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Background

• Decisions under uncertainty enter every realm of economic decision-making.

• Models of choice under uncertainty play a key role in every field of eco-
nomics.

• Test the empirical validity of particular axioms or to compare the predictive
abilities of competing theories.



Experiments à la Allais

• Each theory predicts indifference curves with distinctive shapes in the prob-
ability triangle.

• By choosing alternatives that theories rank differently, each theory can be
tested against the others.

• The criterion typically used to evaluate a theory is the fraction of choices
it predicts correctly.



The Marschak-Machina probability triangle 
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H, M, and L are three degenerate gambles with certain outcomes H>M>L 



A violation of Expected Utility Theory (EUT) 
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EUT requires that indifference lines are parallel so one must choose either A and C, or B and D. 



Contributions

Results have generated the most impressive dialogue between observation
and theorizing:

— Violations of EUT raise criticisms about the status of the Savage axioms
as the touchstone of rationality.

— These criticisms have generated the development of various alternatives
to EUT, such as Prospect Theory.



Limitations

Choice scenarios narrowly tailored to reveal anomalies limits the usefulness
of data for other purposes:

— Subjects face extreme rather than typical decision problems designed
to encourage violations of specific axioms.

— Small data sets force experimenters to pool data and to ignore individ-
ual heterogeneity.



Research questions

Consistency

— Is behavior under uncertainty consistent with the utility maximization
model?

Structure

— Is behavior consistent with a utility function with some special struc-
tural properties?



Recoverability

— Can the underlying utility function be recovered from observed choices?

Heterogeneity

— To what degree do preferences differ across individuals?



A new experimental design

An experimental design that has a couple of fundamental innovations over
previous work:

— A selection of a bundle of contingent commodities from a budget set
(a portfolio choice problem).

— A graphical experimental interface that allows for the collection of a
rich individual-level data set.



The computer program dialog window 
 



• The choice of a portfolio subject to a budget constraint provides more
information about preferences than a binary choice.

• A large menu of decision problems that are representative, in the statistical
sense and in the economic sense.

• A rich dataset that provides the opportunity to interpret the behavior at
the level of the individual subject.



Rationality

Let {(pi, xi)}50i=1 be some observed individual data (pi denotes the i-th
observation of the price vector and xi denotes the associated portfolio).

A utility function u(x) rationalizes the observed behavior if it achieves the
maximum on the budget set at the chosen portfolio

u(xi) ≥ u(x) for all x s.t. pi · xi ≥ pi · x.



Revealed preference

A portfolio xi is directly revealed preferred to a portfolio xj if pi · xi ≥
pi · xj, and xi is strictly directly revealed preferred to xj if the inequality
is strict.

The relation indirectly revealed preferred is the transitive closure of the
directly revealed preferred relation.



Generalized Axiom of Revealed Preference (GARP) If xi is indirectly
revealed preferred to xj, then xj is not strictly directly revealed preferred
(i.e. pj · xj ≤ pj · xi) to xi.

GARP is tied to utility representation through a theorem, which was first
proved by Afriat (1967).



Afriat’s Theorem The following conditions are equivalent:

— The data satisfy GARP.

— There exists a non-satiated utility function that rationalizes the data.

— There exists a concave, monotonic, continuous, non-satiated utility
function that rationalizes the data.



Goodness-of-fit

• Verifying GARP is conceptually straightforward but it can be difficult in
practice.

• Since GARP offers an exact test, it is necessary to measure the extent of
GARP violations.

• Measures of GARP violations based on three indices: Afriat (1972), Varian
(1991), and Houtman and Maks (1985).



Afriat’s critical cost efficiency index (CCEI) The amount by which
each budget constraint must be relaxed in order to remove all violations
of GARP.

The CCEI is bounded between zero and one. The closer it is to one, the
smaller the perturbation required to remove all violations and thus the
closer the data are to satisfying GARP.



The construction of the CCEI for a simple violation of GARP 
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The agent is ‘wasting' as much as A/B<C/D of his income by making inefficient choices. 



A benchmark level of consistency

A random sample of hypothetical subjects who implement the power utility
function

u(x) =
x1−ρ

1− ρ
,

commonly employed in the empirical analysis of choice under uncertainty,
with error.

The likelihood of error is assumed to be a decreasing function of the utility
cost of an error.



More precisely, we assume an idiosyncratic preference shock that has a
logistic distribution

Pr(x∗) =
eγ·u(x

∗)R
x:p·x=1

eγ·u(x)
,

where the precision parameter γ reflects sensitivity to differences in utility.

If utility maximization is not the correct model, is our experiment suffi-
ciently powerful to detect it?



The distributions of GARP violations – ρ=1/2 and different γ 
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Bronnars’ (1987) test (γ=0) 
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Recoverability

• GARP imposes on the data the complete set of conditions implied by
utility-maximization.

• Revealed preference relations in the data thus contain the information that
is necessary for recovering preferences.

• Varian’s (1982) algorithm serves as a partial solution to this so-called re-
coverability problem.



Let S(x0) be the set of prices at which x0 could be chosen and be con-
sistent with the observed data and let

RW (x0) = {x : x0Rx ∀p ∈ S(x0)}
RP (x0) = {x : xRx0 ∀p ∈ S(x0)}.

RP (x0) and RW (x0)C form the tightest inner and outer bounds on the
set of allocations preferred to x0.



Risk neutrality 



Infinite risk aversion 



Loss / disappointment aversion 



The distributions of GARP violations - Afriat (1972) CCEI 
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The distributions of GARP violations - Varian (1991) 
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The distribution of GARP violations - Houtman and Maks (1985) 
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Granularity

• A measure of the size of the components, or descriptions of components,
that make up a system (Wikipedia).

• There is no taxonomy that allows us to classify all subjects unambiguously.

• A review of the full data set reveals striking regularities within and marked
heterogeneity across subjects.
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Risk aversion

A “low-tech” approach of estimating an individual-level power utility func-
tion directly from the data:

u(x) =
x1−ρ

(1− ρ)
.

ρ is the Arrow-Pratt measure of relative risk aversion. The aversion to risk
increases as ρ increases.



This generates the following individual-level econometric specification for
each subject n:

log

Ã
xi2n
xi1n

!
= αn + βn log

Ã
pi1n
pi2n

!
+ �in

where �in ∼ N(0, σ2n).

We generate estimates of ρ̂n = 1/β̂n which allows us to test for hetero-
geneity of risk preferences.



The distribution of the individual Arrow-Pratt measures (OLS) 
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Loss/disappointment aversion

The theory of Gul (1991) implies that the utility function over portfolios
takes the form

min {αu (x1) + u (x2) , u (x1) + αu (x2)} ,

where α ≥ 1 measures loss/disappointment aversion and u(·) is the utility
of consumption in each state.

If α > 1 there is a kink at the point where x1 = x2 and if α = 1 we have
the standard EUT representation.



An illustration of the derived demand 
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Scatterplot of the estimated CRRA parameters 
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A type-mixture model (TMM)

A unified account of both procedural rationality and substantive rationality.

— Allow EU maximization to play the role of the underlying preference
ordering.

— Account for subjects’ underlying preferences and their choice of decision
rules.



Ingredients

• The “true” underlying preferences are represented by a power utility func-
tion.

• A discrete choice among the fixed set of prototypical heuristics, D, S and
B(ω).

• The probability of choosing each particular heuristic is a function of the
budget set.



• Subjects could make mistakes when trying to maximize EU by employing
heuristic S.

• In contrast, when following heuristic D or B(ω) subjects’ hands do not
tremble.

• A subject may prefer to choose heuristic B(ω) or D instead of the noisy
version of heuristic S.



Specification

The underlying preferences of each subject are assumed to be represented
by

u (x) =
x1−ρ

(1− ρ)

(power utility function as long as consumption in each state meets the
secure level ω).

Let ϕ(p) be the portfolio which gives the subject the maximum (expected)
utility achievable at given prices p.



The ex ante expected payoff from attempting to maximize EU by employing
heuristic S is given by

US(p) = E[πu (ϕ̃1(p)) + (1− π)u (ϕ̃2(p))]

ϕ̃(p) is a random portfolio s.t. p · ϕ̃(p) = 1 for every p = (p1, p2), and
p1[ϕ̃1(p)− ϕ1(p)] = ε and �in ∼ N(0, σ2n).



When following heuristic D or B subjects’ hands do not tremble. We
therefore write

UD (p) = u(1/(p1 + p2))

and

UB (p) = max{πu(0) + (1− π)u(1/p2), πu(1/p1) + (1− π)u(0)}



Estimation

The probability of choosing heuristic k = D,S,B(ω) is given by a stan-
dard logistic discrete choice model:

Pr(heuristic τ |p;β, ρ, σ) = eβUτP
k=D,S,B

eβUk

where UD, US and UB is the payoff specification for heuristic D, S and
B(ω), respectively.



• The β̂ estimates are significantly positive, implying that the TMM has
some predictive power.

• Most subjects exhibit moderate to high levels of risk preferences around
ρ̂ = 0.8.

• There is a strong correlation between the estimated ρ̂ parameters from
“low-tech” OLS and TMM estimations.



The distribution of the individual Arrow-Pratt measures (TMM) 
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Goodness-of-fit

• Compare the choice probabilities predicted by the TMM and empirical
choice probabilities.

• Nadaraya-Watson nonparametric estimator with a Gaussian kernel func-
tion.

• The empirical data are supportive of the TMM model (fits best in the
symmetric treatment).



Ambiguity

• The distinction between settings with risk and ambiguity dates back to at
least the work of Knight (1921).

• Ellsberg (1961) countered the reduction of subjective uncertainty to risk
with several thought experiments.

• A large theoretical literature (axioms over preferences) has developed mod-
els to accommodate this behavior.

• But what matters most is the implications of the models for choice behav-
ior.



Consider the following two-color Ellsberg-type urns (Halevy, 2007):

I. 5 red balls and 5 black balls

II. an unknown number of red and black

III. a bag containing 11 tickets with the numbers 0-10; the number written
on the drawn ticket determines the number of red balls

IV. a bag containing 2 tickets with the numbers 0 and 10; the number
written on the drawn ticket determines the number of red balls.



• A clever experiment to verify the connection between the reduction of
objective compound lotteries and attitudes to ambiguity.

• Four different urns are used to elicit choices in the presence of risk, ambi-
guity, and two degrees of compound uncertainty.

• Different models generate different predictions about how the reservation
values (BDM) for these four urns will be ordered.

• The experiment can therefore classify each subject according to which
model predicts his ordering of reservation values.



• Now, consider three states of nature and corresponding Arrow security
(pays one dollar in one state and nothing in the other states).

• One state has an objectively known probability, whereas the probabilities
of the other states are ambiguous.

• The presence of ambiguity could cause not just a departure from EU, but
a more fundamental departure from rationality.

• Our analysis suggests otherwise — choices under ambiguity are at least as
rationalizable as choices under risk.



The distributions of CCEI scores 
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Structure, recoverability and extrapolation

The conventional parametric approach:

— Choose a parametric form for the underlying utility function and fit the
associated demand function to the data.

— Test to see if they conform to the special restrictions imposed by hy-
potheses concerning functional structure.

— Construct an estimate of the underlying utility function and forecast
demand behavior in new situations.



Recursive Expected Utility (REU) 
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α-Maxmin Expected Utility (α-MEU) 
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Individual-level data 

 

 



 

 

 
 



 

 

 



Estimation results 

 

 



 

 

 



 

 

 



Takeaways

• There is much that can be learned about a theory from the data, quite
apart from any notion of “testing” the theory.

• Develop tools, both methodological and analytical, for providing a more
comprehensive analysis of individual choice.

• Avoid imposing theoretical preconceptions on the data and instead to re-
cover preferences from the ground up.

• Behavior in more complex settings will require richer experimental data as
well as new theoretical and analytical techniques.




