queues the job or
immediately forwards it to a slave for translation. The ASK or TransMatic
slave performs the translation and then communicates the results back to
the user.

AutoTerm and TransActive, the traditional interactive translation pro-
grams written by a.l.p. Systems, are designed to assist a skilled translator
to produce polished translations. ASK and TransMatic are designed with
very different assumptions: First, ASK and TransMatic users do not have to
be translators at all—they might not know a single word of Spanish or Por-
tuguese. Second, ASK and TransMatic work totally automatically rather
than interactively. Third, ASK and TransMatic output is intended for in-
formation gathering, also called “gisting,” or “scanning”; that is, they are
primarily designed to give the user a good idea of what the text is about,
not to produce or assist in producing polished output.

In practice, we found that many users and potential users of ASK and
TransMatic were indeed ignorant of Spanish and Portuguese; in addition,
and somewhat to our surprise, we soon discovered that such users were also
unable to distinguish between Spanish and Portuguese. They innocently
sent Spanish text to the Portuguese scheduler and vice versa, or they were
consciously frustrated when faced with the choice. We had overlooked the
first problem of translation, language identification. Automatic, on-line lan-
guage identification suddenly became desirable.

3 Design and Prototype

In October and November of 1987, I designed and built a prototype of the
Language Identifier. In simple overview, it functions much like an ASK or
TransMatic program. It is passed a buffer of mystery text, of arbitrary size,
from the user environment, and it returns a buffer of information indicating
the natural language in which the text is written. The prototype is written
in the C language and presently runs on Data General hardware.

UM2 ASK
//// Scheduler

UM3 ™

UM4 ™

UMn LANGID

3.1 Configuration

In a production environment, a Language Identifier, or several of them, can
be enslaved to one or more schedulers, just like ASK and TransMatic. Users
who want a text translated, but who don’t know the source language, can
then send the text off first for language identification rather than translation.

3.2 Theoretical Foundations

The Language Identifier is based on mathematical source-language models
that have been developed in the field of cryptanalysis for help in breaking
ciphers (Konheim, Ref. 5). The prototype has shown that these mathemat-
ical models can be successfully modified, reinterpreted and reapplied to the
problem of natural-language identification.

Automatic language identification is possible because alphabetically writ-
ten natural languages are highly non-random and consistent in the letters
and letter sequences that they use; and equally important, different lan-
guages differ consistently in the letters and letter sequences used. In other
words, each language uses a unique or very characteristic alphabet, and let-
ters in the alphabet appear with surprisingly consistent frequencies in any
statistically significant text; in addition, the frequencies of occurrence of se-
quences of two, three, four, five and more letters are characteristically stable
within, and diverse among, natural languages. (These insights are hardly
original: Kahn, in his excellent history of cryptology, points out that they
appeared, in essence, in an Arabic encyclopedia written by Qalqashandi
in 1412, and Qalqashandi attributes most of his information to Ibn ad-
Duraihim, who lived from 1312 to 1361. See Ref.6.)

For example, standard English text contains the following letter charac-
ters in both upper-case and lower-case.

abcdefghijklmnopgrstuvwxyz

Standard Spanish is characterized by the presence of the following letters:

fiagéeiddi

(Spanish digraphs like ’1I” and ’ch’ are counted as single letters for pur-
poses of alphabetization but not, usually, for representation, either inside or
outside the computer.)

Standard Portuguese is characterized by the following:

ioéd

an o @
o O M
(0]

WA pr

Where text is correctly spelled, even inside a computer, the presence or
absence of characteristic letters (or the integer mappings) is often quite
sufficient for language identification.

When accentuation is lacking, the relative frequencies of individual let-
ters are often revealing. In English, for example, the letter 'E’ accounts
for about 13% of the average text; U’ accounts for about 3% and ’Z’ for
about 0.1%. These figures, usually recast in terms of probabilities of occur-
rence, are fairly stable for English and quite unique to English. "U’” and ’Z’,
for example, occur more frequently in German than in English. Going one
step further, one can compute the probability of occurrence of two-letter
sequences or “digrams.” For example, the probability of “TH” occurring
in English is relatively high, but in Spanish or Portuguese the probability
approaches zero; the probability of “SZ” is relatively high in Polish and Hun-
garian but low in English, French, Spanish, and Portuguese. Such informa-
tion can be quantified precisely for a representative corpus of the language,
and one can even go on to compute probabilities for 3-grams, 4-grams, etc.
In doing, so, the traditional observations about typical letters patterns fall
out: e.g. that the sequence “tion” is typical of English and French, while
“cién” is typical of Spanish and “¢ao” of Portuguese, etc. The Language
Identifier literally computes and stores thousands of items of information
for each language, providing a statistical model of how likely each letter and
letter sequence is to occur in each language.

Using such information about letter and sequence probabilities for each
language, the Language Identifier takes each word in the mystery text and
computes the probability that it is Fnglish, the probability that it is French,
the probability that it is Spanish, etc., for all the languages in the library.
The language with the highest probability wins. In effect, the Language
Identifier allows each language model to compete to see which one is most
likely to account for the whole mystery sample.

3.3 Generality and Expandability

For such a system to be truly useful, the addition of a new language to
the program’s library should require no new coding, no special training, no
formal-linguistic expertise, and no dictionary building. What the Language
Identifier does require for each new language is a consistent, representative
corpus of the new language; but someone with reasonable facility in the
new language should be able to build such a corpus in less than a week,
perhaps within hours in some cases. Preliminary tests have shown that a
64K character corpus will be more than sufficient, and useful but inconsistent
results have been achieved with corpora as small as 6K characters. The
Language Identifier includes an add-language program that analyzes the
corpus and automatically adds the necessary language-model information
to the library.

Once suitable corpora have been built and analyzed, the Language Iden-
tifier is able to identify texts that are properly accented, deaccented, upper-
case, lower-case, etc. The key to this ability is, somewhat ironically, to
abondon any attempt to identify English, French, German, or whatever in
any standardized sense. What the Language Identifier does is compare the
orthographical features of a mystery text against the orthographical features
of the languages in the library. These features are defined for each language
by its corpus. There might, for example, be a half dozen or more “Span-
ish” corpora, each representing a different set of orthographical conventions
and/or character-set mappings used to represent what we abstractly call
Spanish. For the purposes of the Language Identifier, these would be sep-
arate languages, each with a separate, ideally descriptive, name chosen by
the user. We might find the following:

A. a corpus of Spanish text all properly accented and lower-case: named
spanaclc

B. a corpus of Spanish text all properly accented and upper-case: named
spanacuc

C. a corpus of Spanish text, upper-case, where accented letters are repre-
sented as the sequences “/A)” “/E)” “/1,” “/0,” “/U,” “*U” and the
i’ is represented as the sequence “"N”: named spanpreacuc

D. As C, but lower-case: named spanpreacle

E. a corpus of Spanish text, deaccented and lower-case: named span-
deaclc

F. as E, but upper-case: named spandeacuc

Starting with one properly accented and capitalized corpus, all the others
could be generated with simple conversion programs as the need arose. For

example, if Spanish-speaking users suddenly found that they were getting
Spanish text with a new orthographical convention, such as representing
the 0’ as the sequence “N#.” it would be a trivial matter to generate a
new representative corpus from spanpreacuc (letter C above) and add it to
the library. Thereafter any text illustrating that orthographical convention
would be identified as this particular variety of Spanish.

The identification of a text as spanpreaclc, or whatever, will actually
be more helpful in most cases than a simple identification as “Spanish”; it
can guide the user in setting the parameters for actual translation using
programs like a.l.p. Systems ASK and TransMatic. The identification of
a particular set of orthographical conventions may also help in pinpointing
the provenance of a text.

4 Limitations

The Language Identifier is not infallible, all-purpose, or otherwise omnipo-
tent. Expectations should be conditioned by the following caveats:

A. The Language Identifier at any given time “knows about” only those
languages that are in the library.

B. The closer any two languages are, the harder it will be to distin-
guish between them. Closeness may result from common historical
roots, borrowing, or overlapping character-to-integer mappings inside
the computer. So far, however, even Spanish and Portuguese have
been easy to distinguish.

C. The Language Identifier is designed to work for languages wherein the
size of the alphabet is less than or equal to 256. That is, the language
Identifier assumes that words are represented as strings of characters
or, internally, integers, with one integer to a byte. This includes lan-
guages with spelling conventions that use digraphs or other sequences
to represent accentuated characters or other exotic characters. Thus
if the German 8’ is represnted inside the computer as the sequence
“"B,” or if the Spanish ’6’ is represented as “/0,” these orthographies
can be handled well by the Language Identifier. Excluded, at least
for the time being, are languages like Chinese where the “alphabet”
numbers in the thousands and each letter (word) must be represented
inside the computer with two or more bytes.

Consistent romanizations or other phonemic alphabetizations of ideo-
graphic languages, such as Chinese Pinyin, can be handled by the
Language Identifier. In general, romanizations of languages that usu-
ally use non-roman alphabets, such as Russian and Arabic, will also

5

be handled—such a change of alphabet will amount only to a new
character-to-integer mapping inside the computer.

. The Language Identifier works with probabilistic models, and so the

results are always more or less probable; there will never be any abso-
lute identifications, only more and less confident ones.

. The reliability of any language model will be dependent on the size

and internal consistency of the corpus from the model is derived.

. For all the reasons described above, the correct identification of any

single word is far less than certain. As the size of the mystery sample
increases, however, the accumulation of identifications tends to point
with increasingly certainly to a single language. For example, in an
average sentence-sized sample we might find that 60 or even 70 percent
of the words are identified as English, making English the “winner”
overall. Preliminary indications are that ten to twelve words are suf-
ficient for fairly confident identifications.

Conclusion

Using mathematical models from cryptanalysis, natural-language identifica-
tion of on-line text is possible. Such a capability can certainly be useful in

machine-translation systems, and it might also be used for various types of

data analysis. A.l.p. Systems maintains both a commercial and a scientific

interest in further developing this technology.

6

1.

References

Keesan, Cynthia. “Identification of Written Slavic Languages” in Pro-
ceedings of the 28th Annual Conference of the American Translators
Association (ed. Karl Kummer), 8-11 October 1987, pp. 517-528.

. Newman, Patricia. “Foreign Language Identification—VFirst Step in

the Translation Process” in Proceedings of the 28th Annual Conference
of the American Translators Association (ed. Karl Kummer), 8-11
October 1987, pp. 509-516.

. Bokor, Gabor. “Romance Languages” in Proceedings of the 1981 Con-

ference of the American Translators Association (reprint).

. Ingle, Norman C. “Language Identification Table” (Shoreham, Eng-

land 1986) privately printed and distributed. Also earlier version
“A Language Identification Table” in The Incorporated Linguist,
15(4): 98-101, 1976.

10

5. Konheim, Alan G. Cryptography: a Primer. John Wiley & Sons, 1981.

6. Kahn, David. The Codebreakers. Macmillan, 1967.

11

Slide 1—Language Identifier—A.l.p. Systems Sam-
ple Analysis

Digram-Based Source-Language Model from Konheim

To add a language to the library:

1. Assemble a corpus in computer memory

2. Compute the total number of two-letter sequences (for demonstration
purposes, letters will be used rather than numbers)

3. Compute the total number of occurrences of each distinct two-letter
sequence or “digram” (e.g. AA, AB, AD,..., 77, etc.)

4. For each distinct two-letter sequence, divide the number of its oc-
currences by the total number of digrams in the corpus, yielding the
Probability of Occurrence

12

Slide 2—Language Identifier—A.l.p. Systems

Computing Probabilities of Occurrence

One sample corpus of French contained 6085 total digrams and 288 distinct
digrams. The digram “EP” appeared seven times; therefore the probability
of occurrence of “EP” in the French corpus is 7 divided by 6085 or 0.001150.
Pr(EP) =7+ 6085=0.001150

Or, in equivalent mathematical terms, the digram “EP” accounts for 0.1150%
of all the digrams in the corpus.

13

Slide 3—Language Identifier—A.l.p. Systems

Computing Probabilities of Occurrence

Similarly, the digram “EU” appeared 28 times and the sequence “SPACE-E”
appeared 97 times, and so on for all the distinct digrams found in the corpus.

Pr(EU) = 28 + 6085 = 0.004601

Prn(F) =97+ 6085 = 0.015940

“SPACE-E”, occurring 97 times, is a relatively common digram: its proba-
bility of occurrence is fairly high. At the other end of the scale, “CB” never
occurs at all, yielding a probability of occurrence of zero. And “CY” appears
only once in the corpus, yielding a relatively low probability of occurrence
that approaches zero.

Prn(CB) = 0+ 6085 = 0

Prn(CY) =1+ 6085 = 0.000164

14

(Sample Digram Probability Data Slide)

83 85 0.001326 S U
83 89 0.001658 S Y
84 32 0.016417 T

84 65 0.003482 T A
84 69 0.009452 T E
84 70 0.000165 T F
84 72 0.025373 T H
84 73 0.008789 T I
84 76 0.000331 T L
84 79 0.006467 T O
84 82 0.003150 T R
84 83 0.002819 T S
84 84 0.000829 T T
84 85 0.002819 T U
84 87 0.000497 T W
84 89 0.000497 T Y
85 32 0.000165 U

85 65 0.002321 U A
85 67 0.002155 U C
85 68 0.000165 U D
85 69 0.000995 U E
85 71 0.000995 U G
85 73 0.000497 U I
85 76 0.001160 U L
85 77 0.001160 U M
85 78 0.003150 U N
85 79 0.000331 U O
85 80 0.000497 U P

15

Slide 4-Language Identifier—A.l.p. Systems

Probabilities of Occurrence

1. Probabilities of occurrence for each distinct digram are computed and

stored FOR FACH LANGUAGE.

Pgn,(TH) = 0.025373 (relatively high)
Pr.,(TH) = 0.000821 (rather low)

Pr,(TH)=0 (did not appear)
Ps,,(TH) =10 (did not appear)

2. The Language Identifier can combine such information to compute
the probability that each word in a mystery sample is English, French,
Esperanto, or whatever.

3. Scores for each word can be weighted together to yield the best guess
for the mystery sample as a whole.

16

Slide 5—Language Identifier—A.l.p. Systems

Sample Language Identification

1. Assume we have a library of three languages, named English, French
and Esperanto. All the digram probability information for these lan-
guages is computed and stored.

2. We have a mystery text inside the computer. It is stored as a string
of integers, but for purposes of demonstration we will render it as the
following:

LES ORDINATEURS SONT APPELES A JOUER UN ROLE

3. Not knowing the language, we submit the text to the Language Iden-
tifier.

17

Slide 6—Language Identifier—A.l.p. Systems

The Language Identifier in Action

1. Divide each word into digrams. (In these examples, each word will
be considered to start with a space, and, if necessary to complete the
digrams, end with a space.)

2. Look up the probability of occurrence for each digram for each lan-
guage in the library.

3. Multiply all the probabilities for a single language together, yielding
the probability that the whole word belongs to that language.

18

Slide 7—Language Identifier—A.l.p. Systems

Computing Word Probabilities

Mystery text:

LES ORDINATEURS SONT APPELES A JOUER UN ROLE
The first word is LES—divide it up into two digrams

(L) (ES)

Look up the probabilities of occurrence:

Prng(L) = 0.006799
Prng(ES) = 0.007794

Pryo(L) = 0.019391
Pryn(ES) = 0.026622

Pry(L) = 0.032301
Pryp(ES) = 0.010654

Multiply the probabilities together:
Pghy(LES) = 0.006799 x 0.007794 = 0.000052991
Pr,(LES)=0.019391 x 0.026622 = 0.000516227

Pgg,(LES) = 0.032301 x 0.010654 = 0.000344134

19

Slide 8—Language Identifier—A.l.p. Systems

Processing Continues

The second word is ORDINATEURS:
(0) (RD) (IN) (AT) (EU) (RS)

Look up the probabilities (here multiplied by 100 to avoid loss of precision)

Ppng(0) = 1.8905
Prng(RD) = 0.1492
Prng(IN) = 1.9568
Prng(AT) = 1.0945
Prng(EU) =
Ppng(RS) = 0.1492
Pra(O) = 0.4437
Pr,n(RD) = 0.0657
Pryn(IN) = 0.9202
Pryn(AT) = 0.8052
Prn(EU) = 0.4601
Prrn(RS) = 0.2136
Pggy(O) = 0.1860
Pryp(RD) = 0.1691
Prop(IN) = 0.7102
Pryp(AT) = 0.2705
Pryp(EU) =0
Pryp(RS) = 0.0338

Total scores (multiply probabilities together):
Prng(ORDINATEURS)=0 (eliminated)
Prn(ORDINATEURS) = 0.0021227 (winner)

Pro,(ORDINATEURS)=0 (eliminated)

20

Slide 9—Language Identifier—A.l.p. Systems

The analysis continues

Pghy(SONT) = 2.00457 (reasonable second)
Prrn(SONT) = 4.05189 (winner)
Prg,(SONT) = 0.05359 (poor third)

Pgn,(APPELES) = 0.022347 (reasonable second)
Prn(APPELES) = 0.054579 (winner)

Prs,(APPELES) =0 (eliminated)
Prpge(A)=0.017412 (winner)

Prpr(A) =0.009038 (reasonable third)
Prsp(A) = 0.010147 (reasonable second)

Pgy(JOUER) = 0.02458 (reasonable second)
Pr.n(JOUER) = 0.03277 (winner)

Pro,(JOUER) =0 (eliminated)
Prny(UN) = 0.31448 (reasonable second)
Pr(UN) = 0.68803 (winner)

Prop(UN) = 0.13633 (poor third)
Pgny(ROLE) = 0.20159 (reasonable second)

Pr(ROLE) = 0.40071 (winner)
Pro,(ROLE) = 0.09259 (poor third)

Overall score for 8 words:

Wins Reasonable Losses Eliminations
French 7 1 0
English 1 6 1
Esperanto 0 1 3

21

