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Abstract

We report experiments on sender-receiver gamesaniihcentive for
senders to exaggerate. Subjects “overcommunicateéssages are more
informative of the true state than they shouldibequilibrium. Eyetracking
shows that senders look at payoffs in a way thebimsistent with a level-k
model. A combination of sender messages and lopkttprns predicts the true
state about twice as often as predicted by equihtor Using these measures to
infer the state would enable receiver subjects/pothetically earn 16-21
percent more than they actually do, an economigevaf 60 percent of the

maximum increment.
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“Why do almost all people tell the truth in ordiaeveryday life?—Certainly not
because a god has forbidden them to lie. The reesdirstly because it is easier; for lying
demands invention, dissimulation and a good merhory.

— Friedrich Nietzsche, Human, All Too Human, [1.58,78/1996

|. Introduction

During the tech-stock bubble, Wall Street secuaitglysts were alleged to inflate
recommendations about the future earnings prospédtitens, in order to win investment
banking relationships with those firhsSpecifically, analysts in Merrill Lynch used adipoint
rating system (1=Buy to 5=Sell) to predict how #heck would perform. They usually gave two
1-5 ratings for short run (0-12 months) and long fmore than 12 months) performance
separately. Henry Blodget, Merrill Lynch’s famousigtimistic analyst, “did not rate any
Internet stock a 4 or 5” during the bubble perid899 to 2001). In one case, the online direct
marketing firm LifeMinders, Inc. (LFMN), Blodgetr&t reported a rating of 2-1 (short run
“accumulate”™—long run “buy”) when Merrill Lynch wasursuing an investment banking
relationship with LFMN. Then, the stock price guatly fell from $22.69 to the $3-$5 range.
While publicly maintaining his initial 2-1 ratin@lodget privately emailed fellow analysts that
“LFMN is at $4. | can't believe what a POS [pieafeshit] that thing is.” He was later banned

from the security industry for life and fined miltis of dollars.

! For a detailed description of the tech-stock bebbée Michael J. Brennan (2004). For evidencardéag analyst
recommendations affected by conflicts of interseg Hsiou-wei Lin and Maureen F. McNichols (199&) Roni
Michaely and Kent L. Womack (1999).

2 See Complaint in Securities and Exchange Comnmissiéienry M. Blodget, 03 CV 2947 (WHP) (S.D.N.Y.)
(2003), paragraph 11-12 and 70-72, Securities astidhge Commission Order Against Henry M. Blodg@é€0g3),
and United States District Court Final Judgemen®eaurities and Exchange Commission v. Henry MdBét 03
Civ. 2947 (WHP) (S.D.N.Y.) (2003).



This case is an example of a sender-receiver gathedivergent preferences (sometimes
called a “cheap talk” or strategic information samssion game; see Vincent P. Crawford and
Joel Sobel, 1982). Sender-receiver games are simptlels of economic situations in which
one agent has an incentive to exaggerate thetowhother agent. The central issues in these
games are how well uninformed players infer thegig information from the actions of players
who are better-informed, and what informed playgkrsanticipating the behavioral inference of
the uninformed player&Jnderstanding these behavioral patterns betterddtzadi in the design
of institutions to foster more accurate transmisgibinformation when preferences diverge.

Incentives for strategic information transmissioa @mmon. Besides the Blodget case
mentioned above, similar dramatic accounting frandke last few years, such as Enron,
Worldcom, and Tyco, might have been caused byrtentives of managers (and perhaps their
accounting firms) to inflate earnings prospects(@ran, 2004, and Brian J. Hall and Kevin J.
Murphy, 2003). For instance, Enron executives sbldreholders at meetings that earnings
prospects were rosy, at the same time as the exesutere selling their own shares, leading to
indictments and trials in 20061n universities, grade inflation and well-polishe
recommendation letters help schools promote thailgates (Henry Rosovsky and Matthew
Hartley, 2002). Other examples of incentives foategic information transmission include
government-expert relationships in policy makingctor-patient relationships in health care
choices, teacher cheating on student tests (Briala@ob and Steven D. Levitt, 2003) and the

floor-committee relationship in Congress.

? According to an SEC complaint filed in court, KetimLay, Enron’s then chairman and CEO, said “Wehiti
our numbers” and “My personal belief is that Enstaock is an incredible bargain at current pricesdm employee
online forum on September 26, 2001. However, inpiti@r two months he was actually making net safesver
$20 million in Enron stock (back to Enron). See@® Amended Complaint in Securities and Exchange
Commission v. Richard A. Causey, Jeffrey K. Skdlismd Kenneth L. Lay, Civil Action No. H-04-02844Hnon)
(S.D. Tx.) (2004), paragraph 81-82.



This paper reports experiments on a sender-racgarae. In the game, a sender learns
the true state (a number S) and sends a costlesssagesM to a receiver who then chooses an
action A. Payoffs only depend on S and A so thesage M is “cheap talk.” The receiver
prefers to choose an action that matches the stat¢he sender wants the receiver to choose an
action closer to S+b, where b is a known bias patamThe value of b is varied across rounds.
When b=0 senders prefer that receivers ch&se they almost always just announce S (i.e.,
M=S), and receivers believe them and choose A=Mei\i»0 senders would prefer to
exaggerate and announce M>S if they thought rereiveuld believe them. Since subjects
choose 1-5, the numbers in our game are coincithetite same as those used by Merrill Lynch.
Indeed, when b>0, we find that our subjects hageglsr report the number 1 (in only 8 percent of
208 rounds), much as Blodget never rated a staok54(the equivalent of 1-2 in our game).
However, our game is presented in abstract terrtieout reference to stock analysts or
deception. This could make subjects feel lesgyguihen ‘deceiving’ others in the experiment.

Besides measuring choices in these games, ourigdruses “eyetracking” to measure
what payoffs or game parameters sender subjecte@amg at (see Appendix: Methods).
Eyetracking software records where players areilgp&n a computer screen every 4
milliseconds. These data are a useful supplemesttdnometric analysis of choices, when
decision rules which produce similar choices makérdttive predictions about what

information is needed to execute these rfiles.

* Previous studies used a “Mouselab” system in whiolring a cursor into a box opens the box’s coste®ee
Camerer et al. (1993); Miguel Costa-Gomes et 8012; Eric Johnson et al. (2002); Costa-Gomes aawford
(2006); Xavier Gabaix et al. (2006); and Crawfa2@(8). One small handicap of this system is that th
experimenter cannot be certain the subject is Bgtlamking at (and processing) the contents ofdpen box. Our
system measures the eye fixation so we can tleisubject’s eye is wandering, and pupil dilaiomeasured at
the same time (which Mouselab cannot do). Nevkrsise Mouselab systems can be installed cheaphaimy
computers to measure lookups of many agents aatime time, which could prove useful in runningcidint
subjects and studying attention simultaneouslympuiex markets with many agents.



The eyetracking apparatus also measures how nulpbcss’ pupils “dilate” (expand in
width and area). Pupils dilate under stress, ¢vgndlifficulty, arousal and pain.Pupillary
responses have also been measured in the lieidetétgrature for many years (See for
example, F. K. Berrien and G. H. Huntington, 194 Heilveil, 1976, Michel P. Janisse, 1973,
M. T. Bradley and Janisse, 1979, 1981, Janissdaamley, 1980, R. E. Lubow and Ofer Fein,
1996, and Daphne P. Dionisio et al., 2001). Tistsdies suggest that pupil dilation might be
used to infer deceptive behavior because sendetsléception stressful or cognitively difficult.

The choices, eyetracking, and pupil dilation measgenerate four basic findings:

1. Overcommunication in sender-receiver game is ctergisvith LO, L1, L2, and
equilibrium (EQ) sender behavior produced by alkkwaodel of the sender-receiver
game in which LO sender behavior is anchored #t-telling.

2. Eyetracking data provide the following supporttioe level-k model of
overcommunication:

a. Attention to structure and own payofender subjects pay attention to important
parameters (state and bias) of the sender-reagavee. This indicates subjects
are thinking carefully about the basic structur¢hef game, even if they are not
following equilibrium theory. Sender subjects alsok at their own payoffs

more than their opponents’.

® For pupillary responses to arousal, see R. A. $latkal. (1967), R. Bull and G. Shead (1979), aacéh C.
Aboyounand James N. Dabbs (1998). For pupillaspoeses to cognitive difficulty, see Jackson Be@i®82) and
B. C. Goldwater (1972). For pupillary responsepdm, see C. Richard Chapman et al. (1999) andiShiuOka et
al. (2000). Min Jeong Kang et al (2008) show thaiils dilate in anticipation of finding out thesawers to trivia
guestions about which they are curious. (Theirgbrted curiosity is also shown by fMRI to actavéhe ventral
striatum, a brain region involved in anticipatediaed or “prediction error” and learning; and curigslso
enhances later memory for mistaken answers.)



b. Truth bias Sender subjects focus too much on the true ptateff row. This bias
is consistent with a failure to “think in the opgmt's shoes” as in Meghana Bhatt
and Colin F. Camerer (2005).

c. Individual level-k lookup pattern&ender subjects focus on the payoffs
corresponding to the action A = S (LO reasoning)SAb (L1 reasoning), ..., up
to the corresponding level-k reasoning for eaclividdal subject based on his or
her level-k type. This indicates particular lekdlype subjects do generally
exhibit the corresponding lookup patterns.

3. Right before and after the message is sent, sénpgrids dilate more when their
deception is larger in magnitude. This suggestsstbjects feel guilty for deceiving (as
in Uri Gneezy, 2005), or that deception is cogeitydifficult (as the level-k model
assumes).

4. Prediction: Based on the eyetracking results, wetgato predict the true state observed
by the sender using lookup data and messages.piiddgtion exercise suggests it is
possible to increase the receiver’'s payoff (beywhet was earned in the experiments)
by 16-21 percent, resulting in an economic valuépercent of the maximum
achievable increase.

Finally, this study shows the possible relevancpsytchology and neuroscience to
economics. Douglas Bernheim (2008) suggests thabeconomics will be successful if it can
show how new non-choice data can solve a predictiagrormative problem that could not be

solved by standard choice data. One such prolddrmow to extract private information from

® Note that although the pupil dilation results epesistent with both the guilt and cognitive ditfity explanations,
the lookup results are more consistent with thenitvg difficulty story of overcommunication, sincifferent
lookup patterns each suggest a specific (levek&poning process that has a particular level afiitiog difficulty.

It is not obvious how guilt alone (or variationsguilt) can produce this result.



choices. In the standard model, private informaisoty definition, not directly observable to
outsiders (such as receivers in our game); it cay lme inferred assuming a particular model of
behavior (e.g., inferring private values from aowtbids). If eyetracking, pupil dilation, fMRI,

or other biological measures enable one to inferenabout private information than by using
only choices, those “new” data—new to economisiat is—have some added value for
something economists care about. Our data sahigf\ctiterion because lookups and pupil
dilation enhance prediction of the true state beyiie predictions derived simply from observed
messages (choice) and equilibrium theory.

This is the first study in experimental econonmsise a combination of eyetracking and
pupil dilation, and is, of course, exploratory asitherefore hardly conclusive. But the
eyetracking and pupil dilation results by themsglseggest that the implicit assumption in
equilibrium theories of “cheap talk” in games watbmmunication—namely, that deception has
no (cognitive or emotional) cost—is not completeght. This provide the foundation for
alternative theories such as costly talk (as iniN&artik, Macro Ottaviani and Francesco
Squintani, 2007, Ying Chen, 2007, and Kartik, 2088dhe level-k model (as in Crawford, 2003,
Hongbin Cai and Joseph T. Wang, 2006). The Nibzpassage quoted above describes the
cognitive load of deception. Mark Twain also farsiguquipped, If you tell the truth, you don't
have to remember anythifigndicating the memory cost of deceptibriThe corollary principle
is that if subjects want to misrepresent the gtateol receivers, they have to figure out
precisely how to do so (and whether receivershalfooled). This process is not simple and
seems to leave a psychological signature in loogatterns and pupil dilation. Future theories

could build in an implicit cost to lying (which migalso vary across subjects and with



experience) and construct richer economic theatesit when deception is expected to be

widespread or rare.

[l. The Sender-Receiver Game

In each round of the experiments, subjects plggrae of strategic information
transmission, involving cheap talk (Crawford and&p1982). One player always acts as the
sender, and the other as the receiver. The serglgr’'movements and pupil dilation are
measured with a head-mounted Eyelink Il eyetra¢see Appendix: Methods). At the
beginning of the round, the sender is informed &bfweitrue state of the world, which is
described as a “secret” number S uniformly dravemfthe state spa&= {1, 2, 3, 4, 5}, and is
informed about the bias b, which is either 0, 12 avith known probabilities. The receiver
knows the bias b, but not the realization of tladéesS. Both players are informed in instructions
about the basic structure of the game.

The sender then sends a message to the receorariife set of messagbs= {1, 2, 3, 4,
5}.8 After receiving a message from the sender, theiver chooses an action from the action
spaceA ={1, 2, 3, 4, 5}. The true state and the recegvaction determine the two players’
payoffs in points according tax& 110 — 20 - |S —-Af, and ¢ =110 - 20 - |S + b —-Af, where
Ur and  are the payoffs for the receiver and the sendspectively. Note that the receiver
earns the most money if her action matches thestate (since her payoff falls with the absolute

difference between A and S). The sender preferseteiver to choose an action equal to S+b.

" Quotation taken from Mark Twain’s Notebook, 1894.fact, Daniel Kahneman and Beatty (1966) shohea
more difficult memory tasks induced larger pupiflaesponse. Hence, memory load could also be rneh#or
deception to affect pupil dilation.



This payoff structure is made known to both sendacsreceivers. Figure S1 shows the screen
display for b=1 and S=4.

When the bias is large (b=2), the most informagégailibrium has the sender send an
uninformative message, while the receiver ignanesmiessage and chooses A=3 based on her
prior beliefs (babbling equilibrium). When b=1ethmost informative equilibrium requires the
senders to send messages {1} when S=1, and seBd &} when S is 2-5. When b=1 the
receivers should choose action A=1 when seeing ¥)=id A=3 or 4 when seeing
M={2,3,4,5}.° When b=0, truth-telling by choosing M=S (and feees choosing A=M) is the
most informative equilibrium.

On the other hand, following Crawford (2003) and &a Wang (2006), the level-k
model for the sender-receiver game starts withdrtlers (who has the lowest level of
sophistication) would simply tell the truth, and teteivers best responding to LO senders by
following the message. Moving up the hierarchysehders best respond to the LO receivers by
inflating the message (stating their preferredestatand L1 receivers best respond to L1 senders
by discounting the message. Such procedure isncaat until we reach the most informative
equilibrium predictiort® In addition, we include a sophisticated type (SP®hich best
responds to the empirical distribution of opponebihavior. This represents the highest level

of strategic thinking, knowing the exact heteroggnef opponent types and behavior. Table 1

8 Following Cai and Wang (2006), we use the messddws number | received is X” to eliminate possible
misinterpretation of the message (which contribtdethe multiple equilibria problem typical in tletypes of
games resulting form the need to assign meaningegsages).

° Thanks to David Eil for clarifying the equilibriuemalysis. Due to discreteness, there is anothiéz-kdge
equilibrium with b=1 that produces higher infornaatitransmission: Senders send messages M={1,2{aA¢b},
while receivers choose A=2 and 4. However, thigldamium is not robust since senders who see SeZaactly
indifferent between sending M={1,2} and M={3,4,5Moreover, the main results of the paper do nohghaeven
if we consider this equilibrium (then Corr(S,A) 791, and g= 94.56).

12 Note that the level-k model itself provides aniiium selection criterion—it selects the mostormative
equilibrium where senders report the upper bourthefnterval of true states. This pins down kbghamount of
information transmitte@éndthe language used in the message sent. In gelearglbk models will providenore



provides the list of different level-k types for®=1, and 2! Note that in our data, SOPH
senders act like L2 senders when b=1 and act i&-E3) senders when b=2, both a best
response to L1 receivers.

Under both the equilibrium and level-k models, tbhenparative statics are similar:
Information transmission decreases as the biasases, though the level-k model still allows
transmission even when the bias is so big thaétudibrium model predicts babbling (zero
transmission). Informativeness is measured bydineelation between actions and the true states,
and by receiver payoffs (more informative equibinave higher expected payoffs). In addition,
we assume a literal interpretation of messagespaasure the “informativeness” of senders’
messages by the correlation between the true statbkthe messages M. How “trusting” the
receivers are can be measured by the correlatioveba the messages M they receive and the
actions A they také? These comparative statics predictions were tedsgetbhn Dickhaut et al.
(1995), Andreas Blume et al. (1998, 2001), anda@di Wang (2006). Overcommunication—
messages are more informative of the true statetttey should be, in equilibrium—are
typically found in these studies, and Cai and W@a§6) suggest two bounded rationality
explanations: the level-k model and quantal respeagiilibrium.

To be sure that subjects learn, and to collect afltrials to pool across, the same game
is played 45 times among the two players with ram@boices of bias b (and random states) in

each round. Because we could only eyetrack omnemsubjects at a time, only the senders were

precision (given a particular parameter value dation) than equilibrium concepts when there rardtiple
equilibria.

1 cai and Wang (2006) constructed a level-k modette case where the most informative equilibrisrbabbling.
Here we extend it to other biases. Also, we useettonometric methods developed by Costa-Gome€wdford
(2006) to estimate individual types.

2.5uch a natural language interpretation is justifig Blume et al. (2001) findings that equilibritmessages tend
to be consistent with their natural language megmiand is used in Cai and Wang (2006). Moreawany
behavioral theories of lying, such as Crawford @0énd Kartik, Ottaviani and Squintani (2007), disad to this
sort of natural language interpretation since nageeivers would take the message at face value.



hooked up to the mobile Eyelink eyetracker (althostudying receivers’ eye fixations would be
useful in future work). We randomly matched sikjsgts into pairs using a stranger-matching
protocol, with different receivers in each roundtfwno immediate re-matching with the same
receiver), and eyetracked two of the senders ih gemup. Values of b=0, 1, 2 were used with
known probabilities (0.2, 0.4, 0.4) since we asslmterested in the no-bias (b=0) case than in
the bias (b>0) cases. We also added some rintsgédrs -4 to +4 with equal probability, i.i.d.
across payoff cells) to each payoff to minimize roeyreffects. Since the noise is small, the
equilibrium remains the same. To further eliminatg memory effect, the bias parameter was
not shown to the eyetracked senders on the sabhough it was mentioned in the instructions.
Instead, subjects were forced to look at the patydifie to infer it. Thus, this set of experiments
is called the “hidden bias-stranger” design. Témults reported below focus entirely on the eye
fixations and pupil dilation of the eyetracked sersd and the message choices of all senders and
action choices of receivet3.

Subjects’ choices are compared to the most infowaa&iquilibrium in the one-shot
game™* We also use predictions from a level-k model (€abto estimate individual sender
types with a quantal response-like “spike-logitfoerstructure, using the econometric analysis

developed by Miguel Costa-Gomes and Crawford (2006 particular, we assume each sender

subject exactly follows a certain levietype and plays® (the “spike” of probability) with

probability (1- &) . With probability £ , they make mistakes following a logit error depsit

13 Two of the twelve eyetracked subjects experierieeldnical difficulty during the experiment and theiata were
excluded (along with the corresponding receivejexttb’ choices).

4 We do not consider a possible dynamic equilibrthat might sustain higher information transmisdirels.
This is not a problem for b = 0 or 2. When b &bbling is the only equilibrium in the one shotngaand
backward induction yields the babbling equilibrifmn all finitely repeated games; when b = 0, the shot game
equilibrium already has full information transma@siand there is no room for improvement. Also ribse
overcommunication is the most striking when b =Random rematching also limits repeated-game affect

10
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payoff of sending messagewhen the true state $s 71(s, a) is the payoff for true stateand
receiver actiora, and f *(a | m) is levelk sender’s belief about receiver’s actions (seeauhe

message). The likelihood for observing a levslibjecti play m ={ njg}gDG in the set of games

G (making mistakes in subs&t® 0 G, n* =| N* |) is therefore

d“(m,e, 1) = 1-ef°" " |‘| d‘(nj.A| €9). The levelktype distribution isp=(p',..., p°).

gON*k

For each individual subject, we estimate the patara¢p,£,1) that maximizes
K
empirical log-likelihoodL' (p,&,A |m )= In{z g d(m,e A )] Note thap will be estimated to
k=1

have p* =1 for somek, so estimation results for a subject could betamits(k, £,1).

We also ran an earlier set of experiments usingrner protocol in which a pair of
subjects played repeatedly in a fixed-role protadoére b=0, 1, 2 with known equal probability.
The bias parameters were always revealed (sendgrcssiindeed look at them), and there was
no payoff perturbation. This is a simpler desigmtplement logistically, requiring only one
eyetracked subject and his/her (open box) oppobentreates potential repeated-game effects.
We refer to this as the “display bias-partner” dasiResults of this design are briefly discussed
in comparison to that of the “hidden bias-strangi3ign in Section IIl.D. Corresponding tables
and figures are in the appendix.

Subjects were 60 Caltech students recruited franSticial Science Experimental
Laboratory subject pool. Six sessions of six sttjavere randomly matched in the “hidden

bias-stranger” design, and twelve pairs were ruhén‘display bias-partner” design. They

11



earned between $12 and $27 in addition to a $5avaip fee. For the “hidden bias-stranger”
sessions, we used different randomly pre-drawnmpaters for each of the six sessions. But in
the “display bias-partner” design we used the sagt@f randomly drawn biases and states for 9
of the 12 pairs, and used two other sets of paensaédr the remaining 3 pairs to see if there
were any effects for using the same parameters.

While 60 subjects might appear to be a small sarsigke™ most experimental studies
with larger samples have many fewer choices pgesublhe eyetracked subjects played 45
games, and made a very large number of eye fixgtemwe recorded a lot of data for each

subject and could often draw confident statistemaiclusions from these sample sizes.

[1l. Results

lII.LA Comparative Statics and Behavior

What do players choose?Figures 1-3 display the three dimensions of #ve ¢choice

data—states, messages and actions—for the thredebiels b = 0, 1 and 2. Each Figure is a 5-
by-5 display. The true states 1-5 correspond tditieerows. The sender messages 1-5
correspond to the five columns. Within each stagssage cell, there is a pie chart. The area of
the pie-chart in each cell is scaled by the nunobeccurrences for the corresponding state and
message ; i.e., the most common state-messagehpagshe largest pies. Hence, the rows
indicate senders’ behavior with respect to diffegates and the columns represents the
“informativeness” of each message, determined bydiktribution of states conditional on each

particular message. Several diagonal lines corpredicted messages for various level-k types.

12



Each pie chart also shows the distribution of asiochosen by the receiver for that state and
message, using a gray-scale ranging from whitéofadf to black (action 5). The average
receiver action is the number inside the pie.

For example, when b=0, and there is no conflightirest, large pie-charts are
concentrated on the diagonal (LO/Eq sender behawidiich is a visual way of showing that the
senders almost always send a message correspdadimgtrue state. Moreover, these pie-
charts mostly contain the same color ranging frigit I(lower actions) to dark (higher actions)
as the message number increases across columnsngltbat the receivers’ actions are
typically equal to the message. The distributibatate frequencies conditional on each message
(i.e., down each column) almost degenerates inwsrpaints of the true states, indicating nearly
full information transmission. This correspondshe (most informative) truth-telling
equilibrium predicted by equilibrium theory, as s the LO/EQ type in the level-k model.

When b=1, and there is an incentive to bias thesagsupward, the results are different.
There is a large tendency for deception, whiclvident from having some large pie charts off
the diagonal. This departure is lopsided—onlyupper diagonal of Figure 2 is populated with
large pie chart$® That is, for a given state, the most common ngEssare the state itself or
higher messages (not lower messages). Furtherther&grgest pie charts of each row are
mainly on the line one column or two columns totiight of the diagonal (i.e., states S+1 and
S+2), consistent with L1 and L2 sender behavioithiW the upper diagonal, the pie-chart gets
darker and darker going down and right, showing Hwwreceivers correctly increase their

actions as the state and message increase. Benceriditional distribution of states (columns in

15 We successfully eyetracked 22 of the 60 subjediish is considered large sample size for psychophysical
studies involving eyetracking.

'8 Note that this one-sided deception can potenttzigkfire since if seeing a message 1 indicatesrtieestate is 1,
the state is less likely to be 1 when other messagee sent.

13



Figure 2) shift from a mass point on the true sfasein Figure 1) to a distribution skewed
toward state 3 to 5, some information is transmittelowever, this distribution is not consistent
with the {1}-{2, 3, 4, 5} partition equilibrium, with requires that distributions of messages and
actions for the bottom four rows (states 2-5) stiail look the samé&’

Finally, when b=2, equilibrium theory predicts d&bkng equilibrium. If subjects were
playing this equilibrium, the pie-charts in eacH emuld be roughly the same size (up to
random sampling error of state frequencies) andlhiaeling distributions on each pie-chart
would be the same. In fact, there is still a sulisthamount of information transmitted, since
the columns in Figure 3 do not show the same umifdistribution of state frequencies.
However, many senders still sent message 5, edlgdoiastates 2-5. And a substantial amount
of receivers did choose action 3, as predictetendabbling equilibrium. This is consistent with
the level-k model, since L1, L2, and EQ senderseaild message 5 for states 3 to 5.

What are the comparative static results?Table 2 shows that the actual information

transmitted, measured by the correlation betwesiestS, actions A, and messages M. The key
comparative static prediction of Crawford and SqhéB2) holds in the data: As the bias b
increases, the information transmitted decreaseasured either by the correlation r(S,A)
between state S and action A, or by receiver payoBut note that even when the bias is so
large (b=2) that theory predicts babbling (i.e. coorelation between S, A and M), the
correlations are still around 0.3. There are sty small learning effects: correlations and
payoffs rise across trials for b=0 and fall for reflecting (weak convergence toward

equilibrium (see supplementary Appendix, Table S3ayoffs also decline with bias b, as

7\ subjects were playing according to the pantitaguilibrium, column 1 should have probabilityri siate 1, and
zero probability elsewhere, indicating the statedpén partition {1}, while column 2 to 5 shouldldlave equal
probability distributions (say, a mass point ar3.4 each) on states 2 through 5, and zero elsewhalicating the
state being in partition {2,3,4,5}).

14



predicted by theory (Table 3). Data from both sendéo are eyetracked and senders with
“open boxes” (no eyetracking), are reported sepbrais a check on whether eyetracking, per se,
changes behavior. There is no discernible effebeong eyetracked versus seeing all
parameters (“open boxes”).

When the bias b is large, information transmisssomgher (measured by correlations
among S, M and A), and payoffs are higher, thadipted by equilibrium theory. These data
replicate the “overcommunication” (too much trugtlihg) reported in Cai and Wang (2006).

Can individual players be classified as level-k tygs? Based on all behavioral data, we

classify individual sender subjects into varioysety according to Table 1, assuming subjects
remain the same type across different biases tlsentgpike-logit” estimation as in Costa-
Gomes and Crawford (2006). The results are shawrable 4. Subjects are classified as types
(percentages) LO-L2 (18 percent, 25 percent, ange2&ent), SOPH (14 percent) and EQ (18
percent), with good compliance (above 60 percewget for one}? Individual level
classifications therefore confirm that subjectsramstly choosing according to stable level-k
types, as hinted by the aggregate choice data. p@ong the classification results with that of
Cai and Wang (2006), we see a similar pattern (fgafiéw LO, mostly L1 beyond), although

they use a more primitive way to conduct the cfasgion.

[11.B Lookup Patterns

There are several goals in observing lookup pattdfinst, we want to know what the

aggregate lookup patterns are during the decisiocegs. This indicates the subjects’ attention

18 Using only trials such that b=1, 2 yield the exsane classification. Using a logit structuretgas of spike-
logit) on b=1, 2 also yields a similar distributjan which only two subjects are classified diffietlg: Subject #3 (2-
1) is classified as SOPH instead of L1, and sul#bdi3-2) is classified as L2 instead of SOPH. Balale S12.
Note that SOPH and L2 are almost identical, anchftioe lookup results below (Table 7), subject #8 datookup
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to different information, and provides the basistf@eorizing about subjects’ decision-making
process. Moreover, since the level-k model relaiiesassumption that people hold consistent
beliefs about others, beliefs about other’s beliaf&l so on, we expect the lookup patterns to
indicate this. Finally, since the level-k modetghictions explain individual behavior, it is
natural to ask whether additional lookup data qawide more direct evidence supporting the
level-k model than choices alone. In particulag,wwould like to ask whether individual subjects
who are classified into different level-k types gwoe different lookup patterns matching their
types.

The lookup results are organized according to Huwea goals as follows:

1. Attention to structuretn reporting aggregate lookup counts and time spemifferent
parts of the screen, we expect to see differemtlesubjects paying differential attention to
important parameters of the sender-receiver ganoh, as state, bias, and payoffs.

2. Truth bias: The level-k model assumes subjects best resmopérteived beliefs
about their opponents’ behavior, which are incdesiswith what opponent’s actually dd.If
senders cannot think like receivers (who do notktite true state), they would put too much
attention on the payoff row corresponding to the tstate, instead of treating all states equally.
Hence, excessive attention to payoffs correspontdiriige true state demonstrates a “curse of
knowledge” and could be an attentional marker egéhincorrect beliefs.

3. Individual level-k type lookup patternghe level-k model assumes an anchoring LO
behavior of truth-telling. Higher types go througgliefs about lower types until they reach their

own level-k type. If this decision process iseefkd in the lookup patterns, attention should be

score more similar to SOPH than L1. Finally, usanggit structure on all data adds three more S®PEs (2-2, 4-
3 and 5-2), all from “neighboring” types which afteoincide with SOPH (EQ, EQ, and L2, respectively)

191f all subjects are SOPH who correctly best respondhierst SOPH behavior should coincide with equilibriu
(EQ) behavior.
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paid to payoffs corresponding to the action A=S)(lA=S+b (L1), and so on, up to the
corresponding level-k type for each individual ®dbj For example, when bias is 2, a L2 sender
under state 2 would look at the payoffs correspaytlh state 2 and action 2 (the LO outcome if
the message is taken literally), action 4 (the uficome if the message is taken literally), and
action 5 (the L2 outcome if the message is takerdliy). In Table 1, this corresponds to the
first three elements (LO~L2 Senders) of the seamtdmn (S=2) in the bottom panel (b=2).
Thus, in addition to the lookups required to figore the bias paramet&ta levelk type sender
(with truth bias) would follow the prediction ofé¢develk model (first(k+1) elements of column
Sin Table 1) up to his own level.

What are senders paying attention to?Table 5 shows the average lookup time

(excluding fixations shorter than 50msec) for vasmumbers on the screen which are
parameters of the gamieSenders clearly are thinking carefully about tamg because they
look up the state for 0.86 seconds total (whicB.&sfixations, about 270msec per fixation). The
low time per lookup is a reminder that the eye gémnaround very rapidly, making frequent
quick fixations, as is typical of other tasks irdihg reading text passages.

Senders also look at their own payoffs longer.drtipular, subjects look at their own
(sender) payoffs at least 40% more than receiwffma This difference is surprising since
senders need to look carefully at receiver payioftsrder to determine the bias. Note that the
ratio of lookup time for sender and receiver payadfthe same for a small bias (b=1) and large

bias (b=2). For b=2, which creates the most séopguilt to constrain deception, we divide

% |n the hidden bias-stranger design, subjects atustst look at two payoffs to determine the biesS and
A=S+h. Potentially, this S could be any state,dhatuld correspond to the true state due to thik bias. In this
case, the lookups would coincide with lookups lshke LO and L1 thinking.

% The number of separate fixations is very highlgrelated with the lookup time—in no cell is the ege time per
fixation less than 250msec or greater than 300msecthe number of fixations can be approximated twell
dividing the Table 5 figures by 270 msec. Botlafigns and lookup time are reported in the suppigate
Appendix (Table S10 and S11).
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senders into those who looked more often at recgiagoffs, and those who looked less often
(relative to the median sender-receiver lookingjatmportantly, the high receiver-lookup
group is actually more deceptive than the low graupich is inconsistent with the guilt
hypothesis that the more one cares about otheyafisaand looks at them, the less one should
deceive. For the high group, the correlation betwstates and messages is 0.55, and the
average LIE_SIZE (|M-S|) is 0.88; for the low grotige correlation is 0.69, and the average
LIE_SIZE is 0.71.

Note that therés a reduction in total looking times across trialsput 35 percent less in
later periods (31-45) than in earlier periods ()-{s®e Table 5), and this reductiorsisiilar
across bias levels and treatments (Table S7.)

Do senders have a “curse of knowledge”Table 6 shows that subjects look about five

times longer at payoffs in the rows correspondmthe true state than they look at payoffs in
rows corresponding to each of the four other stat®ken the bias is 0 this fixation on the actual
state is understandable (and subjects typicallpsbanessage M=S), but the disproportionate
attention to actual state payoffs is comparablenithere is a bias of b=1 or 2. This result
indicates that subjects do not “think in other®es$l’, and cannot fully think like a receiver (who
does not know the true state). Note that Tableggssts lookups might have statistical power to
detect the actual state (i.e., to detect lies irciwthe message M deviates from the true state S).
That is, a receiver who had online sender looktagstics might be able to predict what the
actual state was rather reliably. This possibiBtgxplored in Section IV.

Do senders follow levek predictions of lookups? Tables 5 and 6 show there is a

strong bias for senders to look more at payoffsiftbe state they know to be the true one. More

detailed information about looking patterns acrtage-action pairs is conveyed by the icon
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graph in Figures 4-7 (developed by Johnson e2@02). For brevity we show only data from
trials with positive biases for subjects classifesdL1 and L2 (aggregate data are in the
supplemental appendix, Figures S6-S9).

Each box in Figures 4-7 represents the attenticahtpahe payoff corresponding to a
different state-action combination. Parts (a) dndé€present attention to the sender payoff boxes
and the receiver payoff boxes, respectively. Thdwof the box is a linear function of the
average number of fixations on that box. The heajlihe box is a linear function of the average
total looking time in that box. Boxes which aredeiand tall were looked at repeatedly (wide)
and for a longer time (tall). The vertical barghe first columns represent the sum of looking
time across each row. Longer bars represent |dirgerfor all state-action boxes in that state.
The “ruler” in the upper right shows the scaleawfling time and number of fixations that can
be used to “measure” each box.

Figure 4 shows the icon graph for bias b=1 whersthgect is classified as 4. The
first thing to notice is that subjects spend mudrertime looking at their own payoffs (Figure
4a) than the payoffs of receivers (Figure 4b)hasTtable 5 statistics show. Subjects’ lookups
are also more frequent and longer for actionsdahaequal to the actual state S or S+1. This
corresponds to the first two rows (LO and L1 sesgdef the top panel (b=1) in Table 1, as well
as the lookups to determine the bias.

Figure 5 shows the lookup icon graphs for bias Wwh#&n the subject is classified as L2
(again when subjects are L1). Senders again lbthlea own payoffs more often than their

opponents’ payoffs. When the state S is 1-3 teag to look at their payoffs from actions

22 \When the bias b=0 the looking data are very cl8ahijects look almost exclusively at their own /o
corresponding to the actual state S and correspgmdceiver action A, and they look at the recepagyoffs from
the same S-A pair less often than they look at theh payoffs (1/2 in the display bias-partner gasind 2/3 in the
hidden bias-stranger). See Figure S5.
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corresponding to S, S+1 and S+2. This is condistéh the first three rows (LO, L1, and L2
senders) of the top panel (b=1) in Table 1. Howewben the state is 4 or 5 this pattern
crumbles as states S+2 and S+1 do not exist; dukup patterns resemble L1 lookups.

Similar patterns arise when b=2 as well. Figuen@ 7 show the lookup icon graphs for
bias b=2 when subjects are classified as L1 anddspectively. As the level-k model predicts,
subjects look at payoffs corresponding to the fingt or three rows (LO-L1 or LO-L2 senders) of
the bottom panel (b=2) in Table 1.

If we calculate the linear measure of predictivecess (Reinhard Selten, 1991), a subject
who is classified as a certain level-k type almadatays has the highest score for the
corresponding lookups of the same type. In pddicletx equal the “hit rate”, the proportion of
lookups in a period that fall in the target ceflad leta equal the proportional area of the target
cells. Then the linear measure (LM score) equalsthe proportional hit rate minus the
proportional area. This measure controls for the sf the predicted lookup area, and takes a
value of zero when subjects randomly scan theeestireen. Table 7 presents each subject’s LM
score for various types. Among all the six sulg@tassified as L1 and L2 subjects, only one
(subject #8) has another type’s LM score slightghkr (0.268 vs. 0.259, less than 0.01) than the
score corresponding to their classification basedhwices. Moreover, this subject would be
classified as SOPH under the logit specificatioRegarding SOPH subjects, it is not clear
theoretically what their lookup patterns would [&ut, the low LM scores do show that they do

not look like L1, L2 or EQ.

[11.C Pupil Dilation

As noted in the introduction, pupils dilate whermople are aroused or make cognitively

difficult decisions. Our first exploratory steptestreat pupil dilation as a dependent variable and
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see whether the degree of behavioral deceptiohdgender is correlated with pupil dilation. It
may be that pupil dilation is so poorly measuradsmweakly linked to deception, that there is
no reliable correlation. However, we see that deaeyis reliably correlated with pupil dilation.

To correlate pupil dilation with senders’ messagegrage pupil sizes are calculated for
various time periods before and after the sendre€ssage decision. Then, we try to predict
averaged pupil dilation using the bias b and thewarhof deception (measured by the absolute
distance between states and messages, |M-S]).

To record their message M, senders are instruotkabk at a series of decision boxes on
the right side of the screen, which contain the Iners 1 to 5 (corresponding to the possible
numerical messages). The software records a de@$ier the subject has fixated on a single
decision box for 0.8 seconds—that is, the subjelat®se by using their eyes, not their hafids.

Since there is a time lag of at least 0.8 secohad®n the instant subjects “made up their
minds” and the recording of this decisirthedecision timds defined as the first time subjects
view any of the boxes in the decision boxes amgayv{ded they continue to look at the decision
box area for more than 98 percent of the time tinéilsoftware records a decision).

Average pupil sizes are regressed on the amoudgaEption for different biases, the
absolute size of the deception (LIE_SIZE = |M-&f)d bias and state dummies, controlling for
subject random effects and individual learning dise(picked up by round number and squared
round number variables interacted with individuairanies). All standard errors are robust

standard errors clustered at the individual leviie specification is:

% pAllowing eye fixations to determine actual choiiesvidely used in research with monkeys. For husnanaking
choice hands-free is an advantage if psychophygitdb measurements are being recorded simultang¢eig.,
galvanic skin conductance on the palms, heart sitef even small hand movements add noise to those
measurements.

%*This time lag can be longer if the subject is rarfgctly calibrated, and hence, needs extra tingetform the
required fixation. Another possible situation isem the subject “changed her mind” and looked féreint
decision boxes.
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where the error term has elements, =u, +77,, (subject random effects), and

PUPIL = Average pupil (area) size at time framé.2 to 0.8 seconds, 0.8 to 0.4 seconds, 0.4 to
0 seconds before, and 0 to 0.4 seconds, 0.4 we@dhds after the decision tiffTe.
Here, we normalize each individual’s average psigi to 10G°
LIE_SIZE = The “size” of the lie or the amount adaption, measured by the absolute distance
between states and messages, ([M-S|).
BIAS,, STATE,, SUBJ = Dummy variables for the bias b, true state d, aubject k
ROUND = Round number t
The parametet is the average pupil size. TRecoefficients give us the effect of
deviating from reporting the true state (deceivimgre) under different bias levels. The
coefficientspy, andPss give us the pure effects of different biases afiee to b=2) and states
(relative to S=3) which might influence dilatiomdayy 1 ,yk 2 capture (individual) linear and
guadratic learning effects.
Look first at the coefficients on the amount o€élgtion in Table 8, interacted with bias
(denoted3;p where b is the bias parameter). Immediately dfterdecision is made (0O seconds

to 0.4 seconds and 0.4 to 0.8 seconds later) abicients are significantly higher at about 2

% Hence, we are aggregating 100 observations irtodata point when averaging for each 400 millisdson
interval. Rounds with very short response timedisearded if PUPILcannot be calculated.

% pupil sizes are measured by area, in relativeserbsolute pixel counts have little meaning sitiey vary by
camera positions, contrast cutoffs, etc., whichedejpon individual calibrations. Hence, the eydteaccales it to a
pupil size measurement between 800-2000. Hereonmalize all observations by the average pupéd sizeach
subject throughout the entire experiment, and prtealéresults in percentage terms. (To avoid pidébias
created by eyetracker adjustments, all betweengradjustment stages were excluded when doing this
normalization.) Therefore, “100” means 100 perce#gran individual subject’s typical pupil size.
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percent for all biases. Sending less accurateagesss therefore correlated with pupil dilation
when b=1 or b=2. Before the decision is madeptip@l dilation difference is still at 1.5-2
percent (though less significant) when b=2.

Note that the bias condition by itself does notegate pupil dilation (i.e., nearly all the
coefficientspys are insignificant and are omitted from Table 8islfinding implies arousal or
cognitive difficulty is created by sending deceptimessages in bias conditions, not by bias per
se. Furthermore, these basic patterns are reprddutten we divide the samples into two halves

and compare them, which provide some assurandattial reliability?’

[11.D Results of the Display Bias-Partner Design

The supplemental appendix reports results analogotmse in Table 2-6, Table 8 and
Figure 2-4 for the display bias-partner conditidalfles S2-S6 and S8, Figures S2-S4).
Compared to the hidden bias-stranger conditioretleemore overcommunication (correlations
of M and S around 0.5 even when b=2) and more ige-tlassification (one third LO types).
These differences are probably due to the repegtect effects created by the partner matching.
Subjects do also look at the bias parameter whigraitailable, but they look less often at
receiver payoffs (which they need not look at tufe out what the bias b is).

The pupil dilation results are much stronger thathe hidden bias-stranger design. The
coefficients on pupil dilation predicting the amowh deception are 2.8-4.5 percent, and are
significant in all 400 millisecond intervals frorh200 milliseconds to +800 milliseconds (where

zero is the decision time). Itis likely that tiisplay bias-partner design is less demanding

2" Because we measured eyetracking and pupil dilétion ten senders, it is useful to check how rédiabese
results are in two subsamples of five subjects .€Blsl 400-msec intervals from +0.4 to +0.8 secx alécision
time gives the highest’R so we compare those. Tpg coefficients across bias levels (b=0, 1, 2) aeentiost
important. They are 6.35%, 2.40, 2.11 for the fiigé subjects and 6.11**, 4.14** and 3.00*** féhe second five

23



cognitively, and lowered baseline pupil dilatiom. fact, the increase in predictive power here
could be construed as consistent with the cogndiffeculty story because showing the bias
parameter and eliminating noise from the payoff&erthe display bias-partner design easier in
general. This simplification could decrease thesbas pupil dilation of truth-telling in all
conditions, which makes any additional dilatiomfrdeception easier to detect. Running similar
regressions show that using criteria of 99, 9®0percent all yield similar results, though

slightly weaker.

V. Lie-detection and Prediction

As noted, one goal of measuring eyetracking istwhether these behavioral measures
enable us to improve upon predictions of theorlis Bection reports whether using eyetracking
data helps predict deception and uncover the uyidgrtrue states. The ability to detect private
information in this way could eventually have mammgictical applications. And since private
information often undermines efficiency, the alilid detect private information could be
Pareto-improving in some settings.

Here, we ask how well receivers could predict the state usingnly messages and
lookup patterns (and how much they could earn loyguhose predictions). That is, we pretend
we don’t know the true state for predictive purggderecast it from observables, then use
knowledge of the true state to evaluate predids®iracy. We focus only on b=1 and b=2 since
truth-telling is so prominent when b=0.

For the dependent variable STAT,Hrom 1-5, we ran an ordered logit regression

subjects. For other intervals, as predictive pofi falls the reliability across the two subsampksftoo, but the
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where lookups are consolidated into two integerabdes, ROWer and ROWiher, Which are the
states corresponding to the own (or opponent) pagaf which has the longest total lookup
time of all rows.

The coefficient$1, represents the information about the state cosdaim the message
the coefficientf,, measures the effects of the “most viewed row”rd’s own payoffs (i.e., the
state number corresponding to the row that is viefee the longest time), arfiy, represents the
effects of the “most viewed row” of the opponergayoffs. The); are state-specific constants.

To evaluate how well these specifications couldljatenew data, out-of-sample
validation is used. Each observation is used piitibability 2/3 to estimate the model, then the
model forecasts on a holdout sample of the rem@ihi8 of the data. For each holdout
observation, the estimated logit probabilities@sed to calculate the expected state, which is
rounded to the nearest integer to make a preaiggesstate prediction. This partial estimation-
prediction procedure is performed for 100 randomdas of the data. Average and
(bootstrap) standard errors across the 100 resagspdire reported in Table 9.

The significance of;, in Table 9 indicates that the messages are infrenabout the
states (as analyses reported above establishesinafer message indicates a smaller true state,
even though standard game theory predicts thiat iittormation should be transmitted by the
messagefiy, should be zero when b=2).

The lookup data are significantly correlated vathtes as well. The coefficierfig, on
the most-viewe@dwnrow variables, and the coefficierfts, on the most-viewedther row

variables, are all positive and significant. THoskup data improve predictabiligven when

coefficient signs are almost always the same inwleesubsamples and magnitudes are typically redsgrelose.
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controlling for the messager-or example, if the message is 4, but the loalatp indicate the
subject was looking most often at the payoffs w omrresponding to state 2, then the model
could predict that the true state is 2, not 4.sT$ito be expected, since Table 6 indicates
subjects look at the payoff rows correspondindnottue state five times more than other rows.
However, note that this sort of prediction can atdyne from a setting in which attention is
measured. In addition, if senders knew their epgements were being used to infer the state,
they could of course change their lookups and uniher the predictions.

The error rates in predicting states in the haldgaunple are never greater than 40 percent.
(Keep in mind that the error rates in equilibriurauld be 60 percent and 80 percent.) Most of
the wrong predictions from the logit model (70 mam) miss the state by one. The model
accuracy is also substantially better than theahqterformance of the receiver subjects in our
experiments: Subjects “missed” (chosgS) 58.5 percent of the time when b=1, and misse@ 77
percent for b=2.

An interesting calculation is how much these priaiis could potentially add to the
receiver payoffs (cf. “economic value” in Camereak, 2004). For biases b=1 and b=2, the
average actual payoffs earned by receivers whalfagetracked senders in the random sample
were 87.5 and 80.9. If receivers had based thedigtions on the models estimated in Table 8,
and chose an action equal to the model predictdd for the holdout sample), their expected
payoffs would be 101.7 for b=1 and 98.0 for b=2nc8 the maximum payoff possible is 110,
this is a large economic value of about 60 peroéttie increment between actual and maximum

payoffs?® In fact, these payoffs are already close to whajects actually earn when b=0 and

% For b=1, economic value = (101.7-87.5)/(110-828B%. For b=2, economic value = (98-80.9)/(11098&
59%. Analogous out-of-sample prediction resultsttie display bias-partner design are reportedaipld S9.
Results are weaker than that of the hidden biasgér design, having a modest economic value aindd24
percent.
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there is no bias (100.85 in Table?8)These economic value statistics suggest thatidde
possible to almost erase the cost to receiverskmowing the true state just by looking at
attention along with messages.

An important caveat to these analyses is that weod&now what would happen if the
senders knew that their pupil dilation and lookwese being used to predict the true state.
Senders would try to signal-jam by looking at tlagqffs corresponding to their message more
often (a kind of faked sincerity), but it is podsithat excessive pupil dilation or more detailed
lookup patterns could distinguish such signal-jamgnPutting senders under time pressure
might also make it difficult for them use such dilukrately misleading strategy. In any case,

such experiments are natural follow-ups and coelédsily done.

V. Conclusion

This paper reports experiments on sender-recgaw@es with an incentive gap between
senders and receivers, such as managers or seanaitysts painting a rosy picture about a
firm’s earnings prospects. Senders observe a Staa integer 1-5, and choose a message M.
Receivers observe M (but not S) and choose anreétiolThe sender prefers that the receiver
choose an action A=S+b, which is b units highenttie true state, where b=0 (truth-telling is
optimal), or b=1 or b=2. The bias number b issize of the incentive gap. Receivers know the
payoff structure, so they should be suspiciousifddtied messages M.

Our experimental results show “overcommunicatiomiessages are more informative of

the state than they should be, in equilibrium. Ta®ult is consistent with a level-k model of

2 such gains in the hidden bias-stranger designairsurprising since subjects are forced to loakatpayoff
table to discover the bias parameter, and theysfdaproportionally on the “true state” row alohg tvay.
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communication anchored at level-0 truth-tellingo é&xplore the cognitive foundations of
overcommunication, eyetracking was used to recdrat\payoffs the sender subjects are looking
at, and how widely their pupils dilate (expand) wiieey send messade.

The lookup data show that senders look dispropaatly at the payoffs corresponding to
the true state. They do not appear to be thinkirgjegically enough by putting themselves “in
other’s shoes,” looking and choice are roughly @iast with a cognitive hierarchy specified by
the level-k model, starting from truth-telling.

Senders’ pupils also dilate when they send deceptiessages (¥6), and dilate more
when the deception |M-S]| is larger in magnitudea smmpler pilot design that is prone to
memory and repeated game effects (the displaydagser design), these behavioral results are
also present. Together, these data are conswiinthe underlying assumptions of the level-k
model, and that figuring out how much to deceivether player is cognitively difficult. Gneezy
(2005) and Sjaak Hurkens and Kartik (2008) fourat tthanging the known costs to others from
deception lowers deception by subjects, suggethtiigguilt plays a role in limiting deception.
Complementing this finding, we find that guilt doest appear to be the sole driver of
overcommunication, because senders who look atvexgeayoffs more often are also more
deceptive. In fact, Santiago Sanchez-Pagés and Wtasatz (2007) show that
overcommunication is caused by the tension betwieemative social behavior and incentives
for lying.

Furthermore, combining sender messages and lgukitgrns, one can predict the true

state and lower the miss rate of subjects by otfe aose predictions increase receiver payoffs

% The sender-receiver paradigm also expands thétyjofiresearch on lie-detection in general: Deiepin these
games is spontaneous and voluntary (most studéeemssucted lying); and both players have a clemt
measurable financial incentive to deceive and teaaleception (most studies lack one or both tgbéscentives).
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up to 16-21 percent, which is an economic valueoffe than half of the maximum increase
above what subjects actually earn in the experiment

There are many directions for future research.

Within this paradigm, eyetracking receivers woukduseful for establishing their degree
of strategic sophistication in making inferencesrirmessages. More generally, economic
theories often talk vaguely about the costs ofslenimaking or difficulty of tradeoffs. Pupil
dilation gives us one way to start measuring tlvesgs.

Many economic models also specify a cognitive algor that maps acquired
information into choices (e.g, dynamic programmapglications which require looking ahead).
The idea of allocating attention has itself gottention in economics (Della Vigna, 2008) and
in macroeconomic studies of “rational inattentige’g., Christopher Sims, 2006). In both cases,
measuring attention directly through eyetrackingldomprove tests of theories which make
predictions about both attention and choice, awd they interact. Given the novelty of using
these two methods in studying games, the resuttsi@gtbe considered exploratory and simply
show that such studies can be done and can yightises (e.g., the predictive power of lookups
and pupil dilation for inferring private state imfoation).

In the realm of deception, two obvious questiardiiture research are: Are there
substantial individual differences in the capaoityvillingness to deceive others for a benefit?
And, can experience teach people to be bettercaipdien, and at detecting deception? Both
guestions are important for extrapolating thesalte$o domains in which there is self-selection
and possibly large effects of experience (e.g.duse sales or politics). In other domains of
economic interest, the combination of eyetracking pupil dilation could be applied to study

any situation in which the search for informatiom aognitive difficulty are both useful to
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measure, such as “directed cognition” (Xavier Galedial., 2006), perceptions of advertising
and resulting purchase, and attention to tradingests with multiple markets (e.g., with possible

arbitrage relationships).
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Table 1: Behavioral Predictions of the Level-k Mbde

Sender Message (condition on State) Receiver A¢tiondition on Message)
State 1 2 3 4 5 Message 1 2 3 4 5
b=0

LO/Eq Sender 1 2 3 4 5 LO/Eq Receiver 1 2 3 4 5

b=1

LO Sender 1 2 3 4 5 LO Receiver 1 2 3 4 5
L1 Sender 2 3 4 5 5 L1 Receiver 1 1 2 3 4
L2 Sender 3 4 5 5 5 L2 Receiver 1 1 1 2 4
Eq Sender 4 5 5 5 5 Eq Receiver 1 1 1 1 4

SOPH Sender 3 4 5 5 5 SOPH Receiver 1 2 2 2 4

b=2

LO Sender 1 2 3 4 5 LO Receiver 1 2 3 4 5
L1 Sender 3 4 5 5 5 L1 Receiver 1 1 1 2 4
L2 Sender 4 5 5 5 5 L2 Receiver 1 1 1 1 4
Eq Sender 5 5 5 5 5 Eq Receiver 1 1 1 1 3

SOPH Sender 5 5 5 5 5 SOPH Receiver 2 2 2 2 3

Note: LO senders are truthful and LO receivers kesgtond to LO senders by following the messadesdnders
best respond to LO receivers, while L1 receivest bespond to L1 senders, and so on. Note that wh2, due to
discreteness both L2 and Eq(=L3) senders bestmegpd_1 receivers.
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Table 2: Information Transmission: Correlationsaestn states S, messages M, and actions A

Bias Eyetracked? r(S, M) r(M, A) (s, A) Predictg€8, A)
Yes .92 .90 .86

° N .94} 93 .94} 92 g } 86 -0
Yes .68 73 .53

Y o .51} o4 .61} 35 } a9 %
Yes 41 .52 .34

v .23} 34 .63} =8 28 } 32 %

Note: In the hidden bias-stranger design, someesshdye movements were recorded (“eyetracked”)cthedrs
were not (“open box”). This comparison providesseful test of whether obtrusively tracking a subgeeye
fixations affects their behavior.

Table 3: Sender and Receiver’'s Payoffs

Bias Eyetracked? g(std) (combined) pl(std) (combined) Predgystd)
Yes 101.13 (18.68 100.85 (19.28)

0 } o130 10127 11000 (000
No 101.89 (14.89) ' 102.07 (15.23) '
Yes 71.81 (39.56) 87.88 (28.63)

) 528 5085 o140 (19.39
No 75.44 (35.11) ' 84.44 (25.62) '
Yes 43.39 (52.17) 43.31 80.78 (27.17) 80 55

2 } (52.79) 27 5n  80-80(20.76)
No 43.21 (53.37) ' 80.21 (29.11) '

Note:?Payoffs are not exactly the same due to the ranumise added and certain groups excluded.
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Table 4: Level-k Classification Results

Session ID log L k Exact lambda Treatment

1 1 -46.23 SOPH 0.64 0.06 eyetracked subject #1
1 2 -2599 L1 0.87 0.00 eyetracked subject #2

1 3 -1598 L2 091 0.44 open box

2 1 -37.32 L1 0.60 0.52 eyetracked subject #3
2 2 -37.34 EQ 0.73 0.52 open box (eyetracked tod@0)
2 3 -25.70 SOPH 0.83 0.07 open box

3 1 -68.84 nla 0.13 0.01 eyetracked subject #4
3 2 -17.71 SOPH 0.89 0.12 eyetracked subject #5
3 3 -54.73 EQ 0.60 0.03 open box

4 1 -50.86 L1 0.51 0.04 eyetracked subject #6
4 3 -25.22 EQ 0.82 0.48 open box

5 1 -2226 L1 0.89 0.02 eyetracked subject #7
5 2 -35.77 L2 0.78 0.03 eyetracked subject #8
5 3 -25.17 EQ 0.87 0.04 open box

6 1 -16.27 L2 0.91 043 eyetracked subject #9
6 2 -42.02 SOPH 0.62 0.13 eyetracked subject #10
6 3 -52.17 LO 0.62 0.01 open box

Table 5: Average Sender Lookup Times (in seconc®)sa Game Parameters

Response Time

. : Sender-to-

Bias : : Sender Receiver .

b Periods Periods S@® pouogs  payoffs  Recelver
Ratio

1-15 31-45

0 9.78 7.24 0.83 2.93 1.71 1.71

1 11.77 8.76 0.81 3.80 2.66 1.43

2 16.84 8.99 091 4.67 3.26 1.43

all 13.47 8.52 0.86 3.99 2.72 1.47
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Table 6: Average Lookup Time per Row DependingrenState

True State Other State True-to-Other

Bias b Rows Rows Ratio
0 2.76 0.47 5.87
1 3.88 0.64 6.06
2 4.29 0.91 4.71
overall 3.83 0.72 5.32

Table 7: Individual Lookup Linear Measure Scores\Marious Level-k Types

Type SubjectID L1 L2 L3/EQ
#2 (1-2) 0.24 0.22 0.19
L1 #3 (2-1) 0.16 0.15 0.14
#6 (4-1) 0.26 0.24 0.18
#7 (5-1) 0.41 0.33 0.28
Average 0.27 0.23** 0.19***
L2 #8 (5-2) 0.27 0.26 0.21
#9 (6-1) 0.22 0.24 0.19
Average 0.24 0.25 0.20*
#1 (1-1) 0.17 0.16 0.13
SOPH #5 (3-2) 0.16 0.15 0.11
#10 (6-2) 0.21 0.13 0.07
Average _0.18 0.15 0.10

Note: Highest lookups scores underlindabokup scores if choice
classifications correspond to lookupsidfaced Note that they almost
always coincide for L1 and L2 types.

* ** and *** denotes p<0.05, p<0.01, p<0.0001 &igned rank sum test
using both own and other cells for each state, bad) and each subject
(of that type) with total lookup time > 1sec.
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Table 8: Pupil Size Regressions for 400 msec laterv

1.2~ -0.8~ 0.4~ 0.0~ 0.4~
Y PUPIL E
-0.8sec -0.4sec 0.0sec 0.4sec 0.8sec
constant o 107.27 108.03 106.19 | 109.56 108.67
(2.81) (2.55) (2.57) (2.05) (2.16)
LIE_SIZE * BIAS, B10 2.83 2.36 3.07 5.35*%* 5.57*
interactions (1.85) (2.22) (2.46) (1.16) (2.19)
B11 -1.02 -0.46 -0.36 2.16" 2.64*
(1.26) (2.32) (1.28) (1.22) (1.15)
B12 2.06* 1.52n 1.47* 1.83* 2.00**
(0.86) (0.79) (0.75) (0.75) (0.74)
N 414 415 414 ! 415 414
v 323.86 23543  194.40 | 25849  352.49
R? 0.291 0.299 0.263 | 0.365 0.438

Note: Robust standard error in parentheses; t{J-eatues lower than ~10 percent, *5 percent, **etqent,
and *** 0.1 percent. (Dummies for biases, stairdividual subjects and individual learning trerzate
included in the regression, but results are omitted
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Table 9: Predicting True States (Resampling 10@4gings. e. in parentheses)

X Hidden Bias-Stranger
MESSAGE *BIAS =1 B11 0.46** (0.12)
MESSAGE * BIAS =2 B12 0.42** (0.09)
ROW g * BIAS=1 B21 1.07* (0.24)
ROW et * BIAS=2 B2z 1.72** (0.20)
ROW gther* BIAS=1 Ba1 1.27* (0.22)
ROW gther* BIAS=2 Bs2 0.44** (0.15)
total observations N 357

N used in estimation 238.3

N used to predict 118.7

Actual Data

Hold-out Sample

Percent of wrong prediction (b=1) 58.5

Percent of errors of size (1,2,3+) (b=1) (61, 2B, 1

28.9

(79, 19, 2)

Average predicted payoff (b=1) 87.5 (28.8) 101.7** (2.1)
Percent of wrong prediction (b=2) 77.9 37.9
Percent of errors of size (1,2,3+) (b=2) (60, 3D, 1 (72, 24, 4)
Average predicted payoff (b=2) 80.9 (26.9) 98.0** (2.2)

Note: * and ** Denotes p<0.05 and p<0.001 (t-test)

& Observation with less than 0.5 seconds lookup &intewithout the needed pupil size measures

are excluded.

® Two sample t-test conducted against the actualffmgf receivers in the experiment who are

paired with eyetracked senders.
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Figure 1. Raw Data Pie Charts (b=0)
(Hidden Bias-Stranger)
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Figure 4: Lookup Icon Graph for b=1, Hidden Bias-Stanger, Type = L1
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Figure 5: Lookup Icon Graph for b=1, Hidden Bias-Stanger, Type = L2

Part (a): Sender Payoffs Part (b): Receiver Paffs
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Each row reports the lookup counts and time for thé'true state row” corresponding to the given
true state. The width of each box is scaled by thmumber of lookups and the height by the length of

lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.
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Figure 6: Lookup Icon Graph for b=2, Hidden Bias-Stanger, Type = L1
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Figure 7: Lookup Icon Graph for b=2, Hidden Bias-Stanger,, Type = L2

Part (a): Sender Payoffs Part (b): Receiver Paffs
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Each row reports the lookup counts and time for thé'true state row” corresponding to the given
true state. The width of each box is scaled by thmumber of lookups and the height by the length of

lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.
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Appendix for Online Access [NOT INTENDED FOR PUBLICATION]

Appendix: Methods

Since this paper incorporates economics experimerite laboratory, eyetracking devices,
and studies the issue of deception, we expectue teaders who come from various backgrounds,
such as economic theory, experimental economigehpghysiology, and lie-detection. Therefore,
we use this methodology appendix to address isthatanight already be very familiar to some
readers, but not to the rest. In particular, sectl introduces video-based eyetracking to
economists who are interested in learning abouhaust to study information acquisition, and
section 2 demonstrates the relevance of eyetrackiegonomic experiments. Section 3 provides
an argument for adding yet another paradigm (sered&iver games) to study lie-detection, instead
of adopting previous tasks such as CQT, GKT, &ection 4 provides the technical details of the
equipment and software programs used in this sioidthose who are interested in replicating our

results or applying this technique in future reskar

A.l What is Eyetracking?

There are several ways to track a person’s eyege dDthe most reliable and non-invasive
way is video-based. Video-based eyetracking wbskplacing cameras in front of subject’s eyes
to capture eye images and corneal reflection afaretl sensors, and record changes up to 50-
250Hz. Using eye movement images when subjectsolido fixate on certain positions on the
screen, a procedure called “calibration,” the expenter can trace eye fixations and saccades on
the screen and infer subject information acquisif@tterns. In addition to information lookups,

the eyetracker also records pupil dilation, whishcorrelated with arousal, pain, and cognitive



difficulty. Therefore, eyetracking provides addital data about one’s decision making process,

uncovering previously unobservable parameters.

A.ll What Does Eyetracking Tell Us About the “RealWorld”?

Since economists are used to judging theories dylywhether they predict choices
accurately, it is useful to ask what direct measnet of eye fixations and pupil dilation can add.
One possible inferential strategy from eyetrackstp separate competing theories that explain the
same behavior. Previous studies compared offetlsl@kups in three-period alternating-offer
bargaining (Camerer et al.,, 1993; Johnson et 802P and in initial responses to normal-form
games and two-person guessing games (Costa-Gones 8001; Costa-Gomes and Crawford,
2006). In those experiments, the same choicesidmilcaused by different decision rules, such as
L1 (optimize against perceived random play) and (Dftimize against perceived random play
excluding dominated strategies) in Costa-Gomes ¢€2@01), but are separated by different lookup
generated by these rufesThese studies illustrate the potential for ustegnitive data, besides

choices, for distinguishing between competing thesoor inspiring new theor.

! One potential concern of adopting eyetrackingisitiny. For example, in our experiments senderdcchave been
more truthful simply because they were watchedleéu, we do find many LO and L1 types (seven otivefve) in the
display bias-partner design. But subjects couldnbee truthful due to the repeated game effectnddesuch concerns
should be dealt with empirically by comparing egeked and open box subjects. In our experimeathitiden bias-
stranger adopts random matching and contains hattracked and open boxed subjects. Overall typssification
results are similar to Cai and Wang (2006). Algjothe sub-samples of eyetracked and open boxaslje show
some interesting differences, the average levstrafegic thinking is comparable: None of the eaalkted subjects were
EQ (L3), but there were many SOPH; none of the dmensubjects were L1, but the only LO subject aa®pen box.
This results in lower correlation between state medsage for the open box subjects, but therélibtge difference in
payoffs. Hence, we conclude that there is noisgiklifference between the two, though the sampgkeis small.

¢ For example, in the three-stage bargaining gam@amfierer et al. (1993) and Johnson et al. (20q®niag offers
typically fell between an equal split of the fipriod surplus and the subgame perfect equilibripnediction
(assuming self-interest). These offers could hesed by limited strategic thinking (i.e., playeis bt always look
ahead to the second and third round payoffs ofjtree), or by computing an equilibrium by lookingeadl, adjusting
for fairness concerns of other players. The failtor look at payoffs in future periods showed tiet deviation of
offers from equilibrium was (at least partly) duelimited strategic thinking, rather than entirelye to equilibrium
adjustment for fairness (unless “fairness” meartsahall responding to advantages conferred bytiagegic structure).
Furthermore, comparing across rounds, when plagerbok ahead at future round payoffs their resgltoffer are



Lookup patterns and pupil dilation could be uséfuthe sender-receiver games, because it
could potentially be used to distinguish betweempeting theories for overcommunication.
Although our experiments are not designed to sépdhese theories, overcommunication of the
true state is consistent with two rough accountslt gnd cognitive difficulty. Senders may feel
guilty about deceiving the receivers and poterntiatisting the receivers money. This is the direct
cost of lying. According to this theory, sendeifl {@ok at the receiver payoffs (since seeing tos
payoffs is the basis of guilt) and their pupils Ivdilate when they misrepresent the state (i.e.,
choose M different from S) due to emotional arodisah guilt. In this story, the guilt springs from
the senders’ realization that their actions cost riéceivers money, which depends on seeing the
receiver payoffs.

A different story is that senders find it cogvdlly difficult to figure out how much to
misrepresent the state. For example, senders téiatve that some other senders always tell the
truth, and receivers might therefore believe message truthful. Then strategic senders have to
think hard about how much to misrepresent the statake advantage of the receivers’ naiveté (as
in Crawford, 2003, Kartik, Ottaviani and SquintaBd07, Chen, 2007, and Kartik, 2008). In this
story, senders do not have to pay much attentioredeiver payoffs but their pupils will dilate
because of the cognitive difficulty of figuring gotecisely how much to exaggerate.

Ultimately, the goal is to open up the black boxhaiman brain, and model the decision

process of human behavior, which is similar to wieg been done to the firm. Instead of dwelling

closer to the self-interested equilibrium prediatisee Johnson and Camerer, 2004). Thus, the laddkiapcan actually
be used to predict choices, to some degree.

% Another example comes from the accounting litegatdames E. Hunton and McEwen (1997) asked asalyster
hypothetical incentive schemes to make earningsctst based on real firm data, and investigatédriathat affect the
accuracy of these forecasts. Using an eye-moveowanputer technology (Integrated Retinal Imagingt&m, IRIS),
they find that analysts who employ a “directiveoirhation search strategy” make more accurate fetechoth in the
lab and in the field, even after controlling foraye of experience. This indicates that eyetrackiy provide an
alternative measure of experience or expertiseishadt simply captured by seniority. Had they abserved the eye
movements, they could not have measured the diferen information search which is linked to aceyra



on the neoclassical theory of the firm, which isr@he a production function, modern economics
has opened up the black box of the firm, and edjylimmodeled its internal structure, such as the
command hierarchy, principle-agent issues, and f@a@uuction. Though there is still much to be

done before we come close to what has been achievéadustrial organization, eyetracking

provides a window to the soul and gives us a hirthe decision-making process inside the brain.
Just as we may infer a factory’s technology lewebbserving its inputs and wastes, we may also
infer a person’s reasoning process by observingnfieemation he or she acquires (inputs) and how

hard does he think (indexed by pupillary response).

A.lll What Does Economics Have to Offer Regarding lie-detection?

This study introduces an economic framework that mgssing in most previous
psychophysical studies on deception and lie detectiAn advantage of the strategic information
transmission game for studying deception is thateygheory makes equilibrium predictions about
how much informed agents will exaggerate what tkreyw, when they know that other agents are
fully-informed about the game’s structure and theentives to exaggerate. Even when equilibrium
predictions fail, there are various behavioral niedsuch as level-k reasoning and quantal response
equilibrium, which provide precise predictions tha¢ testable in the lab. And while in most other
deception studieb, subjects are instructed to lie or give weak oorfyocontrolled incentives,

subjects in experiments like ours choose voluntavihether to deceive others or not (see also John

* For a survey of studies on (skin-conductance)gralyh, see Theodore R. Bashore and Paul E. Ragg)(1%or lie-
detection studies in psychology, see the revievRaifert E. Kraut (1980) and Aldert Vrij (2000). rrocomprehensive
discussion of different cues used to detect lies, Bella M. DePaulo et al. (2003). For individdéferences in lie-
detection (Secret Service, CIA and sheriffs dodrgtsee Paul Ekman and Maureen O’Sullivan (198d)Ekman et al.
(1999). More recently studies in neuroscience guéimctional magnetic resonance imaging (fMRI) it# Sean A.
Spence et al. (2001), D. D. Langleben et al. (2@02) F. Andrew Kozel et al. (2004).

®> One exception is Samantha Mann et al. (2004) whisdd footage of real world suspect interrogatimrest lie-
detecting abilities of ordinary police. However|od of experimental control is lost in this setfin One interesting
findings in this study is that counter to convenéibwisdom, the more subjects relied on stereofymines such as gaze
aversion to detect lies, thessaccurate they were.



Dickhaut et al., 1995, Andreas Blume et al., 199®)1 and Cai and Wang, 2006%enders and

receivers also have clear measurable economictimesrio deceive and to detect decepfion.

A.lIV Technological Details

Eyetracking data and button responses are recanded) the mobile Eyelink 1l head-
mounted eyetracking system (SR Research, Osgoateyi@). Eyetracking data are recorded at
250 Hz. The mobile Eyelink Il is a pair of tiny caras mounted on a lightweight rack facing
toward the subjects’ eyes, and is supported by cdaifle head straps. Subjects can move their
heads and a period of calibration adjusts for meadement to infer accurately where the subject is
looking. Nine-point calibrations and validation® grerformed prior to the start of each experiment
in a participant’s session. Accuracy in the vaimas typically is better than 0.5° of visual angle
Experiments are run under Windows XP (Microsoft.Jan Matlab (Mathworks, Inc., Natick, MA)
using the Psychophysics Toolbox (David H. Braind@Q7; Denis G. Pelli, 1997) and the Eyelink
Toolbox (Frans W. Cornelissen et al., 2002).

Eyetracking data are analyzed for fixationengisthe Eyelink Data Viewer (SR Research,

Hamilton, Ontario). In discriminating fixations,ewset saccade velocity, acceleration, and motion

® In fact, when the senders were asked after therampnt whether they considered sending a numiftareint from
the true state deception, 8 of the subjects sasd while another 3 said no, but gave excuses ssich’'s: part of the
game” or “the other player knows my preferenceeddhce.” Only 1 subject said no without any exatem. These
debriefing results also suggest that guilt hasgaldittle role in the experiment.

" Most lie-detection studies have three drawback¥:They do not use naturally-occurring lies (beeaitsis then
difficult to know whether people are actually lyingnot). Instead, most studies create artifilbtéel by giving subjects
true and false statements (or creating a “crimeat@”) and instructing them to either lie or tile truth, sometimes to
fool a lie-detecting algorithm or subject. Howevarstructed deception can be different than ndjucecurring
voluntary deception, and the ability to detectrinsted deception might be different than detectiolyintary deception.
(2) The incentives to deceive in these studiestypieally weak or poorly controlled (e.g., in Spenet al. (2001) all
subjects were told that they successfully fooleditivestigators who tried to detect them; in MarkF@ank and Ekman
(1997), subjects were threatened with “sitting orcadd, metal chair inside a cramped, darkened rdabeled
ominously XXX, where they would have to endure ahgre from 10 to 40 randomly sequenced, 110-destiaelling
blasts of white noise over the course of 1 hr” bawer actually enforcing it.). (3) Subjects ar@itglly not
economically motivated to detect deception. Experits using the strategic-transmission paradigmm fygame theory
address all these drawbacks.



thresholds to 30%sec, 9500°/&eand 0.15°, respectively. Regions of interestI§rQr the boxes
subject look up, are drawn on each task image ubmgirawing functions within the Data Viewer.
Measures of gaze include Fixation Number (i.e.,tttal number of fixations within an ROI) and
Fractional Dwell Time (i.e., the time during a giveund spent on fixating a given ROI divided by
the total time between image onset and respon®ajy those fixations beginning between 50ms
following the onset of a task image and offsethaf task image are considered for analysis.

All task images are presented on a CRT moiitér9 in x 11.9 in) operating at 85 or 100 Hz
vertical refresh rate with a resolution of 1600gdéxx 1200 pixels, and at an eye-to-screen distance

of approximately 24 inches, thus subtending ~36eegyof visual angle.
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Appendix: Experiment Instructions

The experiment you are participating in consists of 1 session, having 45 rounds. At the end of
the last session, you will be asked to fill out a questionnaire and paid the total amount you
have accumulated during the course of the sessions in addition to a $5 show-up fee.
Everybody will be paid in private after showing the record sheet. You are under no obligation
to tell others how much you earned.

During the experiment all the earnings are denominated in FRANCS. Your dollar earnings are
determined by the FRANC/$ exchange rate: 200 FRANCS = $1.

In each round, the computer program generates a secret number that is randomly drawn from
the set {1,2,3,4,5}. The computer will display this secret humber on member A’s screen.
After receiving the number, member A will send the message “The number I received is XX,"”
to member B by staring at box XX. Hearing the message from member A, member B will then
choose an action. In particular, member B can choose action 1, 2, 3, 4, or 5, using the game
pad. Earnings of both members depend on the secret humber and member B’s action.

Member B’s earnings is higher when member B’s action is closer to the secret humber, while
member A’s earnings is higher when member B’s action is closer to the secret number plus
the preference difference. The preference difference is either 0, 1 or 2, with equal chance,
and will also be displayed and announced at the beginning of each round.

For example, if the preference difference is 2 and the secret number is 3, member B’s earnings
are higher if his or her action is closer to 3. However, member A’s earnings is higher when
member B’s action is closer to 3 + 2 = 5. The earning tables are provided to you for
convenience.

To summarize, in each round, the computer will display the preference difference and the
secret number on member A’s screen. Then, member A stares at a box (on the right)
containing the desired message. Member B will hear the preference difference and the
message “The number I received is XX,” and then choose an action. The secret number is
revealed after this choice, and earnings are determined accordingly.

Practice Session: 3 Rounds
Session 1: 45 Rounds

Member B: Please make sure you record the earnings in your record sheet. Your payments
will be rounded up. Thank you for your participation.



Appendix: Supplemental Figures and Tables
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Figure S2: Raw Data Pie Charts (b=0), Figure SRaw Data Pie Chart (b=1),
(Display Bias-Partner) (Display Biagartner)
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Figure S4: Raw Data Pie Chart (b=2), (Display Biafartner)
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The true states are in rows, and senders’ messaga® in columns. Each cell contains the average
action taken by the receivers and a pie chart breadown of the actions. Actions are presented
in a gray scale, ranging from white (action 1) to lack (action 5). The size of the pie chart is
proportional to the number of occurrences for the orresponding state and message.
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Figure S5: Lookup Icon Graph for b=0, Type = all
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Figure S6: Lookup Icon Graph for b=1, Display BiasPartner, Type = all
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Figure S7: Lookup Icon Graph for b=2, Display BiasPartner, Type = all
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Each row reports the lookup counts and time for the‘true state row” corresponding to the given true
state. The width of each box is scaled by the nurab of lookups and the height by the length of
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acros=ach row.
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Figure S8: Lookup Icon Graph for b=1, Hidden Bias-$&anger, Type = all
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Figure S9: Lookup Icon Graph for b=2, Hidden Bias-$&anger, Type = all

Part (a): Sender Payoffs Part (b): Receiver Baffs
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Each row reports the lookup counts and time for the‘true state row” corresponding to the given true
state. The width of each box is scaled by the numab of lookups and the height by the length of
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.
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Table S1A: Learning — Actual Information Transnssi

Display Bias-Partner

BIAS Rounds  Corr(S, M) Corr(M, A) Corr(S, A) Pretid Corr(S, A)

1-15 0.880 0.833 0.732

0 16-30 0.976 0.949 0.925 1.000
31-45 0.937 0.942 0.919
1-15 0.620 0.730 0.477

1 16-30 0.685 0.724 0.577 0.645
31-45 0.598 0.713 0.415
1-15 0.384 0.584 0.372

2 16-30 0.327 0.526 0.306 0.000
31-45 0.279 0.643 0.291

Hidden Bias-Stranger

BIAS Rounds  Corr(S, M) Corr(M, A) Corr(S, A) Pretiid Corr(S, A)

1-15 0.887 0.816 0.716

0 16-30 0.941 0.951 0.885 1.000
31-45 0.888 0.944 0.866
1-15 0.602 0.730 0.436

1 16-30 0.660 0.727 0.561 0.645
31-45 0.555 0.714 0.393
1-15 0.380 0.592 0.372

2 16-30 0.347 0.540 0.313 0.000
31-45 0.232 0.636 0.288
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Table S1B: Learning Sender and Receiver’'s Payoffs

Display Bias-Partner

BIAS Rounds g (std) Wk (std) Predictedp(std)
1-15 96.36 (23.47) 96.48 (24.37)
0 16-30 104.63 (11.65) 104.78 (12.01) 110.00 (0.00)
31-45 103.50 (12.46) 103.19 (12.18)
1-15 79.38 (31.83) 87.04 (26.78)
1 16-30 69.19 (40.15) 87.98 (28.94) 91.40 (19.39
31-45 71.83 (39.05) 85.52 (27.09)
1-15 46.06 (50.91) 80.63 (25.93)
2 16-30 46.74 (51.11) 81.20 (27.63) 80.80 (20.76
31-45 35.87 (55.73) 79.70 (29.65)
Hidden Bias-Stranger
BIAS Rounds g (std) W (std) Predictedp(std)
1-15 95.38 (23.56) 95.72 (24.15)
0 16-30 102.40 (15.18) 102.52 (15.53) 110.00 (0.00
31-45 102.00 (16.89) 101.69 (17.30)
1-15 78.76 (35.63) 85.88 (28.92)
1 16-30 69.18 (39.40) 87.45 (28.61) 91.40 (1p.39
31-45 71.40 (38.82) 84.73 (26.87)
1-15 46.76 (49.84) 81.06 (26.36)
2 16-30 46.75 (50.19) 81.81 (27.15) 80.80 (20.76
31-45 36.22 (55.94) 79.29 (29.10)
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Table S2: Information Transmission: Correlationsiaen S, M and A, Display Bias-Partner

Bias rs, M) r(M, A) r(s, A Predicted r(S, A)
0 .99 1.00 .99 1.00
1 73 74 72 .65
2 .63 57 .50 .00

Note: In the display bias-partner design, all sesideye movements were recorded (“eyetracked”).

Table S3: Sender and Receiver’'s Payoffs, DisplagBartner

Bias W (std) Wk (std) Pred. g (std)

0 109.14 (4.0® 109.14 (4.07 110.00 (0.00)
1 93.35(20.75) 94.01(19.86)  91.40 (19.39)
2 41.52(49.98) 85.52(25.60) 80.80 (20.76)

Note:?*Payoffs are exactly the same for senders and msedue to the symmetry of the payoffs when b=0.

Table S4: Level-k Classification Results, Displag®Partner

Session ID logL k Exact lambda
-36.33 LO 0.71  0.06
-51.47 LO 0.64  0.00
-33.01 LO 0.78 0.03
-19.81 L1 0.82 0.49
-38.93 SOPH 0.76  0.04
-45.05 EQ 0.69 0.05
-34.89 LO 0.80 0.00
-27.36 L2 0.84 0.04
-31.80 L1 0.80 0.04

© 00 N O O B WD
© 00 N O O~ WDN P

10 10 -24.30 L1 0.84 048
11 11 -22.35 L2 0.87 0.45
12 12 -31.07 L2 0.73 1.00
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Table S5: Average Sender Lookup Times (in secgsacGame Parameters, Display Bias-Partner

Response Time

. . Sender-to-
Bias . . State Bias Sender Receiver Receiver

b Periods Periods Payoffs Payoffs Ratio

1-15 31-45

0 5.42 2.39 0.65 0.41 0.73 0.27 2.70

1 7.92 5.44 1.47 0.99 2.29 1.05 2.18

2 9.73 8.12 1.72 152 3.03 1.50 2.02
all 8.07 5.25 1.34 1.02 2.14 1.00 2.14

Table S6: Average Lookup Time per Row DependinghenState, Display Bias-Partner

. True State Other State True-to-Other
Bias b .
Rows Rows Ratio
0 0.54 0.11 491
1 2.06 0.32 6.44
2 2.24 0.57 4,28
overall 1.71 0.36 4.75

Table S7A: Average response time change for diftdbeases, Display Bias-Partner

Average for

Average for

Average for

Bias first 15 rounds middle 15 rounds last 15 rounds
0 38 5.42 47 291 55 2.39
1 73 7.92 60 5.44 59 5.44
2 67 9.73 68 8.96 51 8.12
overall 178 8.07 175 6.13 165 5.25

* The numbers of observations are slightly diffédeacause we exclude 10 rounds where subjectoohasktthe
keyboard to make their decision. Also, subjech#d severe pain and the experimenter was forcstbpothe

experiment at the end of round 33.

Note: Since the bias was randomly determined eaahd; and subject #4 stopped at round 33 (duedessxpain
wearing the eyetracker), numbers of observatioasat equal. Dropping subject #4 does not chamgedsults.
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Table S7B: Average response time change for diftdseses, Hidden Bias-Stranger

Bias Average for N Average for Average for
first 15 rounds middle 15 rounds last 15 rounds
0 30 9.78 24 5.54 29 7.24
1 56 11.77 58 10.78 59 8.76
2 61 16.84 65 10.23 49 8.99
overall 147 13.47 147 9.68 137 8.52

* The numbers of observations are slightly diffédeacause we exclude 12 rounds where subjectoohasktthe
keyboard to make their decision. Also, subjech&8 calibration issues and the experimenter waedbto stop
eyetracking at the end of round 40.

Note: Since the bias was randomly determined eaahd;, and subject #4 stopped at round 40 weariag th
eyetracker), numbers of observations are not equal.

Table S8: Pupil Size Regressions for 400 msecMakgrDisplay Bias-Partner

-1.2~ -0.8~ -0.4~ 0.0~ 0.4~
Y PUPIL
-0.8sec -0.4sec 0.0sec 0.4sec 0.8sec
constant o 99.59 99.78 104.62 111.81 109.95
(2.45) (2.41) (2.19) (1.84) (2.07)
LIE_SIZE * BIAS, Bio 1.20 6.41 3.92 -3.91 0.58
interactions (3.21) (6.38) (3.06) (2.76) (7.36)

Bt 2.79* 3.40%  3.28%  4.55%% 4 20%*
(1.19) (1.17) (0.97) (0.86) (0.73)

Biz  3.49%*  371%*  3.04%*  2.00% 328
(0.99) (0.98) (0.84) (0.87) (0.90)

N 499 497 499 508 503
7 224.54 337.22 500.93 785.32 631.21
R? 0.271 0.346 0.455 0.539 0.557

Note: Robust standard error in parentheses; t{J-@atues lower than ~10 percent, *5 percent, **etqent, and
*** (.1 percent. (Dummies for biases, states, wdlial subjects and individual learning trendsiactuded in the
regression, but results are omitted.)
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Table S9: Predicting True States (Resampling 1@@gj s.e. in parentheses), Display Bias-Partner

X Display Bias-Partner
MESSAGE *BIAS =1 B11 0.64* (0.22)
MESSAGE * BIAS =2 B12 0.91* (0.23)
ROWei * BIAS=1 Bo1 0.98** (0.21)
ROW et * BIAS=2 B22 1.00** (0.27)
ROW gther * BIAS=1 Ba1 0.25  (0.16)
ROW giher* BIAS=2 Bs2 0.39* (0.17)
total observations R 208
N used in estimation 139.3
N used to predict 68.7
Actual Data Hold-out Sample
Percent of wrong prediction (b=1) 56.2 29.2
Percent of errors of size (1,2,3+) (b=1) (80, 15,5 (74,19, 7)
Average predicted payoff (b=1) 93.4 (22.3) 100.7* (2.4)
Percent of wrong prediction (b=2) 70.9 58.7
Percent of errors of size (1,2,3+) (b=2) (67, 26, 7 (73, 22, 5)
Average predicted payoff (b=2) 86.2 (23.8) 91.8* (3.4)

Note: * and ** Denotes p<0.05 and p<0.001 (t-test)
& Observation with less than 0.5 seconds lookup tintewithout the needed pupil size measures ataded.
® Two sample t-test conducted against the actuabffmyf receivers in the experiment who are pawéth
eyetracked senders.
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Table S10: Average Sender Fixation Counts and Ljodkme across Game Parameters

Res- State Bias Sender Payoffs  Receiver Payoffs
Treat- Biasb Ponse
ment time Fixation Lookup Fixation Lookup Fixation Lookup Fixation Lookup

(count) (sec.) (count) (sec.) (count) (sec.) (count) (sec.)

(sec.)

Displayed 0 3.59 2.6 0.65 2.1 0.41 3.0 0.73 1.4 0.27
Bias 1 6.86 5.0 1.47 3.9 0.99 8.1 2.29 3.9 1.05

- Partner 2 9.68 6.2 1.72 5.5 1.52 10.6 3.03 54 501

overall 7.00 4.8 1.34 4.0 1.02 7.6 2.14 3.7 1.00

Hidden 0 7.65 3.0 0.83 - - 12.0 2.93 7.5 1.71
Bias 1 10.95 3.1 0.81 - - 14.2 3.80 10.7 2.66

- Stranger 2 12.91 3.4 0.91 - - 17.5 4.67 12.4 3.26
overall 11.12 3.2 0.86 - - 15.1 3.99 10.8 2.72

Table S11: Average Fixation Counts and Lookup TjpeeRow

True State Rows Other Rows

Treatment Bias b Fixation Countd.ookup Time Fixation Counts Lookup Time
(countsper ro (sec. per row) (countsper rowy  (Sec. per row)

Displayed 0 2.2 0.54 0.5 0.11
Bias 1 6.8 2.06 1.3 0.32

- Partner 2 7.8 2.24 2.0 0.57
overal 5.9 1.71 1.3 0.36

I

Hidden 0 11.4 2.76 2.0 0.47
Bias 1 14.4 3.88 2.6 0.64

- Stranger 2 15.7 4.29 3.6 0.91
overall 14.3 3.83 2.9 0.72
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Table S12: Individual Types and Log Likelihood un8gike-logit and Logit Specification

Ses-Sub-
sion ject

Spike-logit (baseline) Spike-logit (without bias=0) Logit Logit (without bias=0)
LO L1 L2 L3 SOPH LO L1 L2 L3 SOPH LO L1 L2 L3 SOPH LO L1 L2 L3 SOPH

1

o O 01 o1 O B~ B W W WDNDNDNPEPEPRP

6

1

N P W NP W PFP, WONPFP WONPFP WDN

3

-60.20 -55.68 -46.36 -53.16 -46.23 -50.47 -43.08 -36.68 -41.48 -35.28 -66.92 -52.59 -50.83 -54.65 -48.72 -54.44 -42.12 -40.07 -43.31 -38.50
-67.54 -25.99 -55.16 -56.98 -55.82 -55.14 -24.72 -50.15 -51.96 -50.80 -66.85 -36.95 -49.41 -51.79 -48.10 -57.46 -33.19 -42.58 -44.18 -42.21
-72.16 -50.97 -15.98 -40.06 -22.60 -56.92 -42.76 -8.82 -33.29 -17.74 -72.21 -46.26 -16.26 -31.31 -19.94 -57.94 -39.55 -10.24 -24.95 -16.32
-55.43 -37.32 -43.27 -43.29 -41.45 -46.88 -30.94 -36.70 -36.82 -35.30 -56.20 -35.57 -36.33 -37.68 -32.92 -47.12 -29.33 -29.29 -30.01 -26.56
-49.08 -47.07 -45.17 -37.34 -43.01 -41.28 -39.95 -38.68 -32.57 -37.13 -54.41 -48.18 -44.00 -40.05 -39.73 -42.03 -37.90 -34.10 -30.40 -31.55
-63.73 -49.05 -33.23 -31.65 -25.70 -49.74 -40.08 -25.05 -23.07 -17.26 -63.97 -43.32 -28.04 -27.62 -24.89 -49.89 -35.66 -20.95 -20.18 -19.66
-68.32 -68.84 -71.93 -71.16 -71.29 -56.34 -54.93 -57.48 -56.92 -57.48 -69.40 -71.94 -72.43 -72.43 -72.42 -56.72 -57.93 -57.94 -57.94 -57.94
-71.84 -47.10 -22.95 -30.78 -17.71 -62.49 -43.98 -21.86 -28.76 -16.95 -71.79 -41.49 -18.26 -27.31 -21.02 -62.77 -38.52 -16.86 -24.02 -19.27
-72.35-71.84 -59.83 -54.73 -55.24 -64.40 -65.98 -57.14 -52.56 -53.07 -72.43 -71.80 -63.97 -61.77 -62.83 -65.99 -65.85 -59.46 -57.33 -58.77
-54.83 -50.86 -57.41 -62.43 -58.71 -48.26 -43.88 -49.87 -54.04 -50.51 -54.81 -49.71 -57.41 -61.08 -56.59 -47.41 -42.74 -48.53 -51.20 -48.16
-69.49 -43.38 -29.43 -25.22 -27.41 -56.24 -36.20 -22.70 -18.81 -21.88 -69.77 -38.12 -23.20 -22.61 -20.73 -56.15 -31.29 -16.80 -15.57 -15.89
-68.90 -22.26 -44.60 -42.75 -40.74 -61.32 -21.50 -41.94 -40.52 -38.51 -67.29 -23.01 -33.07 -35.16 -29.89 -60.41 -21.50 -29.46 -30.98 -27.38
-69.84 -54.26 -35.77 -48.07 -40.75 -54.31 -42.78 -21.10 -37.72 -30.23 -69.44 -48.58 -40.71 -45.07 -39.44 -54.20 -37.41 -29.60 -33.32 -30.16
-70.23 -44.73 -30.63 -25.17 -29.33 -61.00 -40.19 -26.93 -21.44 -26.26 -71.66 -41.34 -21.23 -19.50 -17.81 -61.16 -36.49 -17.38 -15.43 -15.35
-70.88 -46.20 -16.27 -35.62 -22.96 -57.94 -39.17 -9.11 -29.26 -17.88 -70.51 -38.41 -14.12 -23.23 -15.98 -57.89 -32.36 -8.53 -17.17 -12.80
-65.57 -49.32 -43.38 -47.52 -42.02 -56.82 -44.38 -38.05 -43.33 -37.08 -70.22 -47.91 -48.39 -52.75 -45.64 -57.70 -41.36 -40.60 -43.83 -38.75
-53.12 -68.57 -70.88 -71.41 -70.87 -46.26 -59.73 -62.40 -62.66 -62.35 -56.49 -67.30 -71.21 -71.31 -70.36 -48.23 -58.70 -62.09 -62.15 -61.50

Note: Maximum likelihood for each specificationdamlined Classification results that are consistent whihbaseline specification (spike-logit) aréoid.
Subject 3-1 has compliance rates less than 20 misfiareall types under both spike-logit specificats, and hence, is deemed as unclassified.



