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Abstract

We report experiments on sender-receiver gamesaniihcentive for senders to
exaggerate. Subjects “overcommunicate’— messagesare informative of the true state than
they should be, in equilibrium. Eyetracking shotattsenders look at payoffs in a way that is
consistent with a level-k model. A combination ehder messages and lookup patterns predicts
the true state about twice as often as predictesbjojtibrium. Using these measures to infer the
state would enable receiver subjects to hypothstiearn 16-21 percent more than they actually
do, an economic value of 60 percent of the maxirmarement.
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“Why do almost all people tell the truth in ordineeveryday life2—Certainly not
because a god has forbidden them to lie. The reasdirstly because it is easier; for lying
demands invention, dissimulation and a good merhory.

— Friedrich Nietzsche, Human, All Too Human, 11.5878/1996

During the tech-stock bubble, Wall Street secuaitglysts were alleged to inflate
recommendations about the future earnings prospéditens, in order to win investment
banking relationships with those firrhsSpecifically, analysts in Merrill Lynch used adipoint
rating system (1=Buy to 5=Sell) to predict how #heck would perform. They usually gave two
1-5 ratings for short run (0-12 months) and long fmore than 12 months) performance
separately. Henry Blodget, Merrill Lynch’s famousigtimistic analyst, “did not rate any
Internet stock a 4 or 5” during the bubble perid899 to 2001). In one case, the online direct
marketing firm LifeMinders, Inc. (LFMN), Blodgetrt reported a rating of 2-1 (short run
“accumulate”—long run “buy”) when Merrill Lynch wasirsuing an investment banking
relationship with LFMN. Then, the stock price guatly fell from $22.69 to the $3-$5 range.
While publicly maintaining his initial 2-1 ratingglodget privately emailed fellow analysts that
“LFMN is at $4. | can't believe what a POS [piexfeshit] that thing is.” He was later banned

from the security industry for life and fined miltis of dollars.

! For a detailed description of the tech-stock babsée Michael J. Brennan (2004). For evidencardéng analyst
recommendations affected by conflicts of interseg Hsiou-wei Lin and Maureen F. McNichols (199&) &oni
Michaely and Kent L. Womack (1999).

2 See Complaint in Securities and Exchange Comnmissitienry M. Blodget, 03 CV 2947 (WHP) (S.D.N.Y.)
(2003), paragraph 11-12 and 70-72, Securities actidhge Commission Order Against Henry M. Blodg@é0g),
and United States District Court Final JudgemenSeaurities and Exchange Commission v. Henry MdBé& 03
Civ. 2947 (WHP) (S.D.N.Y.) (2003).



This case is an example of a sender-receiver gathalivergent preferences (sometimes
called a “cheap talk” or “strategic informationrismission” game). Sender-receiver games are
simple models of economic situations in which ogerd has an incentive to exaggerate the truth
to another agent. The central issues in these gamneehow well uninformed players infer the
private information from the actions of players wdre better-informed, and what informed
players do, anticipating the behavioral inferentthe uninformed playerad/incent P. Crawford
and Joel Sobel (1982) showed that in such gameseinder’s incentive to exaggerate when his
preferences differ from the receiver’s precludagildaria in which communication is perfectly
informative. Instead, all equilibria are noisydahe larger the difference between the sender’s
and receiver’s preferences, the noisier is the mdstmative equilibrium. But as in any
equilibrium model, there is no systematic deceptidre receiver’s beliefs conditional on the
sender’'s message are unbiased estimates of thetétee Although previous experimental work
starting with John Dickhaut et al. (1998ndreas Blume et al. (1998, 2001), and cumulating
with Hongbin Cai and Joseph Tao-yi Wang (2006) gareonfirms Crawford and Sobel’s
comparative statics prediction regarding the nessnof communication, experiments also tend
to disconfirm their model’s prediction that withvdrgent preferences, senders never tell the truth
except by accident, and that receivers are newteswtically deceived. Crawford (2003) and
Navin Kartik, Macro Ottaviani and Francesco Squin{2007) show that both
“overcommunication” (senders telling the truth mtran equilibrium predicts) and systematic
deception can be explained by a class of non-dmjuifn models of strategic thinking called
level-k models. Cai and Wang (2006) show that suofodel can describe the data from their
sender-receiver experiments and could help to exgha overcommunication their subjects

exhibits. The present paper builds on these ieaunld attempts to investigate the cause behind



the behavior patterns in such gamesderstanding these behavioral patterns betteridlzoa
in the design of institutions to foster more acteiteansmission of information when preferences
diverge.

Incentives for exaggeration are common. Beside8thdget case mentioned above,
similar dramatic accounting frauds in the last {@ars, such as Enron, Worldcom, and Tyco,
might have been caused by the incentives of masdged perhaps their accounting firms) to
inflate earnings prospects (Brennan, 2004, andhBliadall and Kevin J. Murphy, 2003). For
instance, Enron executives told shareholders atingsethat earnings prospects were rosy, at the
same time as the executives were selling their givames, leading to indictments and trials in
20062 In universities, grade inflation and well-polisheecommendation letters help schools
promote their graduates (Henry Rosovsky and MattHawtiey, 2002). Other examples of
incentives for strategic information transmissinalude government-expert relationships in
policy making, doctor-patient relationships in hieaare choices, teacher cheating on student
tests (Brian A. Jacob and Steven D. Levitt, 200®) the floor-committee relationship in
Congress.

This paper reports experiments on a sender-racgarae. In the game, a sender learns
the true state (a number S) and sends a costlessageeM to a receiver who then chooses an
action A. Payoffs only depend on S and A so thesage M is “cheap talk.” The receiver

prefers to choose an action that matches the statéhe sender wants the receiver to choose an

% According to an SEC complaint filed in court, Kettm Lay, Enron’s then chairman and CEO, said “Wehiti
our numbers” and “My personal belief is that Ensbock is an incredible bargain at current pricesam employee
online forum on September 26, 2001. However, inptti@r two months he was actually making net safesver
$20 million in Enron stock (back to Enron). See®® Amended Complaint in Securities and Exchange
Commission v. Richard A. Causey, Jeffrey K. Skdliand Kenneth L. Lay, Civil Action No. H-04-0284 gkinon)
(S.D. Tx.) (2004), paragraph 81-82.



action closer to S+b, where b is a known bias patamThe value of b is varied across rounds.
When b=0 senders prefer that receivers ch&se they almost always just announce S (i.e.,
M=S), and receivers believe them and choose A=Meiitr0 senders would prefer to
exaggerate and announce M>S if they thought receiveuld believe them. Since subjects
choose 1-5, the numbers in our game are coincitletiiea same as those used by Merrill Lynch.
Indeed, when b>0, we find that our subjects haedlyr report the number 1 (in only 8 percent of
208 rounds), much as Blodget never rated a stankS4(the equivalent of 1-2 in our game).
However, our game is presented in abstract terrtieowt reference to stock analysts or
deception. This could make subjects feel lessyguwihen ‘deceiving’ others in the experiment.
Besides measuring choices in these games, ouriegrgruses video-based
“eyetracking” to measure what payoffs or game pa&tans sender subjects are looking at (see
Appendix: Methods). Eyetracking software recordeiwe players are looking on a computer
screen every 4 milliseconds. These data are alusgiplement to econometric analysis of
choices, when decision rules which produce singitexices make distinctive predictions about
what information is needed to execute these ruResvious “eyetracking” studies used a
“Mouselab” system in which moving a cursor intoa mpens the box’s contents and are more
accurately described as “mouse-tracking.” See Camnet al. (1993), Miguel Costa-Gomes et al.
(2001), Eric Johnson et al. (2002), Costa-GomesCaad/ford (2006), Xavier Gabaix et al.

(2006); and Crawford (2008).

* One small handicap of the Mouselab system isttfeaexperimenter cannot be certain the subjedattisafly
looking at (and processing) the contents of thendjex. Our system measures the eye fixation soameell if the
subject’s eye is wandering, and pupil dilation isasured at the same time (which Mouselab cannot do)
Nevertheless, Mouselab systems can be installegpbhin many computers to measure lookups of mgents at
the same time, which could prove useful in runreéffgcient subjects and studying attention simultargy in

complex markets with many agents.



The eyetracking apparatus also measures how nulgicss’ pupils “dilate” (expand in
width and area). Pupils dilate under stress, ¢vgnilifficulty, arousal and paih.Pupillary
responses have also been measured in the lieidetétgrature for many years (See for
example, F. K. Berrien and G. H. Huntington, 194Heilveil, 1976, Michel P. Janisse, 1973,
M. T. Bradley and Janisse, 1979, 1981, Janiss@aadley, 1980, R. E. Lubow and Ofer Fein,
1996, and Daphne P. Dionisio et al., 2001). Tistgdies suggest that pupil dilation might be
used to infer deceptive behavior because sendetsl&ception stressful or cognitively difficult.

The choices, eyetracking, and pupil dilation measgenerate four basic findings:

1. Overcommunication in sender-receiver game is cterdisvith LO, L1, L2, and
equilibrium (EQ) sender behavior produced by allkv@odel of the sender-receiver
game in which LO sender behavior is anchored #t-telling.

2. Eyetracking data provide the following support tlee level-k model:

a. Attention to structure and own payofender subjects pay attention to important
parameters (state and bias) of the sender-reag@ree. This indicates subjects
are thinking carefully about the basic structur¢hef game, even if they are not
following equilibrium theory. Sender subjects adlsok at their own payoffs

more than their opponents’.

® For pupillary responses to arousal, see R. A. $iatlal. (1967), R. Bull and G. Shead (1979), aacréh C.
Aboyounand James N. Dabbs (1998). For pupillaspoeses to cognitive difficulty, see Jackson Be@t®s2) and
B. C. Goldwater (1972). For pupillary responsepdm, see C. Richard Chapman et al. (1999) andishiuOka et
al. (2000). Min Jeong Kang et al (2008) show thails dilate in anticipation of finding out thesawvers to trivia
guestions about which they are curious. (Theirsagdbrted curiosity is also shown by fMRI to actevéhe ventral
striatum, a brain region involved in anticipatediaed or “prediction error” and learning; and cuiigpglso
enhances later memory for mistaken answers.)



b. Truth bias Sender subjects focus too much on the true ptateff row. This bias
is consistent with a failure to “think in the opgor’'s shoes” as in Meghana Bhatt
and Colin F. Camerer (2005).

c. Individual level-k lookup pattern&ender subjects focus on the payoffs
corresponding to the action A = S (LO reasoningSAb (L1 reasoning), ..., up
to the corresponding level-k reasoning for eaclividdal subject based on his or
her level-k type. This indicates particular lekelype subjects do generally
exhibit the corresponding lookup patterns.

3. Right before and after the message is sent, sénulgris dilate more when their
deception is larger in magnitude. This suggedtgests feel guilty for deceiving (as in
Uri Gneezy, 2005), or deception is cognitively idiflt (as the level-k model assumés).
4. Prediction: Based on the eyetracking results, wetgato predict the true state observed
by the sender using lookup data and messages.pfddgtion exercise suggests it is
possible to increase the receiver’s payoff (beywhdt was earned in the experiments)
by 16-21 percent, resulting in an economic valuéGpercent of the maximum
achievable increase.
Finally, this study shows the possible relevancpsytchology and neuroscience to
economics. Douglas Bernheim (2008) suggests thaeconomics will be successful if it can
show how new non-choice data can solve a predictiorormative problem that could not be

solved by standard choice data. One such prolddraw to extract private information from

® Note that although the pupil dilation results epesistent with both the guilt and cognitive diffity explanations,
the lookup results are more consistent with thenitvg difficulty story of overcommunication, sincéferent
lookup patterns each suggest a specific (leveé&¥oning process that has a particular level afiteg difficulty.

It is not obvious how guilt alone (or variationsguilt) can produce this result.



choices. In the standard model, private informaisotoy definition, not directly observable to
outsiders (such as receivers in our game); it cay lze inferred assuming a particular model of
behavior (e.g., inferring private values from aostbids). If eyetracking, pupil dilation, fMRI,

or other biological measures enable one to infererabout private information than by using
only choices, those “new” data—new to economisiat is—have some added value for
something economists care about. Our data saligf\ctiterion because lookups and pupll
dilation enhance prediction of the true state beyibve predictions derived simply from observed
messages (choice) and equilibrium theory.

This is the first study in experimental econonticsise a combination of video-based
eyetracking and pupil dilation, and is, of courseploratory and is therefore hardly conclusive.
But the eyetracking and pupil dilation results bgrselves suggest that the implicit assumption
in equilibrium theories of “cheap talk” in gameshvcommunication—namely, that deception
has no (cognitive or emotional) cost—is not congdletight. This provides the foundation for
alternative theories such as costly talk (as iniKa®ttaviani and Squintani, 2007, Ying Chen,
2007, and Kartik, 2008) or the level-k model (a€nawford, 2003, Cai and Wang, 2006). The
Nietzsche passage quoted above describes the igedodd of deception, and is explored in
Jennifer Maria Nufieza et al. (2005). Mark Twasodamously quipped]f‘you tell the truth,
you don't have to remember anythinigdicating the memory cost of deceptibriChe corollary
principle is that if subjects want to misrepredéet state to fool receivers, they have to figure ou
precisely how to do so (and whether receivershdglfooled). This process is not simple and

seems to leave a psychological signature in loogatterns and pupil dilation. Future theories

" Quotation taken from Mark Twain’s Notebook, 1894.fact, Daniel Kahneman and Beatty (1966) shotwaa
more difficult memory tasks induced larger pupifiaesponse. Hence, memory load could also be rnehéor

deception to affect pupil dilation.



could build in an implicit cost to lying (which niigalso vary across subjects and with
experience) and construct richer economic theatesit when deception is expected to be

widespread or rare.

|. The Sender-Receiver Game

In each round of the experiments, subjects plggrae of strategic information
transmission, involving cheap talk (Crawford and&p1982). One player always acts as the
sender, and the other as the receiver. The sergl@’movements and pupil dilation are
measured with a head-mounted Eyelink Il eyetra¢see Appendix: Methods). At the
beginning of the round, the sender is informed abwaitrue state of the world, which is
described as a “secret” number S uniformly dravemfthe state spa&= {1, 2, 3, 4, 5}, and is
informed about the bias b, which is either 0, 12 avith known probabilities. The receiver
knows the bias b, but not the realization of tlaéesS. Both players are informed in instructions
about the basic structure of the game.

The sender then sends a message to the receorartife set of messages= {1, 2, 3, 4,
5}.8 After receiving a message from the sender, theiver chooses an action from the action
spaceA ={1, 2, 3, 4, 5}. The true state and the recessaction determine the two players’
payoffs in points according tar 110 — 20 - |S -Af, and 4= 110 - 20 - |S + b —-Af, where
Ur and  are the payoffs for the receiver and the sendspactively. Note that the receiver
earns the most money if her action matches thestate (since her payoff falls with the absolute

difference between A and S). The sender prefersdbeiver to choose an action equal to S+b.

8 Following Cai and Wang (2006), we use the messdde number | received is X” to eliminate possible
misinterpretation of the message (which contribtdete multiple equilibria problem typical in thetypes of

games resulting form the need to assign meaninmiesages).



This payoff structure is made known to both sendacsreceivers. Figure S1 shows the screen
display for b=1 and S=4.

When the bias is large (b=2), the most informagégailibrium has the sender send an
uninformative message, while the receiver ignonesntessage and chooses A=3 based on her
prior beliefs (babbling equilibrium). When b=1etmost informative equilibrium requires the
senders to send messages {1} when S=1, and sedd & when S is 2-5. When b=1 the
receivers should choose action A=1 when seeing ¥=id A=3 or 4 when seeing
M={2,3,4,5}.° When b=0, truth-telling by choosing M=S (and ieees choosing A=M) is the
most informative equilibrium.

On the other hand, following Crawford (2003) and && Wang (2006), the level-k
model for the sender-receiver game starts withdrtlsrs (who has the lowest level of
sophistication) would simply tell the truth, and teeivers best responding to LO senders by
following the message. Moving up the hierarchyskehders best respond to the LO receivers by
inflating the message (stating their preferredesbatand L1 receivers best respond to L1 senders
by discounting the message. Such procedure ishc@at until we reach the most informative

equilibrium predictiort’ In addition, we include a sophisticated type (SP®hich best

° Thanks to David Eil for clarifying the equilibriuemalysis. Due to discreteness, there is anottiée-kdge
equilibrium with b=1 that produces higher infornoatitransmission: Senders send messages M={1,2{34¢b},
while receivers choose A=2 and 4. However, thisldgium is not robust since senders who see SeZaactly
indifferent between sending M={1,2} and M={3,4,5Moreover, the main results of the paper do nohghaven
if we consider this equilibrium (then Corr(S,A) 791, and g= 94.56).

19 Note that the level-k model itself provides amiggrium selection criterion—it selects the maskarmative
equilibrium where senders report the upper bourti®fnterval of true states. This pins down kbthamount of
information transmittedndthe language used in the message sent. In geleelk models will providenore
precision (given a particular parameter value gation) than equilibrium concepts when thererartétiple
equilibria. Also note that, due to signal jammihigher level types do not simply add (or subtrautjtiples of the

bias. This is particularly true when approachimg tipper bound of the state space. For examplenwhl, L2



responds to the empirical distribution of oppongh&havior. This represents the highest level
of strategic thinking, knowing the exact heteroggnef opponent types and behavior. Table 1
provides the list of different level-k types for®=1, and 2! Note that in our data, SOPH
senders act like L2 senders when b=1 and act ix&-E3) senders when b=2, both a best
response to L1 receivers.

Under both the equilibrium and level-k models, tbenparative statics are similar:
Information transmission decreases as the biasases, though the level-k model still allows
transmission even when the bias is so big tha¢¢udibrium model predicts babbling (zero
transmission). Informativeness is measured bydneelation between actions and the true states,
and by receiver payoffs (more informative equilibnave higher expected payoffs). In addition,
we assume a literal interpretation of messagesnaabsure the “informativeness” of senders’
messages by the correlation between the true statethe messages M. How “trusting” the
receivers are can be measured by the correlatioveba the messages M they receive and the
actions A they tak& These comparative statics predictions were tdseickhaut et al.

(1995), Blume et al. (1998, 2001), and Cai and W@0§6). Overcommunication—messages

are more informative of the true state than theyuihbe, in equilibrium—are typically found in

senders who see S=3-5 will all send M=5 (since drighessages are not feasible), and L2 receivensyikg the
true state is equally likely to be 3, 4 or 5, woalbose A=4, instead of 3 (=5-1*2).

1 cai and Wang (2006) constructed a level-k modetHe case where the most informative equilibrisrbabbling.
Here we extend it to other biases. Also, we usesttonometric methods developed by Costa-Gome€maveford
(2006) to estimate individual types.

12 Such a natural language interpretation is justifig Blume et al. (2001) findings that equilibrimessages tend
to be consistent with their natural language megsjiand is used in Cai and Wang (2006). Moreowany
behavioral theories of lying, such as Crawford @0&nd Kartik, Ottaviani and Squintani (2007), disad to this

sort of natural language interpretation since na#eeivers would take the message at face value.
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these studies, and Cai and Wang (2006) suggedtdwaded rationality explanations: the level-

k model and quantal response equilibrium.

[l. The Experiment

To be sure that subjects learn, and to collect afltrials to pool across, the same game
is played 45 times among the two players with ram@boices of bias b (and random states) in
each round. Because we could only eyetrack om@msubjects at a time, only the senders were
hooked up to the mobile Eyelink eyetracker (althostydying receivers’ eye fixations would be
useful in future work). We randomly matched sibjsgts into pairs using a stranger-matching
protocol, with different receivers in each roundtfwno immediate re-matching with the same
receiver), and eyetracked two of the senders ih gemup. Values of b=0, 1, 2 were used with
known probabilities (0.2, 0.4, 0.4) since we asslmterested in the no-bias (b=0) case than in
the bias (b>0) cases. We also added some rintsgérs -4 to +4 with equal probability, i.i.d.
across payoff cells) to each payoff to minimize rogyreffects. Since the noise is small, the
equilibrium remains the same. To further eliminatg memory effect, the bias parameter was
not shown to the eyetracked senders on the sakbough it was mentioned in the instructions.
Instead, subjects were forced to look at the pattifiie to infer it. Thus, this set of experiments
is called the “hidden bias-stranger” design. Téwults reported below focus entirely on the eye
fixations and pupil dilation of the eyetracked sersd and the message choices of all senders and

action choices of receivets.

13 Two of the twelve eyetracked subjects experierieelnical difficulty during the experiment and the@ata were

excluded (along with the corresponding receivejextib’ choices).
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Subjects’ choices are compared to the most infoveagquilibrium in the one-shot
game* We also use predictions from a level-k model (€abto estimate individual sender
types with a quantal response-like “spike-logitfoerstructure, using the econometric analysis

developed by Costa-Gomes and Crawford (2006).attiqular, we assume each sender subject

exactly follows a certain levédtype and playg* (the “spike” of probability) with probability

(1-¢). With probability £, they make mistakes following a logit error deysit

exp[)l m* m |s)] o 5 .
cinwhich*(m| )= n(sa) (@ is the expected
zexp[/][ﬂ'lk(uls)] (m] s ; (sa) fl@lm p

,u¢tk

d“(mA| 9=

payoff of sending messagewhen the true state $s 71(s, @) is the payoff for true stateand
receiver actior, and f*(a |m) is levelk sender’s belief about receiver’s actions (seeauahe

message). The likelihood for observing a levslibjecti play m :{ rr"!;}gDG in the set of games

G (making mistakes in subsé&t* 0 G, n* =| N* |) is therefore

d“(m,e,A) = @-¢e)°F" @™ rl dk( A & g). The levelk type distribution isp = (p', ..., p°).
gONk
For each individual subject, we estimate the patara¢p,&,4) that maximizes

K
empirical log-likelihoodL' (p,&,A |m )= In[z g d(m,e A )] Note thap will be estimated to
k=1

have p* =1 for somek, so estimation results for a subject could betamias(k,£,1).

14 We do not consider a possible dynamic equilibrtbat might sustain higher information transmisderels.
This is not a problem for b = 0 or 2. When b h&hbling is the only equilibrium in the one shotgaand
backward induction yields the babbling equilibrifon all finitely repeated games; when b = 0, the shot game
equilibrium already has full information transmgssiand there is no room for improvement. Also ribs

overcommunication is the most striking when b =Random rematching also limits repeated-game effect

12



We also ran an earlier set of experiments usingrner protocol in which a pair of
subjects played repeatedly in a fixed-role protadoére b=0, 1, 2 with known equal probability.
The bias parameters were always revealed (sendgcssiindeed look at them), and there was
no payoff perturbation. This is a simpler desigmtplement logistically, requiring only one
eyetracked subject and his/her (open box) oppobentreates potential repeated-game effects.
We refer to this as the “display bias-partner” dasiResults of this design are briefly discussed
in comparison to that of the “hidden bias-strangkasign in Section III.D. Corresponding tables
and figures are in the appendix.

Subjects were 60 Caltech students recruited frenStitial Science Experimental
Laboratory subject pool. Six sessions of six sttbjevere randomly matched in the “hidden
bias-stranger” design, and twelve pairs were ruheén‘display bias-partner” design. They
earned between $12 and $27 in addition to a $5a#vaip fee. For the “hidden bias-stranger”
sessions, we used different randomly pre-drawnrpet@rs for each of the six sessions. But in
the “display bias-partner” design we used the sseh@f randomly drawn biases and states for 9
of the 12 pairs, and used two other sets of paemé&r the remaining 3 pairs to see if there
were any effects for using the same parameters.

While 60 subjects might appear to be a small sarsige’> most experimental studies
with larger samples have many fewer choices pgestullhe eyetracked subjects played 45
games, and made a very large number of eye fixgtemwe recorded a lot of data for each

subject and could often draw confident statistomalclusions from these sample sizes.

15 We successfully eyetracked 22 of the 60 subjedigh is considered large sample size for psychophysical

studies involving eyetracking.
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[1l. Results

I1l.A Comparative Statics and Behavior

What do players choose?Figures 1-3 display the three dimensions of #ve ¢choice

data—states, messages and actions—for the thredebizls b = 0, 1 and 2. Each Figure is a 5-
by-5 display. The true states 1-5 correspond tditieerows. The sender messages 1-5
correspond to the five columns. Within each stagssage cell, there is a pie chart. The area of
the pie-chart in each cell is scaled by the nurobeccurrences for the corresponding state and
message ; i.e., the most common state-messagenpaeghe largest pies. Hence, the rows
indicate senders’ behavior with respect to diffesgates and the columns represents the
“informativeness” of each message, determined bydibtribution of states conditional on each
particular message. Several diagonal lines corpredicted messages for various level-k types.
Each pie chart also shows the distribution of astichosen by the receiver for that state and
message, using a gray-scale ranging from whitéo(@adi) to black (action 5). The average
receiver action is the number inside the pie.

For example, when b=0, and there is no conflichtdrest, large pie-charts are
concentrated on the diagonal (LO/Eq sender behawitiich is a visual way of showing that the
senders almost always send a message correspaadimgtrue state. Moreover, these pie-
charts mostly contain the same color ranging frigit llower actions) to dark (higher actions)
as the message number increases across columnsngltiat the receivers’ actions are
typically equal to the message. The distributibatate frequencies conditional on each message
(i.e., down each column) almost degenerates in&srpaints of the true states, indicating nearly
full information transmission. This correspondshe (most informative) truth-telling

equilibrium predicted by equilibrium theory, as &g the LO/EQ type in the level-k model.
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When b=1, and there is an incentive to bias thesagessupward, the results are different.
There is a large tendency for deception, whicltvident from having some large pie charts off
the diagonal. This departure is lopsided—onlyupper diagonal of Figure 2 is populated with
large pie chart®® That is, for a given state, the most common ngEssare the state itself or
higher messages (not lower messages). Furthertherigrgest pie charts of each row are
mainly on the line one column or two columns toriigét of the diagonal (i.e., states S+1 and
S+2), consistent with L1 and L2 sender behavioithiWthe upper diagonal, the pie-chart gets
darker and darker going down and right, showing Hmweceivers correctly increase their
actions as the state and message increase. Bencertditional distribution of states (columns in
Figure 2) shift from a mass point on the true sasein Figure 1) to a distribution skewed
toward state 3 to 5, some information is transmittelowever, this distribution is not consistent
with the {1}-{2, 3, 4, 5} partition equilibrium, with requires that distributions of messages and
actions for the bottom four rows (states 2-5) stiail look the samé&’

Finally, when b=2, equilibrium theory predicts dbkng equilibrium. If subjects were
playing this equilibrium, the pie-chart distribut®in each column would be roughly the same
(up to random sampling error of state frequenaes) the shading distributions on each pie-
chart would be the same. In fact, there is stlibstantial amount of information transmitted,
since the columns in Figure 3 do not show the samiferm distribution of state frequencies.

However, many senders still sent message 5, edlgdoiastates 2-5. And a substantial amount

16 Note that this one-sided deception can potentimikfire since if seeing a message 1 indicatetrtieestate is 1,
the state is less likely to be 1 when other messagee sent.

7 |f subjects were playing according to the pamitemuilibrium, column 1 should have probabilityri state 1, and
zero probability elsewhere, indicating the stat@dén partition {1}, while column 2 to 5 shouldldlave equal
probability distributions (say, a mass point ar3. each) on states 2 through 5, and zero elsewhmlicating the
state being in partition {2,3,4,5}).
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of receivers did choose action 3, as predictetienbabbling equilibrium. This is consistent with
the level-k model, since L1, L2, and EQ senderseiild message 5 for states 3 to 5.

What are the comparative static results?Table 2 shows that the actual information

transmitted, measured by the correlation betwesesS, actions A, and messages M. The key
comparative static prediction of Crawford and Sqt8B2) holds in the data: As the bias b
increases, the information transmitted decreaseasured either by the correlation r(S,A)
between state S and action A, or by receiver payofut note that even when the bias is so
large (b=2) that theory predicts babbling (i.e.coorelation between S, A and M), the
correlations are still around 0.3. There are a3y small learning effects: correlations and
payoffs rise across trials for b=0 and fall for beflecting (weak convergence toward
equilibrium (see supplementary Appendix, Table J3dyoffs also decline with bias b, as
predicted by theory (Table 3). Data from both sesnaéo are eyetracked and senders with
“open boxes” (no eyetracking), are reported sepbrats a check on whether eyetracking, per se,
changes behavior. There is no discernible effebemmg eyetracked versus seeing all
parameters (“open boxes”).

When the bias b is large, information transmisssomgher (measured by correlations
among S, M and A), and payoffs are higher, thadipted by equilibrium theory. These data
replicate the “overcommunication” (too much truéhibg) reported in Cai and Wang (2006).

Can individual players be classified as level-k tygs? Based on all behavioral data, we

classify individual sender subjects into varioysety according to Table 1, assuming subjects
remain the same type across different biases tlsetspike-logit” estimation as in Costa-
Gomes and Crawford (2006). The results are showable 4. Subjects are classified as types

(percentages) LO-L2 (18 percent, 25 percent, ange?&ent), SOPH (14 percent) and EQ (18
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percent), with good compliance (above 60 percewet for one}® Individual level
classifications therefore confirm that subjectsraostly choosing according to stable level-k
types, as hinted by the aggregate choice data.p@ong the classification results with that of
Cai and Wang (2006), we see a similar pattern (fgpfew LO, mostly L1 beyond), although

they use a more primitive way to conduct the cfasgion.

[11.B Lookup Patterns

There are several goals in observing lookup pagtdfimst, we want to know what the
aggregate lookup patterns are during the decigsiocegs. This indicates the subjects’ attention
to different information, and provides the basistfeorizing about subjects’ decision-making
process. Moreover, since the level-k model reldéiiesassumption that people hold consistent
beliefs about others, beliefs about other’s beliafel so on, we expect the lookup patterns to
indicate this. Finally, since the level-k mode¢ghictions explain individual behavior, it is
natural to ask whether additional lookup data cawvigde more direct evidence supporting the
level-k model than choices alone. In particulae,would like to ask whether individual subjects
who are classified into different level-k types gwoe different lookup patterns matching their

types.

The lookup results are organized according to buwa goals as follows:

18 Using only trials such that b=1, 2 yield the exsaine classification. Using a logit structuretgas of spike-
logit) on b=1, 2 also yields a similar distributjon which only two subjects are classified diffettg: Subject #3 (2-
1) is classified as SOPH instead of L1, and subgdB-2) is classified as L2 instead of SOPH. Balde S12.
Note that SOPH and L2 are almost identical, andhftioe lookup results below (Table 7), subject #38 déookup
score more similar to SOPH than L1. Finally, usinggit structure on all data adds three more S@pEs (2-2, 4-
3 and 5-2), all from “neighboring” types which aiteoincide with SOPH (EQ, EQ, and L2, respectively)
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1. Attention to structuretn reporting aggregate lookup counts and time spemifferent
parts of the screen, we expect to see differemtlesubjects paying differential attention to
important parameters of the sender-receiver ganoh, 8s state, bias, and payoffs.

2. Truth bias: The level-k model assumes subjects best respoperteived beliefs
about their opponents’ behavior, which are incdesiswith what opponent’s actually db.If
senders cannot think like receivers (who do notwktite true state), they would put too much
attention on the payoff row corresponding to thee tstate, instead of treating all states equally.
Hence, excessive attention to payoffs corresponidirtige true state demonstrates a “curse of
knowledge” and could be an attentional marker e§éhincorrect beliefs.

3. Individual level-k type lookup pattern§he level-k model assumes an anchoring LO
behavior of truth-telling. Higher types go througgliefs about lower types until they reach their
own level-k type. If this decision process iseetkd in the lookup patterns, attention should be
paid to payoffs corresponding to the action A=S)(lA=S+b (L1), and so on, up to the
corresponding level-k type for each individual ®dbj For example, when bias is 2, a L2 sender
under state 2 would look at the payoffs correspugdd state 2 and action 2 (the LO outcome if
the message is taken literally), action 4 (the uficome if the message is taken literally), and
action 5 (the L2 outcome if the message is takerelily). In Table 1, this corresponds to the
first three elements (LO~L2 Senders) of the se@mtdmn (S=2) in the bottom panel (b=2).

Thus, in addition to the lookups required to figore the bias parametgta levelk type sender

19f all subjects are SOPH who correctly best respondterst SOPH behavior should coincide with equilitriu
(EQ) behavior.

% 1n the hidden bias-stranger design, subjects atusiast look at two payoffs to determine the biesS and
A=S+b. Potentially, this S could be any state,dhduld correspond to the true state due to thk bhias. In this
case, the lookups would coincide with lookups lohke LO and L1 thinking.
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(with truth bias) would follow the prediction ofélevelk model (first(k+1) elements of column
Sin Table 1) up to his own level.

What are senders paying attention to?Table 5 shows the average lookup time

(excluding fixations shorter than 50msec) for vasimumbers on the screen which are
parameters of the gami&Senders clearly are thinking carefully about thmg because they
look up the state for 0.86 seconds total (whicB.&fixations, about 270msec per fixation). The
low time per lookup is a reminder that the eye gésnaround very rapidly, making frequent
quick fixations, as is typical of other tasks irdihg reading text passages.

Senders also look at their own payoffs longer.drtipular, subjects look at their own
(sender) payoffs at least 40% more than receiwgnffg This difference is surprising since
senders need to look carefully at receiver payiaftsrder to determine the bias. Note that the
ratio of lookup time for sender and receiver payasfthe same for a small bias (b=1) and large
bias (b=2). For b=2, which creates the most séopguilt to constrain deception, we divide
senders into those who looked more often at recgagoffs, and those who looked less often
(relative to the median sender-receiver lookingjyatmportantly, the high receiver-lookup
group is actually more deceptive than the low graumch is inconsistent with the guilt
hypothesis that the more one cares about otheyafisaand looks at them, the less one should
deceive. For the high group, the correlation betwstates and messages is 0.55, and the
average LIE_SIZE (JM-S]) is 0.88; for the low grotige correlation is 0.69, and the average

LIE_SIZE is 0.71.

21 The number of separate fixations is very highlyrelated with the lookup time—in no cell is the eage time per
fixation less than 250msec or greater than 300msecthe number of fixations can be approximated baell
dividing the Table 5 figures by 270 msec. Botlafigns and lookup time are reported in the suppieate
Appendix (Table S10 and S11).
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Note that therés a reduction in total looking times across trialsput 35 percent less in
later periods (31-45) than in earlier periods (}-{s®e Table 5), and this reductiorsisnilar
across bias levels and treatments (Table S7.)

Do senders have a “curse of knowledge”Table 6 shows that subjects look about five

times longer at payoffs in the rows correspondmthe true state than they look at payoffs in
rows corresponding to each of the four other stat®ken the bias is 0 this fixation on the actual
state is understandable (and subjects typicallpshonessage M=S), but the disproportionate
attention to actual state payoffs is comparablenithere is a bias of b=1 or 2. This result
indicates that subjects do not “think in other®e$r’, and cannot fully think like a receiver (who
does not know the true state). Note that Tableggasts lookups might have statistical power to
detect the actual state (i.e., to detect lies iicivthe message M deviates from the true state S).
That is, a receiver who had online sender lookiagstics might be able to predict what the
actual state was rather reliably. This possibistgxplored in Section IV.

Do senders follow levek predictions of lookups? Tables 5 and 6 show there is a

strong bias for senders to look more at payoffsiftbe state they know to be the true one. More
detailed information about looking patterns actsse-action pairs is conveyed by the icon
graph in Figures 4-7 (developed by Johnson e2@02). For brevity we show only data from
trials with positive biases for subjects classifesdL1 and L2 (aggregate data are in the
supplemental appendix, Figures S6-S9).

Each box in Figures 4-7 represents the attentiahtpahe payoff corresponding to a
different state-action combination. Parts (a) d)d€present attention to the sender payoff boxes
and the receiver payoff boxes, respectively. Tidtwof the box is a linear function of the

average number of fixations on that box. The heajlthe box is a linear function of the average
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total looking time in that box. Boxes which aredeiand tall were looked at repeatedly (wide)
and for a longer time (tall). The vertical barghe first columns represent the sum of looking
time across each row. Longer bars represent Idirgerfor all state-action boxes in that state.
The “ruler” in the upper right shows the scalearfiing time and number of fixations that can
be used to “measure” each box.

Figure 4 shows the icon graph for bias b=1 whersttigect is classified as 1°f. The
first thing to notice is that subjects spend muarartime looking at their own payoffs (Figure
4a) than the payoffs of receivers (Figure 4b)hasTable 5 statistics show. Subjects’ lookups
are also more frequent and longer for actionsdahaequal to the actual state S or S+1. This
corresponds to the first two rows (LO and L1 sesgdef the top panel (b=1) in Table 1, as well
as the lookups to determine the bias.

Figure 5 shows the lookup icon graphs for bias Wwh#&n the subject is classified as L2
(again when subjects are L1). Senders again lbtilea own payoffs more often than their
opponents’ payoffs. When the state S is 1-3 teag to look at their payoffs from actions
corresponding to S, S+1 and S+2. This is condistéh the first three rows (LO, L1, and L2
senders) of the top panel (b=1) in Table 1. Howewken the state is 4 or 5 this pattern
crumbles as states S+2 and S+1 do not exist; dukup patterns resemble L1 lookups.

Similar patterns arise when b=2 as well. Figue:@ 7 show the lookup icon graphs for

bias b=2 when subjects are classified as L1 anddspectively. As the level-k model predicts,

22 \When the bias b=0 the looking data are very cl8ahjects look almost exclusively at their own /o
corresponding to the actual state S and correspgmdceiver action A, and they look at the recepegyoffs from
the same S-A pair less often than they look at theh payoffs (1/2 in the display bias-partner desind 2/3 in the
hidden bias-stranger). See Figure S5.
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subjects look at payoffs corresponding to the first or three rows (LO-L1 or LO-L2 senders) of
the bottom panel (b=2) in Table 1.

If we calculate the linear measure of predictivecess (Reinhard Selten, 1991), a subject
who is classified as a certain level-k type alnadatays has the highest score for the
corresponding lookups of the same type. In pddicletx equal the “hit rate”, the proportion of
lookups in a period that fall in the target cedlad leta equal the proportional area of the target
cells. Then the linear measure (LM score) equalsthe proportional hit rate minus the
proportional area. This measure controls for the sf the predicted lookup area, and takes a
value of zero when subjects randomly scan theeestireen. Table 7 presents each subject’'s LM
score for various types. Among all the six sulgetassified as L1 and L2 subjects, only one
(subject #8) has another type’s LM score slightghbr (0.268 vs. 0.259, less than 0.01) than the
score corresponding to their classification basedhwices. Moreover, this subject would be
classified as SOPH under the logit specificatioRegarding SOPH subjects, it is not clear
theoretically what their lookup patterns would &ut, the low LM scores do show that they do

not look like L1, L2 or EQ.

[11.C Pupil Dilation

As noted in the introduction, pupils dilate wheroplke are aroused or make cognitively
difficult decisions. Our first exploratory steptcstreat pupil dilation as a dependent variable and
see whether the degree of behavioral deceptiondgender is correlated with pupil dilation. It
may be that pupil dilation is so poorly measuradsaweakly linked to deception, that there is
no reliable correlation. However, we see that dBoeys reliably correlated with pupil dilation.

To correlate pupil dilation with senders’ messagegrage pupil sizes are calculated for

various time periods before and after the sendee€ssage decision. Then, we try to predict
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averaged pupil dilation using the bias b and thewarhof deception (measured by the absolute
distance between states and messages, |M-S]).

To record their message M, senders are instruotkabk at a series of decision boxes on
the right side of the screen, which contain the Ineirs 1 to 5 (corresponding to the possible
numerical messages). The software records a de@$ier the subject has fixated on a single
decision box for 0.8 seconds—that is, the subjelt®se by using their eyes, not their hafids.

Since there is a time lag of at least 0.8 secohdd®n the instant subjects “made up their
minds” and the recording of this decisiSrthedecision timds defined as the first time subjects
view any of the boxes in the decision boxes agayv{ded they continue to look at the decision
box area for more than 98 percent of the time tinéilsoftware records a decision).

Average pupil sizes are regressed on the amouwteaption for different biases, the
absolute size of the deception (LIE_SIZE = |M-&fq bias and state dummies, controlling for
subject random effects and individual learning die(picked up by round number and squared
round number variables interacted with individuahohies). All standard errors are robust

standard errors clustered at the individual levidie specification is:

(1)  PUPIL = a+§2:/31b [LIE _SIZE[BIAS, +Y_ 3, (BIAS, + Y 3, [STATE

b=0 b#2 s£3

K
+3" (¥, ,ROUNDOSUBJ + y, , ROUNB SURJ+¢

k=1

Z Allowing eye fixations to determine actual choiéesvidely used in research with monkeys. For husnanaking
choice hands-free is an advantage if psychophygicdbmeasurements are being recorded simultane¢eis.,
galvanic skin conductance on the palms, heart siatege even small hand movements add noise to those
measurements.

#This time lag can be longer if the subject is ratfectly calibrated, and hence, needs extra tinpettorm the
required fixation. Another possible situation isem the subject “changed her mind” and looked féreint

decision boxes.
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where the error term has elements, =u, +77,, (subject random effects), and

PUPIL = Average pupil (area) size at time framé.2 to 0.8 seconds, 0.8 to 0.4 seconds, 0.4 to
0 seconds before, and 0 to 0.4 seconds, 0.4 we@@hds after the decision tifte.
Here, we normalize each individual's average psigi to 10G°
LIE_SIZE = The “size” of the lie or the amount cdaption, measured by the absolute distance
between states and messages, (|M-S|).
BIAS,, STATE;,, SUBJ4 = Dummy variables for the bias b, true state d, sarbject k
ROUND = Round number t
The parametet is the average pupil size. TRecoefficients give us the effect of
deviating from reporting the true state (deceivimgre) under different bias levels. The
coefficientsB,, andfss give us the pure effects of different biases afiee to b=2) and states
(relative to S=3) which might influence dilatiomdayy 1 ,yk 2 capture (individual) linear and
guadratic learning effects.
Look first at the coefficients on the amount oteégtion in Table 8, interacted with bias
(denoted3ir where b is the bias parameter). Immediately afteidecision is made (O seconds
to 0.4 seconds and 0.4 to 0.8 seconds later) aicents are significantly higher at about 2

percent for all biases. Sending less accurateagesss therefore correlated with pupil dilation

% Hence, we are aggregating 100 observations ireadaa point when averaging for each 400 millisdson
interval. Rounds with very short response timedigearded if PUPILcannot be calculated.

% pupil sizes are measured by area, in relativeseribsolute pixel counts have little meaning sitiesy vary by
camera positions, contrast cutoffs, etc., whichetiepon individual calibrations. Hence, the eydteaccales it to a
pupil size measurement between 800-2000. Her@onmalize all observations by the average pupé sizeach
subject throughout the entire experiment, and jptesdéresults in percentage terms. (To avoid ipimakbias
created by eyetracker adjustments, all betweeneradjustment stages were excluded when doing this

normalization.) Therefore, “100” means 100 peradran individual subject’s typical pupil size.
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when b=1 or b=2. Before the decision is madeptll dilation difference is still at 1.5-2
percent (though less significant) when b=2.

Note that the bias condition by itself does notegate pupil dilation (i.e., nearly all the
coefficientsp,s are insignificant and are omitted from Table 8hisTiinding implies arousal or
cognitive difficulty is created by sending deceptimessages in bias conditions, not by bias per
se. Furthermore, these basic patterns are reprdduoen we divide the samples into two halves

and compare them, which provide some assurandatistial reliability?’

[11.D Results of the Display Bias-Partner Design

The supplemental appendix reports results analogoti®se in Table 2-6, Table 8 and
Figure 2-4 for the display bias-partner conditidalfles S2-S6 and S8, Figures S2-S4).
Compared to the hidden bias-stranger conditioretltiemore overcommunication (correlations
of M and S around 0.5 even when b=2) and more ige-tlassification (one third LO types).
These differences are probably due to the repegmtect effects created by the partner matching.
Subjects do also look at the bias parameter whisraiailable, but they look less often at
receiver payoffs (which they need not look at gufe out what the bias b is).

The pupil dilation results are much stronger thathe hidden bias-stranger design. The
coefficients on pupil dilation predicting the amowh deception are 2.8-4.5 percent, and are
significant in all 400 millisecond intervals frorh200 milliseconds to +800 milliseconds (where

zero is the decision time). It is likely that tteplay bias-partner design is less demanding

2" Because we measured eyetracking and pupil dilétam ten senders, it is useful to check how rééiabese
results are in two subsamples of five subjects €Bleb 400-msec intervals from +0.4 to +0.8 sea afecision
time gives the highest’R so we compare those. Thg coefficients across bias levels (b=0, 1, 2) aeartiost
important. They are 6.35%, 2.40, 2.11 for the fiigé subjects and 6.11**, 4.14**, and 3.00*** fohe second five
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cognitively, and lowered baseline pupil dilatidm. fact, the increase in predictive power here
could be construed as consistent with the cogndiffeculty story because showing the bias
parameter and eliminating noise from the payoff&erthe display bias-partner design easier in
general. This simplification could decrease the=las pupil dilation of truth-telling in all
conditions, which makes any additional dilatiomfrdeception easier to detect. Running similar
regressions show that using criteria of 99, 989 Mpercent all yield similar results, though

slightly weaker.

V. Lie-detection and Prediction

As noted, one goal of measuring eyetracking itowhether these behavioral measures
enable us to improve upon predictions of theorkiis Bection reports whether using eyetracking
data helps predict deception and uncover the wyidgrtrue states. The ability to detect private
information in this way could eventually have mamgctical applications. And since private
information often undermines efficiency, the aliliv detect private information could be
Pareto-improving in some settings.

Here, we ask how well receivers could predict the state usingnly messages and
lookup patterns (and how much they could earn loyguhose predictions). That is, we pretend
we don’t know the true state for predictive purggderecast it from observables, then use
knowledge of the true state to evaluate predicdn@iracy. We focus only on b=1 and b=2 since
truth-telling is so prominent when b=0.

For the dependent variable STAT,Hrom 1-5, we ran an ordered logit regression

log[Pr(STATE )] =6, + > (B, IMESSAGE f3,, [ROW,, + f,, [ROW,,,) (BIAS +£

b=1,2

subjects. For other intervals, as predictive pofi2é) falls the reliability across the two subsamplaisftoo, but the
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where lookups are consolidated into two integeiades, ROWer and ROWnhe;, Which are the
states corresponding to the own (or opponent) pagaf which has the longest total lookup
time of all rows.

The coefficient$;, represents the information about the state cosdaimthe message
the coefficient3,, measures the effects of the “most viewed row”red’s own payoffs (i.e., the
state number corresponding to the row that is vitfeethe longest time), arfiy, represents the
effects of the “most viewed row” of the opponergesyoffs. The; are state-specific constants.

To evaluate how well these specifications couldifmtenew data, out-of-sample
validation is used. Each observation is used witibability 2/3 to estimate the model, then the
model forecasts on a holdout sample of the remgihiB of the data. For each holdout
observation, the estimated logit probabilities@sed to calculate the expected state, which is
rounded to the nearest integer to make a preaiggesstate prediction. This partial estimation-
prediction procedure is performed for 100 randomas of the data. Averages and
(bootstrap) standard errors across the 100 resagspdire reported in Table 9.

The significance ofip in Table 9 indicates that the messages are infiorenabout the
states (as analyses reported above establishesinaler message indicates a smaller true state,
even though standard game theory predicts thigt ilittormation should be transmitted by the
messagefii, should be zero when b=2).

The lookup data are significantly correlated vathtes as well. The coefficierftg, on
the most-viewedwnrow variables, and the coefficierfts, on the most-viewedtherrow
variables, are all positive and significant. THoskup data improve predictabiligven when

controlling for the messager-or example, if the message is 4, but the loalatp indicate the

coefficient signs are almost always the same inwlbesubsamples and magnitudes are typically redsigrciose.
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subject was looking most often at the payoffs i oorresponding to state 2, then the model
could predict that the true state is 2, not 4.sThito be expected, since Table 6 indicates
subjects look at the payoff rows correspondindhottue state five times more than other rows.
However, note that this sort of prediction can azdyne from a setting in which attention is
measured. In addition, if senders knew their eggements were being used to infer the state,
they could of course change their lookups and unuoher the predictions.

The error rates in predicting states in the hdldample are never greater than 40 percent.
(Keep in mind that the error rates in equilibriurauhd be 60 percent and 80 percent.) Most of
the wrong predictions from the logit model (70 an) miss the state by one. The model
accuracy is also substantially better than theahgerformance of the receiver subjects in our
experiments: Subjects “missed” (chosgS) 58.5 percent of the time when b=1, and misse@d 77
percent for b=2.

An interesting calculation is how much these prieaiis could potentially add to the
receiver payoffs (cf. “economic value” in Camereak, 2004). For biases b=1 and b=2, the
average actual payoffs earned by receivers whalfagetracked senders in the random sample
were 87.5 and 80.9. If receivers had based thmedigtions on the models estimated in Table 8,
and chose an action equal to the model predictgd for the holdout sample), their expected
payoffs would be 101.7 for b=1 and 98.0 for b=21c8 the maximum payoff possible is 110,
this is a large economic value of about 60 peroéttie increment between actual and maximum

payoffs?® In fact, these payoffs are already close to shajects actually earn when b=0 and

28 For b=1, economic value = (101.7-87.5)/(110-8%6B%. For b=2, economic value = (98-80.9)/(11(08&
59%. Analogous out-of-sample prediction resultstiie display bias-partner design are reportecaiold S9.
Results are weaker than that of the hidden biasigér design, having a modest economic value ehdid24

percent.
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there is no bias (100.85 in Table®3)These economic value statistics suggest thauitde
possible to almost erase the cost to receiverstofmowing the true state just by looking at
attention along with messages.

An important caveat to these analyses is that weod@&now what would happen if the
senders knew that their pupil dilation and lookwease being used to predict the true state.
Senders would try to signal-jam by looking at tlagqffs corresponding to their message more
often (a kind of faked sincerity), but it is podsilthat excessive pupil dilation or more detailed
lookup patterns could distinguish such signal-janmgnPutting senders under time pressure
might also make it difficult for them use such dilskrately misleading strategy. In any case,

such experiments are natural follow-ups and coelédsily done.

V. Conclusion

This paper reports experiments on sender-recgames with an incentive gap between
senders and receivers, such as managers or seanaitysts painting a rosy picture about a
firm’s earnings prospects. Senders observe a Staa integer 1-5, and choose a message M.
Receivers observe M (but not S) and choose anreétiolThe sender prefers that the receiver
choose an action A=S+b, which is b units highenfttie true state, where b=0 (truth-telling is
optimal), or b=1 or b=2. The bias number b isdize of the incentive gap. Receivers know the
payoff structure, so they should be suspiciousitthied messages M.

Our experimental results show “overcommunicatiomiessages are more informative of
the state than they should be, in equilibrium. Ta®ult is consistent with a level-k model of

communication anchored at level-0 truth-tellingp &xplore the cognitive foundations of

% Such gains in the hidden bias-stranger designatrsurprising since subjects are forced to loakeatpayoff

table to discover the bias parameter, and theysfdéproportionally on the “true state” row alohg tvay.
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overcommunication, eyetracking was used to recdralt\wayoffs the sender subjects are looking
at, and how widely their pupils dilate (expand) wiieey send messade.

The lookup data show that senders look dispropaatly at the payoffs corresponding to
the true state. They do not appear to be thingtregegically enough by putting themselves “in
other’s shoes,” looking and choice are roughly tiaat with a cognitive hierarchy specified by
the level-k model, starting from truth-telling.

Senders’ pupils also dilate when they send deceptigssages (#6), and dilate more
when the deception |M-S| is larger in magnitude simpler pilot design that is prone to
memory and repeated game effects (the displaydaigser design), these behavioral results are
also present. Together, these data are consigittnthe underlying assumptions of the level-k
model, and that figuring out how much to deceivether player is cognitively difficult. Gneezy
(2005) and Sjaak Hurkens and Kartik (2008) fourat tthanging the known costs to others from
deception lowers deception by subjects, suggestiagguilt plays a role in limiting deception.
Complementing this finding, we find that guilt doest appear to be the sole driver of
overcommunication, because senders who look atvexgeayoffs more often are also more
deceptive. In fact, Santiago Sdnchez-Pagés and Wtasatz (2007) show that
overcommunication is caused by the tension betwieemative social behavior and incentives
for lying.

Furthermore, combining sender messages and |quétigrns, one can predict the true

state and lower the miss rate of subjects by offe Mhose predictions increase receiver payoffs

% The sender-receiver paradigm also expands théyjaoatesearch on lie-detection in general: Deimepin these
games is spontaneous and voluntary (most studeemssucted lying); and both players have a ciear

measurable financial incentive to deceive and teaeleception (most studies lack one or both tgb@scentives).
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up to 16-21 percent, which is an economic valueofe than half of the maximum increase
above what subjects actually earn in the experiment

There are many directions for future research.

Within this paradigm, eyetracking receivers woudduseful for establishing their degree
of strategic sophistication in making inferencesrfrmessages. More generally, economic
theories often talk vaguely about the costs ofslenimaking or difficulty of tradeoffs. Pupil
dilation gives us one way to start measuring tlvesss.

Many economic models also specify a cognitive allgor that maps acquired
information into choices (e.g, dynamic programmapglications which require looking ahead).
The idea of allocating attention has itself gotéention in economics (Della Vigna, 2008) and
in macroeconomic studies of “rational inattentiga’g., Christopher Sims, 2006). In both cases,
measuring attention directly through (now videodmhsyetracking could improve tests of
theories which make predictions about both atterdiod choice, and how they interact, as in
previous mouse-tracking studies, such as Costa-6eta. (2001), Johnson et al. (2002), and
Costa-Gomes and Crawford (2006). Given the now#ltysing these two methods in studying
games, the results should be considered explorataiysimply show that such studies can be
done and can yield surprises (e.g., the predigtoxger of lookups and pupil dilation for
inferring private state information).

In the realm of deception, two obvious questiarditure research are: Are there
substantial individual differences in the capaoityvillingness to deceive others for a benefit?
And, can experience teach people to be bettercafptien, and at detecting deception? Both
guestions are important for extrapolating thesalte$o domains in which there is self-selection

and possibly large effects of experience (e.gd+ese sales or politics). In other domains of
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economic interest, the combination of eyetracking pupil dilation could be applied to study
any situation in which the search for informatiom aognitive difficulty are both useful to
measure, such as “directed cognition” (Xavier Galedial., 2006), perceptions of advertising
and resulting purchase, and attention to tradingests with multiple markets (e.g., with possible

arbitrage relationships).
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Table 1: Behavioral Predictions of the Level-k Mbde

Sender Message (condition on State) Receiver A¢tiondition on Message)
State 1 2 3 4 5 Message 1 2 3 4 5
b=0

LO/Eq Sender 1 2 3 4 5 LO/Eq Receiver 1 2 3 4 5

b=1

LO Sender 1 2 3 4 5 LO Receiver 1 2 3 4 5

L1 Sender 2 3 4 5 5 L1 Receiver 1 1 2 3 4

L2 Sender 3 4 5 5 5 L2 Receiver 1 1 1 2 4

Eq Sender 4 5 5 5 5 Eq Receiver 1 1 1 1 4
SOPH Sender 3 4 5 5 5 SOPH Receiver 1 2 2 2 4
b=2

LO Sender 1 2 3 4 5 LO Receiver 1 2 3 4 5

L1 Sender 3 4 5 5 5 L1 Receiver 1 1 1 2 4

L2 Sender 4 5 5 5 5 L2 Receiver 1 1 1 1 4

Eq Sender 5 5 5 5 5 Eq Receiver 1 1 1 1 3

SOPH Sender 5 5 5 5 5 SOPH Receiver 2 2 2 2 3

Note: LO senders are truthful and LO receivers besgtond to LO senders by following the messadesdnders
best respond to LO receivers, while L1 receivest bespond to L1 senders, and so on. Note that wh2, due to
discreteness both L2 and Eq(=L3) senders bestmegjpd_1 receivers.
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Table 2: Information Transmission: CorrelationsAen states S, messages M, and actions A

Bias Eyetracked? r(S, M) r(M, A) r(s, A) Predict€8, A)
Yes .92 .90 .86

° .94} 93 .94} 92 g8 } 86 1O
Yes .68 73 .53

1 N '51} 64 .61} . } 49 65
Yes 41 .52 34

2 N '23} 34 .63} 58 g } 32 00

Note: In the hidden bias-stranger design, someesshdye movements were recorded (“eyetracked”)athers
were not (“open box”). This comparison providessaful test of whether obtrusively tracking a subgeeye
fixations affects their behavior.

Table 3: Sender and Receiver’s Payoffs

Bias Eyetracked? g(std) (combined) pl(std) (combined) Predgystd)
Yes 101.13 (18.68 101.30° 100.85 (19.28) | 101.27°

0 (17.28) (17.69) 110.00 (0.00)
No 101.89 (14.89) : 102.07 (15.23) :
Yes 71.81 (39.56) 7328 87.88 (28.63) | 586.88

1 (37.46) (27.59) 91.40 (19.39)
No 75.44 (35.11) : 84.44 (25.62) :
Yes 43.39 (52.17) 43.31 80.78 (27.17) 80 55

2 } (53.79) 27 5n 8080 (20.76)
No 43.21 (53.37) : 80.21 (29.11) :

Note:*Payoffs are not exactly the same due to the ranumae added and certain groups excluded.
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Table 4: Level-k Classification Results

Session ID log L k Exact lambda Treatment

1 1 -46.23 SOPH 0.64 0.06 eyetracked subject #1
1 2 -2599 L1 0.87 0.00 eyetracked subject #2
1 3 -1598 L2 091 044 open box

2 1 -37.32 L1 0.60 0.52 eyetracked subject #3
2 2 -37.34 EQ 0.73 0.52 open box (eyetracked tod@o0)
2 3 -25.70 SOPH 0.83 0.07 open box

3 1 -68.84 nla 0.13 0.01 eyetracked subject #4
3 2 -17.71 SOPH 0.89 0.12 eyetracked subject #5
3 3 -54.73 EQ 0.60 0.03 open box

4 1 -50.86 L1 0.51 0.04 eyetracked subject #6
4 3 -25.22 EQ 0.82 0.48 open box

5 1 -2226 L1 0.89 0.02 eyetracked subject #7
5 2 -35.77 L2 0.78 0.03 eyetracked subject #8
5 3 -25.17 EQ 0.87 0.04 open box

6 1 -16.27 L2 091 0.43 eyetracked subject #9
6 2 -42.02 SOPH 0.62 0.13 eyetracked subject #10
6 3 -52.17 LO 0.62 0.01 open box

Table 5: Average Sender Lookup Times (in secondspgs Game Parameters

Response Time

) . Sender-to-

Bias : : Sender Receiver .

Ratio
1-15 31-45

0 9.78 7.24 0.83 2.93 1.71 1.72

1 11.77 8.76 0.81 3.80 2.66 1.43

2 16.84 8.99 0.91 4.67 3.26 1.43

all 13.47 8.52 0.86 3.99 2.72 1.47
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Table 6: Average Lookup Time per Row DependingrenState

True State Other State True-to-Other

Bias b Rows Rows Ratio
0 2.76 0.47 5.89
1 3.88 0.64 6.02
2 4.29 0.91 4.70
overall 3.83 0.72 5.33

Table 7: Individual Lookup Linear Measure Scoras\Marious Level-k Types

Type SubjectID L1 L2 L3/EQ
#2 (1-2) 0.24 0.22 0.19
L1 #3 (2-1) 0.16 0.15 0.14
#6 (4-1) 0.26 0.24 0.18
#7 (5-1) 0.41 0.33 0.28
Average 0.27 0.23** 0.19***
L2 #8 (5-2) 0.27 0.26 0.21
#9 (6-1) 0.22 0.24 0.19
Average 0.24 0.25 0.20*
#1 (1-1) 0.17 0.16 0.13
SOPH #5(3-2) 0.16 0.15 0.11
#10 (6-2) 0.21 0.13 0.07
Average _0.18 0.15 0.10

Note: Highest lookups scores underlindasbokup scores if choice
classifications correspond to lookupaldfaced Note that they almost
always coincide for L1 and L2 types.

* ** and *** denotes p<0.05, p<0.01, p<0.0001 fEigned rank sum test
using both own and other cells for each state, b&d) and each subject
(of that type) with total lookup time > 1sec.
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Table 8: Pupil Size Regressions for 400 msec latsrv

1.2~ -0.8~ 0.4~ 0.0~ 0.4~
Y PUPIL i
-0.8sec -0.4sec 0.0sec 0.4sec 0.8sec
constant o 107.27 108.03 106.19 109.56 108.67
(2.81) (2.55) (257) | (2.05) (2.16)
LIE_SIZE *BIAS,  B1o 2.83 2.36 3.07 5.35%* 5.57*
interactions (1.85) (2.23) (2.46) | (1.76) (2.19)
B11 -1.02 -0.46 -0.36 | 216" 2.64*
(1.26) (1.31) (1.28) | (1.21) (1.15)
B12 2.06* 1.527 1.47* 1.83* 2.00**
(0.86) (0.79) (0.75) | (0.75) (0.74)
N 414 415 414 415 414
XZ 323.86 235.43 194.40 258.49 352.49
R? 0.291 0.299 0.263 0.365 0.438

Note: Robust standard error in parentheses; t{~esiues lower than ~10 percent, *5 percent, **etgent,
and *** 0.1 percent. (Dummies for biases, statedividual subjects and individual learning treraie
included in the regression, but results are omitted
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Table 9: Predicting True States (Resampling 10@gjngs. e. in parentheses)

X Hidden Bias-Stranger
MESSAGE *BIAS =1 B11 0.46** (0.12)
MESSAGE * BIAS = 2 B12 0.42** (0.09)
ROWses * BIAS=1 B21 1.07** (0.24)
ROWses * BIAS=2 B22 1.72** (0.20)
ROWoiher * BIAS=1 Bs1 1.27** (0.22)
ROW iher ¥ BIAS=2 B32 0.44** (0.15)
total observations R 357
N used in estimation 238.3
N used to predict 118.7

Actual Data Hold-out Sample
Percent of wrong prediction (b=1) 58.5 28.9

Percent of errors of size (1,2,3+) (b=1) (61,28, 1 (79, 19, 2)

Average predicted payoff (b=1) 87.5 (28.8) 101.7** (2.1)

Percent of wrong prediction (b=2) 77.9 37.9
Percent of errors of size (1,2,3+) (b=2) (60, 30, 1 (72, 24, 4)

Average predicted payoff (b=2) 80.9 (26.9) 98.0** (2.2)

Note: * and ** Denotes p<0.05 and p<0.001 (t-test)
& Observation with less than 0.5 seconds lookup ingewithout the needed pupil size measures
are excluded.
® Two sample t-test conducted against the actualffmagf receivers in the experiment who are
paired with eyetracked senders.
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Figure 1: Raw Data Pie Charts (b=0)
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Figure 2: RaviData Pie Chart (b=1)
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Figure 4: Lookup Icon Graph for b=1, Hidden Bias-Stanger, Type = L1
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Figure 5: Lookup Icon Graph for b=1, Hidden Bias-Stanger, Type = L2

Part (a): Sender Payoffs Part (b): Receiver Paffs
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Each row reports the lookup counts and time for thé'true state row” corresponding to the given
true state. The width of each box is scaled by thmumber of lookups and the height by the length of

lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.
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Figure 6: Lookup Icon Graph for b=2, Hidden Bias-Stanger, Type = L1
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Figure 7: Lookup Icon Graph for b=2, Hidden Bias-Stanger,, Type = L2
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Each row reports the lookup counts and time for thé'true state row” corresponding to the given
true state. The width of each box is scaled by thmumber of lookups and the height by the length of
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.
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Appendix for Online Access [NOT INTENDED FOR PUBLICATION]

Appendix: Methods

Since this paper incorporates economics experimeritee laboratory, eyetracking devices,
and studies the issue of deception, we expectue readers who come from various backgrounds,
such as economic theory, experimental economigghpghysiology, and lie-detection. Therefore,
we use this methodology appendix to address isthatsmight already be very familiar to some
readers, but not to the rest. In particular, sectl introduces video-based eyetracking to
economists who are interested in learning abouhaoust to study information acquisition, and
section 2 demonstrates the relevance of eyetrackiegonomic experiments. Section 3 provides
an argument for adding yet another paradigm (serabgiver games) to study lie-detection, instead
of adopting previous tasks such as CQT, GKT, &ection 4 provides the technical details of the
equipment and software programs used in this stmdihose who are interested in replicating our

results or applying this technique in future reskar

A.l What is Eyetracking?

There are several ways to track a person’s eyege dDthe most reliable and non-invasive
way is video-based. Video-based eyetracking wbskplacing cameras in front of subject’'s eyes
to capture eye images and corneal reflection afarefi sensors, and record changes up to 50-
250Hz. Using eye movement images when subjectsolddo fixate on certain positions on the
screen, a procedure called “calibration,” the expenter can trace eye fixations and saccades on
the screen and infer subject information acquisij@tterns. In addition to information lookups,

the eyetracker also records pupil dilation, whishcorrelated with arousal, pain, and cognitive



difficulty. Therefore, eyetracking provides addital data about one’s decision making process,

uncovering previously unobservable parameters.

A.ll What Does Eyetracking Tell Us About the “RealWorld"?

Since economists are used to judging theories dylywhether they predict choices
accurately, it is useful to ask what direct measiengt of eye fixations and pupil dilation can add.
One possible inferential strategy from eyetrackstp separate competing theories that explain the
same behavior. Previous studies compared offetlsl@kups in three-period alternating-offer
bargaining (Camerer et al., 1993; Johnson et 8D2P and in initial responses to normal-form
games and two-person guessing games (Costa-Gonads 2001; Costa-Gomes and Crawford,
2006). In those experiments, the same choicesidmilcaused by different decision rules, such as
L1 (optimize against perceived random play) and (Ddtimize against perceived random play
excluding dominated strategies) in Costa-Gomes €2@01), but are separated by different lookup
generated by these rufesThese studies illustrate the potential for usiognitive data, besides

choices, for distinguishing between competing thesoor inspiring new theor.

! One potential concern of adopting eyetrackingcisitiny. For example, in our experiments sendetgcthave been
more truthful simply because they were watchedleéal, we do find many LO and L1 types (seven otivefve) in the
display bias-partner design. But subjects couldnbee truthful due to the repeated game effectnddesuch concerns
should be dealt with empirically by comparing egeked and open box subjects. In our experimeathitiden bias-
stranger adopts random matching and contains betracked and open boxed subjects. Overall tyassification
results are similar to Cai and Wang (2006). Algjothe sub-samples of eyetracked and open boxdsalje show
some interesting differences, the average levstrafegic thinking is comparable: None of the eaaked subjects were
EQ (L3), but there were many SOPH; none of the densubjects were L1, but the only LO subject aaa®pen box.
This results in lower correlation between state medsage for the open box subjects, but therdliktde difference in
payoffs. Hence, we conclude that there is noistiklifference between the two, though the samkeis small.

? For example, in the three-stage bargaining gam@amfierer et al. (1993) and Johnson et al. (20Q®niag offers
typically fell between an equal split of the fistriod surplus and the subgame perfect equilibripmadiction
(assuming self-interest). These offers could besed by limited strategic thinking (i.e., playeis bt always look
ahead to the second and third round payoffs ofytmee), or by computing an equilibrium by lookingeatl, adjusting
for fairness concerns of other players. The failtor look at payoffs in future periods showed e deviation of
offers from equilibrium was (at least partly) duelimited strategic thinking, rather than entirelye to equilibrium
adjustment for fairness (unless “fairness” meansahall responding to advantages conferred bytiaegic structure).
Furthermore, comparing across rounds, when plagerkbok ahead at future round payoffs their resgltoffer are



Lookup patterns and pupil dilation could be uséfuthe sender-receiver games, because it
could potentially be used to distinguish betweempeting theories for overcommunication.
Although our experiments are not designed to sépdrese theories, overcommunication of the
true state is consistent with two rough accountslt @nd cognitive difficulty. Senders may feel
guilty about deceiving the receivers and potentiafisting the receivers money. This is the direct
cost of lying. According to this theory, sendeiifl lwok at the receiver payoffs (since seeing #os
payoffs is the basis of guilt) and their pupils Ivdilate when they misrepresent the state (i.e.,
choose M different from S) due to emotional arodigah guilt. In this story, the guilt springs from
the senders’ realization that their actions cost réceivers money, which depends on seeing the
receiver payoffs.

A different story is that senders find it cogwtly difficult to figure out how much to
misrepresent the state. For example, senders réaiieve that some other senders always tell the
truth, and receivers might therefore believe message truthful. Then strategic senders have to
think hard about how much to misrepresent the statake advantage of the receivers’ naiveté (as
in Crawford, 2003, Kartik, Ottaviani and SquintaBQ07, Chen, 2007, and Kartik, 2008). In this
story, senders do not have to pay much attentioredeiver payoffs but their pupils will dilate
because of the cognitive difficulty of figuring gutecisely how much to exaggerate.

Ultimately, the goal is to open up the black boxhofman brain, and model the decision

process of human behavior, which is similar to wied been done to the firm. Instead of dwelling

closer to the self-interested equilibrium predictisee Johnson and Camerer, 2004). Thus, the |lcdddapcan actually
be used to predict choices, to some degree.

# Another example comes from the accounting litegatdames E. Hunton and McEwen (1997) asked asalyster

hypothetical incentive schemes to make earningsclmt based on real firm data, and investigatadriathat affect the
accuracy of these forecasts. Using an eye-movenwnputer technology (Integrated Retinal Imagingt&my, IRIS),

they find that analysts who employ a “directiveoimhation search strategy” make more accurate fetgchoth in the
lab and in the field, even after controlling foraye of experience. This indicates that eyetrackiray provide an
alternative measure of experience or expertiseishadt simply captured by seniority. Had they nbserved the eye
movements, they could not have measured the diféere information search which is linked to accyra



on the neoclassical theory of the firm, which isrehe a production function, modern economics
has opened up the black box of the firm, and eiiylimmodeled its internal structure, such as the
command hierarchy, principle-agent issues, and f@aduction. Though there is still much to be

done before we come close to what has been achievéudustrial organization, eyetracking

provides a window to the soul and gives us a hirthe decision-making process inside the brain.
Just as we may infer a factory’s technology lewebbserving its inputs and wastes, we may also
infer a person’s reasoning process by observingnfioemation he or she acquires (inputs) and how

hard does he think (indexed by pupillary response).

A.lll What Does Economics Have to Offer Regarding lie-detection?

This study introduces an economic framework that mgssing in most previous
psychophysical studies on deception and lie detectiAn advantage of the strategic information
transmission game for studying deception is thateg#heory makes equilibrium predictions about
how much informed agents will exaggerate what tkeyw, when they know that other agents are
fully-informed about the game’s structure and theentives to exaggerate. Even when equilibrium
predictions fail, there are various behavioral niedsuch as level-k reasoning and quantal response
equilibrium, which provide precise predictions that testable in the lab. And while in most other
deception studie’, subjects are instructed to lie or give weak oorfyocontrolled incentives,

subjects in experiments like ours choose voluntavhhether to deceive others or not (see also John

* For a survey of studies on (skin-conductance)gralgh, see Theodore R. Bashore and Paul E. Ragg)(1%or lie-
detection studies in psychology, see the reviewRalfert E. Kraut (1980) and Aldert Vrij (2000). reocomprehensive
discussion of different cues used to detect lies, Bella M. DePaulo et al. (2003). For individdédferences in lie-
detection (Secret Service, CIA and sheriffs dodrgtsee Paul Ekman and Maureen O’Sullivan (198d)Ekman et al.
(1999). More recently studies in neuroscience gidimctional magnetic resonance imaging (fMRI) utd Sean A.
Spence et al. (2001), D. D. Langleben et al. (2@02) F. Andrew Kozel et al. (2004).

® One exception is Samantha Mann et al. (2004) whigd footage of real world suspect interrogatioriest lie-
detecting abilities of ordinary police. However|oa of experimental control is lost in this segtin One interesting
findings in this study is that counter to convendbwisdom, the more subjects relied on stereofymiues such as gaze
aversion to detect lies, thessaccurate they were.



Dickhaut et al., 1995, Andreas Blume et al., 198®)1 and Cai and Wang, 2006%enders and

receivers also have clear measurable economictimesrio deceive and to detect decepfion.

A.lIV Technological Details

Eyetracking data and button responses are recanded) the mobile Eyelink 11 head-
mounted eyetracking system (SR Research, Osgoauari€). Eyetracking data are recorded at
250 Hz. The mobile Eyelink Il is a pair of tiny cams mounted on a lightweight rack facing
toward the subjects’ eyes, and is supported by odaifle head straps. Subjects can move their
heads and a period of calibration adjusts for headement to infer accurately where the subject is
looking. Nine-point calibrations and validation® grerformed prior to the start of each experiment
in a participant’s session. Accuracy in the valmas typically is better than 0.5° of visual angle
Experiments are run under Windows XP (Microsoft. Jin Matlab (Mathworks, Inc., Natick, MA)
using the Psychophysics Toolbox (David H. Braind@97; Denis G. Pelli, 1997) and the Eyelink
Toolbox (Frans W. Cornelissen et al., 2002).

Eyetracking data are analyzed for fixationsngisthe Eyelink Data Viewer (SR Research,

Hamilton, Ontario). In discriminating fixations,enset saccade velocity, acceleration, and motion

® In fact, when the senders were asked after therampnt whether they considered sending a numiftareint from
the true state deception, 8 of the subjects said while another 3 said no, but gave excuses ssiCh'spart of the
game” or “the other player knows my preferenceeddhce.” Only 1 subject said no without any exateom. These
debriefing results also suggest that guilt hasealdittle role in the experiment.

” Most lie-detection studies have three drawback}:They do not use naturally-occurring lies (beeaiisis then
difficult to know whether people are actually lying not). Instead, most studies create artifildg by giving subjects
true and false statements (or creating a “crimeae”’) and instructing them to either lie or téle truth, sometimes to
fool a lie-detecting algorithm or subject. Howeverstructed deception can be different than n#lfucecurring
voluntary deception, and the ability to detectrimsted deception might be different than detectiolyintary deception.
(2) The incentives to deceive in these studiestygieally weak or poorly controlled (e.g., in Spenet al. (2001) all
subjects were told that they successfully fooledittvestigators who tried to detect them; in MarkF@Gank and Ekman
(1997), subjects were threatened with “sitting orcadd, metal chair inside a cramped, darkened rdabeled
ominously XXX, where they would have to endure ahgve from 10 to 40 randomly sequenced, 110-desielling
blasts of white noise over the course of 1 hr" bewer actually enforcing it.). (3) Subjects ar@idglly not
economically motivated to detect deception. Experits using the strategic-transmission paradigm fgame theory
address all these drawbacks.



thresholds to 30°/sec, 9500°/5eand 0.15°, respectively. Regions of interest I6R@r the boxes
subject look up, are drawn on each task image ubmglrawing functions within the Data Viewer.
Measures of gaze include Fixation Number (i.e.,tttal number of fixations within an ROI) and
Fractional Dwell Time (i.e., the time during a giveund spent on fixating a given ROI divided by
the total time between image onset and respon@a)y those fixations beginning between 50ms
following the onset of a task image and offsethef task image are considered for analysis.

All task images are presented on a CRT moiitbr9 in x 11.9 in) operating at 85 or 100 Hz
vertical refresh rate with a resolution of 1600gbéxx 1200 pixels, and at an eye-to-screen distance

of approximately 24 inches, thus subtending ~36ekegof visual angle.
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Appendix: Experiment Instructions

The experiment you are participating in consists of 1 session, having 45 rounds. At the end of
the last session, you will be asked to fill out a questionnaire and paid the total amount you
have accumulated during the course of the sessions in addition to a $5 show-up fee.
Everybody will be paid in private after showing the record sheet. You are under no obligation
to tell others how much you earned.

During the experiment all the earnings are denominated in FRANCS. Your dollar earnings are
determined by the FRANC/$ exchange rate: 200 FRANCS = $1.

In each round, the computer program generates a secret number that is randomly drawn from
the set {1,2,3,4,5}. The computer will display this secret humber on member A’s screen.
After receiving the number, member A will send the message “The number I received is XX,”
to member B by staring at box XX. Hearing the message from member A, member B will then
choose an action. In particular, member B can choose action 1, 2, 3, 4, or 5, using the game
pad. Earnings of both members depend on the secret number and member B’s action.

Member B’s earnings is higher when member B’s action is closer to the secret number, while
member A’s earnings is higher when member B’s action is closer to the secret humber plus
the preference difference. The preference difference is either 0, 1 or 2, with equal chance,
and will also be displayed and announced at the beginning of each round.

For example, if the preference difference is 2 and the secret humber is 3, member B’s earnings
are higher if his or her action is closer to 3. However, member A’s earnings is higher when
member B’s action is closer to 3 + 2 = 5. The earning tables are provided to you for
convenience.

To summarize, in each round, the computer will display the preference difference and the
secret number on member A’s screen. Then, member A stares at a box (on the right)
containing the desired message. Member B will hear the preference difference and the
message “The number I received is XX,” and then choose an action. The secret number is
revealed after this choice, and earnings are determined accordingly.

Practice Session: 3 Rounds
Session 1: 45 Rounds

Member B: Please make sure you record the earnings in your record sheet. Your payments
will be rounded up. Thank you for your participation.
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Figure S2: Raw Data Pie Charts (b=0), Figure SRaw Data Pie Chart (b=1),
(Display Bias-Partner) (Display Biagartner)
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Figure S4: Raw Data Pie Chart (b=2), (Display Bia$artner)
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The true states are in rows, and senders’ messaga® in columns. Each cell contains the average
action taken by the receivers and a pie chart brealown of the actions. Actions are presented
in a gray scale, ranging from white (action 1) to lack (action 5). The size of the pie chart is
proportional to the number of occurrences for the orresponding state and message.
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Figure S5: Lookup Icon Graph for b=0, Type = all
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Figure S6: Lookup Icon Graph for b=1, Display BiasPartner, Type = all
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Figure S7: Lookup Icon Graph for b=2, Display BiasPartner, Type = all
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Each row reports the lookup counts and time for the‘true state row” corresponding to the given true
state. The width of each box is scaled by the nurab of lookups and the height by the length of
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.
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Figure S8: Lookup Icon Graph for b=1, Hidden Bias-$&anger, Type = all
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Figure S9: Lookup Icon Graph for b=2, Hidden Bias-$anger, Type = all
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Each row reports the lookup counts and time for the'true state row” corresponding to the given true
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icon represents the total lookup time summed acrossach row.
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Table S1A: Learning — Actual Information Transmissi

Display Bias-Partner

BIAS Rounds Corr(S, M) Corr(M, A) Corr(S, A) Pretiid Corr(S, A)

1-15 0.880 0.833 0.732

0 16-30 0.976 0.949 0.925 1.000
31-45 0.937 0.942 0.919
1-15 0.620 0.730 0.477

1 16-30 0.685 0.724 0.577 0.645
31-45 0.598 0.713 0.415
1-15 0.384 0.584 0.372

2 16-30 0.327 0.526 0.306 0.000
31-45 0.279 0.643 0.291

Hidden Bias-Stranger

BIAS Rounds Corr(S, M) Corr(M, A) Corr(S, A) Pretid Corr(S, A)

1-15 0.887 0.816 0.716

0 16-30 0.941 0.951 0.885 1.000
31-45 0.888 0.944 0.866
1-15 0.602 0.730 0.436

1 16-30 0.660 0.727 0.561 0.645
31-45 0.555 0.714 0.393
1-15 0.380 0.592 0.372

2 16-30 0.347 0.540 0.313 0.000
31-45 0.232 0.636 0.288
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Table S1B: Learning Sender and Receiver’'s Payoffs

Display Bias-Partner

BIAS Rounds g (std) W (std) Predicted(std)
1-15 96.36 (23.47) 96.48 (24.37)
0 16-30 104.63 (11.65) 104.78 (12.01) 110.00 (0.00)
31-45 103.50 (12.46) 103.19 (12.18)
1-15 79.38 (31.83) 87.04 (26.78)
1 16-30 69.19 (40.15) 87.98 (28.94) 91.40 (1p.39
31-45 71.83 (39.05) 85.52 (27.09)
1-15 46.06 (50.91) 80.63 (25.93)
2 16-30 46.74 (51.11) 81.20 (27.63) 80.80 (20.76
31-45 35.87 (55.73) 79.70 (29.65)
Hidden Bias-Stranger
BIAS Rounds g (std) Wk (std) Predicted pu(std)
1-15 95.38 (23.56) 95.72 (24.15)
0 16-30 102.40 (15.18) 102.52 (15.53) 110.00 (0.00
31-45 102.00 (16.89) 101.69 (17.30)
1-15 78.76 (35.63) 85.88 (28.92)
1 16-30 69.18 (39.40) 87.45 (28.61) 91.40 (1p.39
31-45 71.40 (38.82) 84.73 (26.87)
1-15 46.76 (49.84) 81.06 (26.36)
2 16-30 46.75 (50.19) 81.81 (27.15) 80.80 (20.76
31-45 36.22 (55.94) 79.29 (29.10)
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Table S2: Information Transmission: Correlationsdaen S, M and A, Display Bias-Partner

Bias r(s, M) r(M, A) r(s, A) Predicted r(S, A)
0 .99 1.00 .99 1.00
1 73 74 712 .65
2 .63 .57 .50 .00

Note: In the display bias-partner design, all sesideye movements were recorded (“eyetracked”).

Table S3: Sender and Receiver’s Payoffs, DisplagBartner

Bias W (std) W (std) Pred. w (std)

0 109.14 (4.0® 109.14 (4.07 110.00 (0.00)
1  93.35(20.75) 94.01(19.86) 91.40 (19.39)
2 4152 (49.98) 85.52(25.60) 80.80 (20.76)

Note:*Payoffs are exactly the same for senders and m@sedue to the symmetry of the payoffs when b=0.

Table S4: Level-k Classification Results, Displag®Partner

Session ID  log L k Exact lambda
-36.33 LO 0.71  0.06
-51.47 LO 0.64 0.00
-33.01 LO 0.78 0.03
-19.81 L1 0.82 0.49
-38.93 SOPH 0.76  0.04
-45.05 EQ 0.69 0.05
-34.89 LO 0.80 0.00
-27.36 L2 0.84 0.04
-31.80 L1 0.80 0.04

[ —

© 0 N O 0o b W DN
© 00 N O O A WOWDN P

10 10 -24.30 L1 0.84 0.48
11 11 -22.35 L2 0.87 045
12 12 -31.07 L2 0.73 1.00
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Table S5: Average Sender Lookup Times (in secgssctGame Parameters, Display Bias-Partner

Response Time

: , Sender-to-
Bias - - State Bias Sender Receiver Receiver

b  Periods Periods Payoffs  Payoffs Rat

115  31-45 ato

0 5.42 2.39 0.65 041 0.73 0.27 2.70

1 7.92 5.44 1.47 0.99 2.29 1.05 2.18
2 9.73 8.12 1.72 152 3.03 1.50 2.02
all 8.07 5.25 1.34 1.02 2.14 1.00 2.14

Table S6: Average Lookup Time per Row DependinghenState, Display Bias-Partner

True State Other State True-to-Other

Bias b Rows Rows Ratio
0 0.54 0.11 491
1 2.06 0.32 6.44
2 2.24 0.57 4.28
overall 1.71 0.36 4.75

Table S7A: Average response time change for diftdbeases, Display Bias-Partner

Bias Average for N Average for N Average for
first 15 rounds middle 15 rounds last 15 rounds
0 38 5.42 47 291 55 2.39
1 73 7.92 60 5.44 59 5.44
2 67 9.73 68 8.96 51 8.12
overall 178 8.07 175 6.13 165 5.25

* The numbers of observations are slightly difféfeacause we exclude 10 rounds where subjectsohasktthe
keyboard to make their decision. Also, subjech#d severe pain and the experimenter was forcstbpothe
experiment at the end of round 33.

Note: Since the bias was randomly determined eachd, and subject #4 stopped at round 33 (duedessxpain
wearing the eyetracker), numbers of observatioasat equal. Dropping subject #4 does not chamgedsults.
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Table S7B: Average response time change for diffdse@ases, Hidden Bias-Stranger

Bias N Average for N Average for Average for
first 15 rounds middle 15 rounds last 15 rounds
0 30 9.78 24 5.54 29 7.24
1 56 11.77 58 10.78 59 8.76
2 61 16.84 65 10.23 49 8.99
overall 147 13.47 147 9.68 137 8.52

* The numbers of observations are slightly différeacause we exclude 12 rounds where subjectohasktthe
keyboard to make their decision. Also, subjech#8 calibration issues and the experimenter waebto stop
eyetracking at the end of round 40.

Note: Since the bias was randomly determined eaahd, and subject #4 stopped at round 40 weariag th
eyetracker), numbers of observations are not equal.

Table S8: Pupil Size Regressions for 400 msecvakerDisplay Bias-Partner

-1.2~ -0.8~ -0.4~ 0.0~ 0.4~
Y PUPIL
-0.8sec -0.4sec 0.0sec 0.4sec 0.8sec
constant o 99.59 99.78 104.62 111.81 109.95
(2.45) (2.41) (2.19) (1.84) (2.07)
LIE_SIZE * BIAS, B10 1.20 6.41 3.92 -3.91 0.58
interactions (3.21) (6.38) (3.06) (2.76) (7.36)

o 2.79* 3.40%  3.28% 455+ 4.20%*
(1.19) (1.17) (0.97) (0.86) (0.73)

Bip 3490 3 71%%  3.04%%  290% 328
(0.99) (0.98) (0.84) (0.87) (0.90)

N 499 497 499 508 503
v 224.54 337.22 500.93 785.32 631.21
R? 0.271 0.346 0.455 0.539 0.557

Note: Robust standard error in parentheses; t{-gatues lower than 10 percent, *5 percent, **etqent, and
*** (.1 percent. (Dummies for biases, states, Wdtlial subjects and individual learning trendsiactuded in the
regression, but results are omitted.)
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Table S9: Predicting True States (Resampling 18@4gj s.e. in parentheses), Display Bias-Partner

X Display Bias-Partner
MESSAGE *BIAS =1 B11 0.64* (0.22)
MESSAGE * BIAS = 2 B12 0.91* (0.23)
ROWsei * BIAS=1 B21 0.98** (0.21)
ROWgei * BIAS=2 B22 1.00** (0.27)
ROWother * BIAS=1 Ba1 0.25 (0.16)
ROW ther * BIAS=2 Bs2 0.39* (0.17)
total observations N 208
N used in estimation 139.3
N used to predict 68.7
Actual Data Hold-out Sample
Percent of wrong prediction (b=1) 56.2 29.2
Percent of errors of size (1,2,3+) (b=1) (80, 15,5 (74,19, 7)
Average predicted payoff (b=1) 93.4 (22.3) 100.7* (2.4)
Percent of wrong prediction (b=2) 70.9 58.7
Percent of errors of size (1,2,3+) (b=2) (67, 26, 7 (73, 22, 5)
Average predicted payoff (b=2) 86.2 (23.8) 91.8* (3.4)

Note: * and ** Denotes p<0.05 and p<0.001 (t-test)
& Observation with less than 0.5 seconds lookup imwithout the needed pupil size measures ataded.
® Two sample t-test conducted against the actuabffeyf receivers in the experiment who are pawath
eyetracked senders.
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Table S10: Average Sender Fixation Counts and Ljpdkme across Game Parameters

Res- State Bias Sender Payoffs  Receiver Payoffs

Treat- Biasb ponse
ment time

(sec.)
Displayed 0 3.59 2.6 0.65 2.1 0.41 3.0 0.73 14 0.27

Fixation Lookup Fixation Lookup Fixation Lookup Fixation Lookup
(count) (sec.) (count) (sec.) (count) (sec.) (count) (sec.)

Bias 1 6.86 5.0 1.47 3.9 0.99 8.1 2.29 3.9 1.05

- Partner 2 9.68 6.2 1.72 5.5 1.52 10.6 3.03 54 501.

overall 7.00 4.8 1.34 4.0 1.02 7.6 2.14 3.7 1.00

Hidden 0 7.65 3.0 0.83 - - 12.0 2.93 7.5 1.71
Bias 1 10.95 3.1 0.81 - - 14.2 3.80 10.7 2.66

- Stranger 2 12.91 3.4 0.91 - - 17.5 4.67 12.4 3.26
overall 11.12 3.2 0.86 - - 15.1 3.99 10.8 2.72

Table S11: Average Fixation Counts and Lookup TpeeRow
True State Rows Other Rows

Treatment Bias b Fixation Countd.ookup Time Fixation Counts Lookup Time
(countsper rowy (sec. per row) (countsper row  (Sec. per row)

Displayed 0 2.2 0.54 0.5 0.11
Bias 1 6.8 2.06 1.3 0.32
- Partner 2 7.8 2.24 2.0 0.57
overal 5.9 1.71 1.3 0.36
I
Hidden 0 114 2.76 2.0 0.47
Bias 1 14.4 3.88 2.6 0.64
- Stranger 2 15.7 4.29 3.6 0.91
overall 14.3 3.83 2.9 0.72
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Table S12: Individual Types and Log Likelihood un8gike-logit and Logit Specification

Spike-logit (baseline)
LO L1 L2 L3

Spike-logit (without bias=0) Logit
SOPH LO L1 L2 L3 SOPH LO L1 L2

L3

Logit (without bias=0)
SOPH LO L1 L2 L3 SOPH

Ses-Sub-
sion ject
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
4 1
4 3
5 1
5 2
5 3
6 1
6 2
6 3

-60.20 -55.68 -46.36 -53.16 -46.23 -50.47 -43.08 -36.68 -41.48 -35.28 -66.92 -52.59 -50.83 -54.65 -48.72 -54.44 -42.12 -40.07 -43.31 -38.50
-55.82 -55.14 -24.72 -50.15 -51.96 -50.80 -66.85 -36.95 -49.41 -51.79 -48.10 -57.46 -33.19 -42.58 -44.18 -42.21
-22.60 -56.92 -42.76 -8.82 -33.29 -17.74 -72.21 -46.26 -16.26 -31.31 -19.94 -57.94 -39.55 -10.24 -24.95 -16.32
-41.45 -46.88 -30.94 -36.70 -36.82 -35.30 -56.20 -35.57 -36.33 -37.68 -32.92 -47.12 -29.33 -29.29 -30.01 -26.56
-43.01 -41.28 -39.95 -38.68 -32.57 -37.13 -54.41 -48.18 -44.00 -40.05 -39.73 -42.03 -37.90 -34.10 -30.40 -31.55
-25.70 -49.74 -40.08 -25.05 -23.07 -17.26 -63.97 -43.32 -28.04 -27.62 -24.89 -49.89 -35.66 -20.95 -20.18 -19.66
-68.32 -68.84 -71.93 -71.16 -71.29 -56.34 -54.93 -57.48 -56.92 -57.48 -69.40 -71.94 -72.43 -72.43
-71.84 -47.10 -22.95 -30.78 -17.71 -62.49 -43.98 -21.86 -28.76 -16.95 -71.79 -41.49 -18.26 -27.31

-67.54 -25.99 -55.16 -56.98
-72.16 -50.97 -15.98 -40.06
-55.43 -37.32 -43.27 -43.29
-49.08 -47.07 -45.17 -37.34
-63.73-49.05 -33.23 -31.65

-72.35-71.84 -59.83 -54.73
-54.83 -50.86 -57.41 -62.43
-69.49 -43.38 -29.43 -25.22
-68.90 -22.26 -44.60 -42.75
-69.84 -54.26 -35.77 -48.07
-70.23-44.73 -30.63 -25.17
-70.88 -46.20 -16.27 -35.62
-65.57 -49.32 -43.38 -47.52

-55.24 -64.40 -65.98 -57.14 -52.56 -53.07 -72.43 -71.80 -63.97
-58.71 -48.26 -43.88 -49.87 -54.04 -50.51 -54.81 -49.71 -57.41
-27.41 -56.24 -36.20 -22.70 -18.81 -21.88 -69.77 -38.12 -23.20
-40.74 -61.32 -21.50 -41.94 -40.52 -38.51 -67.29 -23.01 -33.07
-40.75 -54.31 -42.78 -21.10 -37.72 -30.23 -69.44 -48.58 -40.71

-61.77
-61.08
-22.61
-35.16
-45.07

-72.42 -56.72 -57.93 -57.94 -57.94 -57.94
-21.02 -62.77 -38.52 -16.86 -24.02 -19.27
-62.83 -65.99 -65.85 -59.46 -57.33 -58.77
-56.59 -47.41 -42.74 -48.53 -51.20 -48.16
-20.73 -56.15 -31.29 -16.80 -15.57 -15.89
-29.89 -60.41 -21.50 -29.46 -30.98 -27.38
-39.44 -54.20 -37.41 -29.60 -33.32 -30.16

-29.33 -61.00 -40.19 -26.93 -21.44 -26.26 -71.66 -41.34 -21.23 -19.50 -17.81 -61.16 -36.49 -17.38 -15.43 -15.35
-22.96 -57.94 -39.17 -9.11 -29.26 -17.88 -70.51 -38.41 -14.12 -23.23 -15.98 -57.89 -32.36 -8.53 -17.17 -12.80
-42.02 -56.82 -44.38 -38.05 -43.33 -37.08 -70.22 -47.91 -48.39 -52.75 -45.64 -57.70 -41.36 -40.60 -43.83 -38.75
-53.12 -68.57 -70.88 -71.41 -70.87 -46.26 -59.73 -62.40 -62.66 -62.35 -56.49 -67.30 -71.21 -71.31 -70.36 -48.23 -58.70 -62.09 -62.15 -61.50

Note: Maximum likelihood for each specificationdemlined Classification results that are consistent i baseline specification (spike-logit) areowid.
Subject 3-1 has compliance rates less than 20 mefimeall types under both spike-logit specificais, and hence, is deemed as unclassified.



