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Abstract 

We report experiments on sender-receiver games with an incentive for senders to 

exaggerate.  Subjects “overcommunicate”— messages are more informative of the true state than 

they should be, in equilibrium. Eyetracking shows that senders look at payoffs in a way that is 

consistent with a level-k model. A combination of sender messages and lookup patterns predicts 

the true state about twice as often as predicted by equilibrium.  Using these measures to infer the 

state would enable receiver subjects to hypothetically earn 16-21 percent more than they actually 

do, an economic value of 60 percent of the maximum increment.    
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 “Why do almost all people tell the truth in ordinary everyday life? —Certainly not 

because a god has forbidden them to lie.  The reason is, firstly because it is easier; for lying 

demands invention, dissimulation and a good memory.”  

– Friedrich Nietzsche, Human, All Too Human, II.54, 1878/1996 

 

During the tech-stock bubble, Wall Street security analysts were alleged to inflate 

recommendations about the future earnings prospects of firms, in order to win investment 

banking relationships with those firms.1  Specifically, analysts in Merrill Lynch used a five-point 

rating system (1=Buy to 5=Sell) to predict how the stock would perform.  They usually gave two 

1-5 ratings for short run (0-12 months) and long run (more than 12 months) performance 

separately. Henry Blodget, Merrill Lynch’s famously optimistic analyst, “did not rate any 

Internet stock a 4 or 5” during the bubble period (1999 to 2001).  In one case, the online direct 

marketing firm LifeMinders, Inc. (LFMN), Blodget first reported a rating of 2-1 (short run 

“accumulate”—long run “buy”) when Merrill Lynch was pursuing an investment banking 

relationship with LFMN.  Then, the stock price gradually fell from $22.69 to the $3-$5 range.  

While publicly maintaining his initial 2-1 rating, Blodget privately emailed fellow analysts that 

“LFMN is at $4.  I can’t believe what a POS [piece of shit] that thing is.” He was later banned 

from the security industry for life and fined millions of dollars.2   

                                                 
1 For a detailed description of the tech-stock bubble, see Michael J. Brennan (2004).  For evidence regarding analyst 

recommendations affected by conflicts of interest, see Hsiou-wei Lin and Maureen F. McNichols (1998) and Roni 

Michaely and Kent L. Womack (1999).   
2 See Complaint in Securities and Exchange Commission v. Henry M. Blodget, 03 CV 2947 (WHP) (S.D.N.Y.) 

(2003), paragraph 11-12 and 70-72, Securities and Exchange Commission Order Against Henry M. Blodget (2003), 

and United States District Court Final Judgement on Securities and Exchange Commission v. Henry M. Blodget 03 

Civ. 2947 (WHP) (S.D.N.Y.) (2003).  
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This case is an example of a sender-receiver game with divergent preferences (sometimes 

called a “cheap talk” or “strategic information transmission” game).  Sender-receiver games are 

simple models of economic situations in which one agent has an incentive to exaggerate the truth 

to another agent.  The central issues in these games are how well uninformed players infer the 

private information from the actions of players who are better-informed, and what informed 

players do, anticipating the behavioral inference of the uninformed players. Vincent P. Crawford 

and Joel Sobel (1982) showed that in such games, the sender’s incentive to exaggerate when his 

preferences differ from the receiver’s precludes equilibria in which communication is perfectly 

informative.  Instead, all equilibria are noisy, and the larger the difference between the sender’s 

and receiver’s preferences, the noisier is the most informative equilibrium.  But as in any 

equilibrium model, there is no systematic deception: The receiver’s beliefs conditional on the 

sender’s message are unbiased estimates of the true state.  Although previous experimental work 

starting with John Dickhaut et al. (1995), Andreas Blume et al. (1998, 2001), and cumulating 

with Hongbin Cai and Joseph Tao-yi Wang (2006) general confirms Crawford and Sobel’s 

comparative statics prediction regarding the noisiness of communication, experiments also tend 

to disconfirm their model’s prediction that with divergent preferences, senders never tell the truth 

except by accident, and that receivers are never systematically deceived.  Crawford (2003) and 

Navin Kartik, Macro Ottaviani and Francesco Squintani (2007) show that both 

“overcommunication” (senders telling the truth more than equilibrium predicts) and systematic 

deception can be explained by a class of non-equilibrium models of strategic thinking called 

level-k models.  Cai and Wang (2006) show that such a model can describe the data from their 

sender-receiver experiments and could help to explain the overcommunication their subjects 

exhibits.  The present paper builds on these results and attempts to investigate the cause behind 
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the behavior patterns in such games.  Understanding these behavioral patterns better should aid 

in the design of institutions to foster more accurate transmission of information when preferences 

diverge. 

Incentives for exaggeration are common.  Besides the Blodget case mentioned above, 

similar dramatic accounting frauds in the last few years, such as Enron, Worldcom, and Tyco, 

might have been caused by the incentives of managers (and perhaps their accounting firms) to 

inflate earnings prospects (Brennan, 2004, and Brian J. Hall and Kevin J. Murphy, 2003).  For 

instance, Enron executives told shareholders at meetings that earnings prospects were rosy, at the 

same time as the executives were selling their own shares, leading to indictments and trials in 

2006.3  In universities, grade inflation and well-polished recommendation letters help schools 

promote their graduates (Henry Rosovsky and Matthew Hartley, 2002).  Other examples of 

incentives for strategic information transmission include government-expert relationships in 

policy making, doctor-patient relationships in health care choices, teacher cheating on student 

tests (Brian A. Jacob and Steven D. Levitt, 2003) and the floor-committee relationship in 

Congress. 

 This paper reports experiments on a sender-receiver game.  In the game, a sender learns 

the true state (a number S) and sends a costless message M to a receiver who then chooses an 

action A.  Payoffs only depend on S and A so the message M is “cheap talk.”  The receiver 

prefers to choose an action that matches the state, but the sender wants the receiver to choose an 

                                                 
3 According to an SEC complaint filed in court, Kenneth Lay, Enron’s then chairman and CEO, said “We will hit 

our numbers” and “My personal belief is that Enron stock is an incredible bargain at current prices” in an employee 

online forum on September 26, 2001. However, in the prior two months he was actually making net sales of over 

$20 million in Enron stock (back to Enron).  See Second Amended Complaint in Securities and Exchange 

Commission v. Richard A. Causey, Jeffrey K. Skilling and Kenneth L. Lay, Civil Action No. H-04-0284 (Harmon) 

(S.D. Tx.) (2004), paragraph 81-82. 
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action closer to S+b, where b is a known bias parameter. The value of b is varied across rounds. 

When b=0 senders prefer that receivers choose S, so they almost always just announce S (i.e., 

M=S), and receivers believe them and choose A=M. When b>0 senders would prefer to 

exaggerate and announce M>S if they thought receivers would believe them.  Since subjects 

choose 1-5, the numbers in our game are coincidentally the same as those used by Merrill Lynch.  

Indeed, when b>0, we find that our subjects hardly ever report the number 1 (in only 8 percent of 

208 rounds), much as Blodget never rated a stock 4 or 5 (the equivalent of 1-2 in our game).  

However, our game is presented in abstract terms without reference to stock analysts or 

deception.  This could make subjects feel less guilty when ‘deceiving’ others in the experiment. 

Besides measuring choices in these games, our experiment uses video-based 

“eyetracking” to measure what payoffs or game parameters sender subjects are looking at (see 

Appendix: Methods).  Eyetracking software records where players are looking on a computer 

screen every 4 milliseconds. These data are a useful supplement to econometric analysis of 

choices, when decision rules which produce similar choices make distinctive predictions about 

what information is needed to execute these rules.  Previous “eyetracking” studies used a 

“Mouselab” system in which moving a cursor into a box opens the box’s contents and are more 

accurately described as “mouse-tracking.”  See Camerer et al. (1993), Miguel Costa-Gomes et al. 

(2001), Eric Johnson et al. (2002), Costa-Gomes and Crawford (2006), Xavier Gabaix et al. 

(2006); and Crawford (2008).4  

                                                 
4 One small handicap of the Mouselab system is that the experimenter cannot be certain the subject is actually 

looking at (and processing) the contents of the open box.  Our system measures the eye fixation so we can tell if the 

subject’s eye is wandering, and pupil dilation is measured at the same time (which Mouselab cannot do).  

Nevertheless, Mouselab systems can be installed cheaply in many computers to measure lookups of many agents at 

the same time, which could prove useful in running efficient subjects and studying attention simultaneously in 

complex markets with many agents.   
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 The eyetracking apparatus also measures how much subjects’ pupils “dilate” (expand in 

width and area).  Pupils dilate under stress, cognitive difficulty, arousal and pain.5  Pupillary 

responses have also been measured in the lie-detection literature for many years (See for 

example, F. K. Berrien and G. H. Huntington, 1942, I. Heilveil, 1976, Michel P. Janisse, 1973, 

M. T. Bradley and Janisse, 1979, 1981, Janisse and Bradley, 1980, R. E. Lubow and Ofer Fein, 

1996, and Daphne P. Dionisio et al., 2001).  These studies suggest that pupil dilation might be 

used to infer deceptive behavior because senders find deception stressful or cognitively difficult.  

 The choices, eyetracking, and pupil dilation measures generate four basic findings:  

1. Overcommunication in sender-receiver game is consistent with L0, L1, L2, and 

equilibrium (EQ) sender behavior produced by a level-k model of the sender-receiver 

game in which L0 sender behavior is anchored at truth-telling.   

2. Eyetracking data provide the following support for the level-k model: 

a. Attention to structure and own payoffs: Sender subjects pay attention to important 

parameters (state and bias) of the sender-receiver game.  This indicates subjects 

are thinking carefully about the basic structure of the game, even if they are not 

following equilibrium theory.  Sender subjects also look at their own payoffs 

more than their opponents’.   

                                                 
5 For pupillary responses to arousal, see R. A. Hicks et al. (1967), R. Bull and G. Shead (1979), and Darren C. 

Aboyounand James N. Dabbs (1998).  For pupillary responses to cognitive difficulty, see Jackson Beatty (1982) and 

B. C. Goldwater (1972).  For pupillary responses to pain, see C. Richard Chapman et al. (1999) and Shunichi Oka et 

al. (2000).  Min Jeong Kang et al (2008) show that pupils dilate in anticipation of finding out the answers to trivia 

questions about which they are curious. (Their self-reported curiosity is also shown by fMRI to activate the ventral 

striatum, a brain region involved in anticipated reward or “prediction error” and learning; and curiosity also 

enhances later memory for mistaken answers.)  
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b. Truth bias: Sender subjects focus too much on the true state payoff row.  This bias 

is consistent with a failure to “think in the opponent’s shoes” as in Meghana Bhatt 

and Colin F. Camerer (2005).  

c. Individual level-k lookup patterns: Sender subjects focus on the payoffs 

corresponding to the action A = S (L0 reasoning), A=S+b (L1 reasoning), …, up 

to the corresponding level-k reasoning for each individual subject based on his or 

her level-k type.  This indicates particular level-k type subjects do generally 

exhibit the corresponding lookup patterns.  

3. Right before and after the message is sent, senders’ pupils dilate more when their 

deception is larger in magnitude.  This suggests subjects feel guilty for deceiving (as in 

Uri Gneezy, 2005), or deception is cognitively difficult (as the level-k model assumes).6    

4. Prediction: Based on the eyetracking results, we can try to predict the true state observed 

by the sender using lookup data and messages.  This prediction exercise suggests it is 

possible to increase the receiver’s payoff (beyond what was earned in the experiments) 

by 16-21 percent, resulting in an economic value of 60 percent of the maximum 

achievable increase.   

Finally, this study shows the possible relevance of psychology and neuroscience to 

economics.  Douglas Bernheim (2008) suggests that neuroeconomics will be successful if it can 

show how new non-choice data can solve a prediction or normative problem that could not be 

solved by standard choice data.  One such problem is how to extract private information from 

                                                 
6 Note that although the pupil dilation results are consistent with both the guilt and cognitive difficulty explanations, 

the lookup results are more consistent with the cognitive difficulty story of overcommunication, since different 

lookup patterns each suggest a specific (level-k) reasoning process that has a particular level of cognitive difficulty.  

It is not obvious how guilt alone (or variations in guilt) can produce this result.  
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choices. In the standard model, private information is, by definition, not directly observable to 

outsiders (such as receivers in our game); it can only be inferred assuming a particular model of 

behavior (e.g., inferring private values from auction bids).  If eyetracking, pupil dilation, fMRI, 

or other biological measures enable one to infer more about private information than by using 

only choices, those “new” data—new to economists, that is—have some added value for 

something economists care about. Our data satisfy this criterion because lookups and pupil 

dilation enhance prediction of the true state beyond the predictions derived simply from observed 

messages (choice) and equilibrium theory. 

 This is the first study in experimental economics to use a combination of video-based 

eyetracking and pupil dilation, and is, of course, exploratory and is therefore hardly conclusive.  

But the eyetracking and pupil dilation results by themselves suggest that the implicit assumption 

in equilibrium theories of “cheap talk” in games with communication—namely, that deception 

has no (cognitive or emotional) cost—is not completely right.  This provides the foundation for 

alternative theories such as costly talk (as in Kartik, Ottaviani and Squintani, 2007, Ying Chen, 

2007, and Kartik, 2008) or the level-k model (as in Crawford, 2003, Cai and Wang, 2006).  The 

Nietzsche passage quoted above describes the cognitive load of deception, and is explored in 

Jennifer Maria Nuñeza et al. (2005).  Mark Twain also famously quipped, “If you tell the truth, 

you don't have to remember anything,” indicating the memory cost of deception.7  The corollary 

principle is that if subjects want to misrepresent the state to fool receivers, they have to figure out 

precisely how to do so (and whether receivers will be fooled).  This process is not simple and 

seems to leave a psychological signature in looking patterns and pupil dilation.  Future theories 

                                                 
7 Quotation taken from Mark Twain’s Notebook, 1894.  In fact, Daniel Kahneman and Beatty (1966) showed how 

more difficult memory tasks induced larger pupillary response.  Hence, memory load could also be a channel for 

deception to affect pupil dilation. 
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could build in an implicit cost to lying (which might also vary across subjects and with 

experience) and construct richer economic theories about when deception is expected to be 

widespread or rare.   

I. The Sender-Receiver Game 

 In each round of the experiments, subjects play a game of strategic information 

transmission, involving cheap talk (Crawford and Sobel, 1982).  One player always acts as the 

sender, and the other as the receiver. The sender’s eye movements and pupil dilation are 

measured with a head-mounted Eyelink II eyetracker (see Appendix: Methods).  At the 

beginning of the round, the sender is informed about the true state of the world, which is 

described as a “secret” number S uniformly drawn from the state space S = {1, 2, 3, 4, 5}, and is 

informed about the bias b, which is either 0, 1, or 2 with known probabilities.  The receiver 

knows the bias b, but not the realization of the state S.  Both players are informed in instructions 

about the basic structure of the game.   

 The sender then sends a message to the receiver, from the set of messages M  = {1, 2, 3, 4, 

5}.8  After receiving a message from the sender, the receiver chooses an action from the action 

space A = {1, 2, 3, 4, 5}.  The true state and the receiver’s action determine the two players’ 

payoffs in points according to uR = 110 − 20 · |S −A|1.4, and uS = 110 − 20 · |S + b −A|1.4, where 

uR and uS are the payoffs for the receiver and the sender, respectively.  Note that the receiver 

earns the most money if her action matches the true state (since her payoff falls with the absolute 

difference between A and S).  The sender prefers the receiver to choose an action equal to S+b.  

                                                 
8 Following Cai and Wang (2006), we use the message, “The number I received is X” to eliminate possible 

misinterpretation of the message (which contributes to the multiple equilibria problem typical in these types of 

games resulting form the need to assign meaning to messages). 
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This payoff structure is made known to both senders and receivers.  Figure S1 shows the screen 

display for b=1 and S=4.   

When the bias is large (b=2), the most informative equilibrium has the sender send an 

uninformative message, while the receiver ignores the message and chooses A=3 based on her 

prior beliefs (babbling equilibrium).  When b=1, the most informative equilibrium requires the 

senders to send messages {1} when S=1, and send {2,3,4,5} when S is 2-5. When b=1 the 

receivers should choose action A=1 when seeing M={1}, and A=3 or 4 when seeing 

M={2,3,4,5}.9  When b=0, truth-telling by choosing M=S (and receivers choosing A=M) is the 

most informative equilibrium.   

On the other hand, following Crawford (2003) and Cai and Wang (2006), the level-k 

model for the sender-receiver game starts with L0 senders (who has the lowest level of 

sophistication) would simply tell the truth, and L0 receivers best responding to L0 senders by 

following the message.  Moving up the hierarchy, L1 senders best respond to the L0 receivers by 

inflating the message (stating their preferred states), and L1 receivers best respond to L1 senders 

by discounting the message.  Such procedure is continued until we reach the most informative 

equilibrium prediction.10  In addition, we include a sophisticated type (SOPH) which best 

                                                 
9 Thanks to David Eil for clarifying the equilibrium analysis.  Due to discreteness, there is another knife-edge 

equilibrium with b=1 that produces higher information transmission: Senders send messages M={1,2} and {3,4,5}, 

while receivers choose A=2 and 4.  However, this equilibrium is not robust since senders who see S=2 are exactly 

indifferent between sending M={1,2} and M={3,4,5}.  Moreover, the main results of the paper do not change even 

if we consider this equilibrium (then Corr(S,A) = 0.791, and uR= 94.56). 
10  Note that the level-k model itself provides an equilibrium selection criterion—it selects the most informative 

equilibrium where senders report the upper bound of the interval of true states.  This pins down both the amount of 

information transmitted and the language used in the message sent. In general, level-k models will provide more 

precision (given a particular parameter value specification) than equilibrium concepts when there are multiple 

equilibria.  Also note that, due to signal jamming, higher level types do not simply add (or subtract) multiples of the 

bias.  This is particularly true when approaching the upper bound of the state space.  For example, when b=1, L2 
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responds to the empirical distribution of opponent’s behavior.  This represents the highest level 

of strategic thinking, knowing the exact heterogeneity of opponent types and behavior.  Table 1 

provides the list of different level-k types for b=0, 1, and 2.11  Note that in our data, SOPH 

senders act like L2 senders when b=1 and act like EQ(=L3) senders when b=2, both a best 

response to L1 receivers.   

Under both the equilibrium and level-k models, the comparative statics are similar: 

Information transmission decreases as the bias increases, though the level-k model still allows 

transmission even when the bias is so big that the equilibrium model predicts babbling (zero 

transmission).  Informativeness is measured by the correlation between actions and the true states, 

and by receiver payoffs (more informative equilibria have higher expected payoffs).  In addition, 

we assume a literal interpretation of messages, and measure the “informativeness” of senders’ 

messages by the correlation between the true states and the messages M.  How “trusting” the 

receivers are can be measured by the correlation between the messages M they receive and the 

actions A they take.12  These comparative statics predictions were tested by Dickhaut et al. 

(1995), Blume et al. (1998, 2001), and Cai and Wang (2006).  Overcommunication—messages 

are more informative of the true state than they should be, in equilibrium—are typically found in 

                                                                                                                                                             
senders who see S=3-5 will all send M=5 (since higher messages are not feasible), and L2 receivers, knowing the 

true state is equally likely to be 3, 4 or 5, would choose A=4, instead of 3 (=5-1*2). 
11 Cai and Wang (2006) constructed a level-k model for the case where the most informative equilibrium is babbling.  

Here we extend it to other biases.  Also, we use the econometric methods developed by Costa-Gomes and Crawford 

(2006) to estimate individual types. 
12 Such a natural language interpretation is justified by Blume et al. (2001) findings that equilibrium messages tend 

to be consistent with their natural language meanings, and is used in Cai and Wang (2006).  Moreover, many 

behavioral theories of lying, such as Crawford (2003) and Kartik, Ottaviani and Squintani (2007), also lead to this 

sort of natural language interpretation since naïve receivers would take the message at face value.   
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these studies, and Cai and Wang (2006) suggest two bounded rationality explanations: the level-

k model and quantal response equilibrium.   

II. The Experiment 

To be sure that subjects learn, and to collect a lot of trials to pool across, the same game 

is played 45 times among the two players with random choices of bias b (and random states) in 

each round.  Because we could only eyetrack one or two subjects at a time, only the senders were 

hooked up to the mobile Eyelink eyetracker (although studying receivers’ eye fixations would be 

useful in future work).  We randomly matched six subjects into pairs using a stranger-matching 

protocol, with different receivers in each round (with no immediate re-matching with the same 

receiver), and eyetracked two of the senders in each group.  Values of b=0, 1, 2 were used with 

known probabilities (0.2, 0.4, 0.4) since we are less interested in the no-bias (b=0) case than in 

the bias (b>0) cases.    We also added some noise (integers -4 to +4 with equal probability, i.i.d. 

across payoff cells) to each payoff to minimize memory effects.  Since the noise is small, the 

equilibrium remains the same.  To further eliminate any memory effect, the bias parameter was 

not shown to the eyetracked senders on the screen, although it was mentioned in the instructions.  

Instead, subjects were forced to look at the payoff table to infer it.  Thus, this set of experiments 

is called the “hidden bias-stranger” design.  The results reported below focus entirely on the eye 

fixations and pupil dilation of the eyetracked senders, and the message choices of all senders and 

action choices of receivers.13  

                                                 
13 Two of the twelve eyetracked subjects experienced technical difficulty during the experiment and their data were 

excluded (along with the corresponding receiver subjects’ choices).   
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Subjects’ choices are compared to the most informative equilibrium in the one-shot 

game.14 We also use predictions from a level-k model (Table 1 to estimate individual sender 

types with a quantal response-like “spike-logit” error structure, using the econometric analysis 

developed by Costa-Gomes and Crawford (2006).  In particular, we assume each sender subject 

exactly follows a certain level-k type and plays kt  (the “spike” of probability) with probability 

(1 )ε− . With probability ε , they make mistakes following a logit error density 
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have 1kp =  for some k, so estimation results for a subject could be written as ( , , )k ε λ .   

                                                 
14 We do not consider a possible dynamic equilibrium that might sustain higher information transmission levels. 

This is not a problem for b = 0 or 2.  When b = 2, babbling is the only equilibrium in the one shot game and 

backward induction yields the babbling equilibrium for all finitely repeated games; when b = 0, the one shot game 

equilibrium already has full information transmission and there is no room for improvement.  Also note that 

overcommunication is the most striking when b = 2.  Random rematching also limits repeated-game effects. 
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We also ran an earlier set of experiments using a partner protocol in which a pair of 

subjects played repeatedly in a fixed-role protocol where b=0, 1, 2 with known equal probability.  

The bias parameters were always revealed (sender subjects indeed look at them), and there was 

no payoff perturbation.  This is a simpler design to implement logistically, requiring only one 

eyetracked subject and his/her (open box) opponent, but creates potential repeated-game effects.  

We refer to this as the “display bias-partner” design.  Results of this design are briefly discussed 

in comparison to that of the “hidden bias-stranger” design in Section III.D.  Corresponding tables 

and figures are in the appendix. 

Subjects were 60 Caltech students recruited from the Social Science Experimental 

Laboratory subject pool.  Six sessions of six subjects were randomly matched in the “hidden 

bias-stranger” design, and twelve pairs were run in the “display bias-partner” design.  They 

earned between $12 and $27 in addition to a $5-15 show-up fee.  For the “hidden bias-stranger” 

sessions, we used different randomly pre-drawn parameters for each of the six sessions.  But in 

the “display bias-partner” design we used the same set of randomly drawn biases and states for 9 

of the 12 pairs, and used two other sets of parameters for the remaining 3 pairs to see if there 

were any effects for using the same parameters.   

 While 60 subjects might appear to be a small sample size,15 most experimental studies 

with larger samples have many fewer choices per subject. The eyetracked subjects played 45 

games, and made a very large number of eye fixations; so we recorded a lot of data for each 

subject and could often draw confident statistical conclusions from these sample sizes.   

                                                 
15 We successfully eyetracked 22 of the 60 subjects, which is considered a large sample size for psychophysical 

studies involving eyetracking.   
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III. Results 

III.A Comparative Statics and Behavior 

What do players choose?  Figures 1-3 display the three dimensions of the raw choice 

data—states, messages and actions—for the three bias levels b = 0, 1 and 2.  Each Figure is a 5-

by-5 display. The true states 1-5 correspond to the five rows. The sender messages 1-5 

correspond to the five columns. Within each stage-message cell, there is a pie chart.  The area of 

the pie-chart in each cell is scaled by the number of occurrences for the corresponding state and 

message ; i.e., the most common state-message pairs have the largest pies.   Hence, the rows 

indicate senders’ behavior with respect to different states and the columns represents the 

“informativeness” of each message, determined by the distribution of states conditional on each 

particular message.  Several diagonal lines connect predicted messages for various level-k types.  

Each pie chart also shows the distribution of actions chosen by the receiver for that state and 

message, using a gray-scale ranging from white (action 1) to black (action 5). The average 

receiver action is the number inside the pie. 

For example, when b=0, and there is no conflict of interest, large pie-charts are 

concentrated on the diagonal (L0/Eq sender behavior), which is a visual way of showing that the 

senders almost always send a message corresponding to the true state.  Moreover, these pie-

charts mostly contain the same color ranging from light (lower actions) to dark (higher actions) 

as the message number increases across columns, showing that the receivers’ actions are 

typically equal to the message.  The distribution of state frequencies conditional on each message 

(i.e., down each column) almost degenerates into mass points of the true states, indicating nearly 

full information transmission.  This corresponds to the (most informative) truth-telling 

equilibrium predicted by equilibrium theory, as well as the L0/EQ type in the level-k model.   
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When b=1, and there is an incentive to bias the message upward, the results are different.  

There is a large tendency for deception, which is evident from having some large pie charts off 

the diagonal.  This departure is lopsided—only the upper diagonal of Figure 2 is populated with 

large pie charts.16  That is, for a given state, the most common messages are the state itself or 

higher messages (not lower messages).  Furthermore, the largest pie charts of each row are 

mainly on the line one column or two columns to the right of the diagonal (i.e., states S+1 and 

S+2), consistent with L1 and L2 sender behavior.  Within the upper diagonal, the pie-chart gets 

darker and darker going down and right, showing how the receivers correctly increase their 

actions as the state and message increase.  Since the conditional distribution of states (columns in 

Figure 2) shift from a mass point on the true state (as in Figure 1) to a distribution skewed 

toward state 3 to 5, some information is transmitted.  However, this distribution is not consistent 

with the {1}-{2, 3, 4, 5} partition equilibrium, which requires that distributions of messages and 

actions for the bottom four rows (states 2-5) should all look the same.17   

Finally, when b=2, equilibrium theory predicts a babbling equilibrium.  If subjects were 

playing this equilibrium, the pie-chart distributions in each column would be roughly the same 

(up to random sampling error of state frequencies) and the shading distributions on each pie-

chart would be the same. In fact, there is still a substantial amount of information transmitted, 

since the columns in Figure 3 do not show the same uniform distribution of state frequencies.  

However, many senders still sent message 5, especially for states 2-5. And a substantial amount 

                                                 
16 Note that this one-sided deception can potentially backfire since if seeing a message 1 indicates the true state is 1, 

the state is less likely to be 1 when other messages were sent.   
17 If subjects were playing according to the partition equilibrium, column 1 should have probability 1 on state 1, and 

zero probability elsewhere, indicating the state being in partition {1}, while column 2 to 5 should all have equal 

probability distributions (say, a mass point at 5 or 1/4 each) on states 2 through 5, and zero elsewhere (indicating the 

state being in partition {2,3,4,5}).   
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of receivers did choose action 3, as predicted in the babbling equilibrium. This is consistent with 

the level-k model, since L1, L2, and EQ senders all send message 5 for states 3 to 5. 

What are the comparative static results?  Table 2 shows that the actual information 

transmitted, measured by the correlation between states S, actions A, and messages M. The key 

comparative static prediction of Crawford and Sobel (1982) holds in the data: As the bias b 

increases, the information transmitted decreases, measured either by the correlation r(S,A) 

between state S and action A, or by receiver payoffs.   But note that even when the bias is so 

large (b=2) that theory predicts babbling (i.e., no correlation between S, A and M), the 

correlations are still around 0.3.  There are also very small learning effects: correlations and 

payoffs rise across trials for b=0 and fall for b>0 reflecting (weak convergence toward 

equilibrium (see supplementary Appendix, Table S1).  Payoffs also decline with bias b, as 

predicted by theory (Table 3). Data from both senders who are eyetracked and senders with 

“open boxes” (no eyetracking), are reported separately as a check on whether eyetracking, per se, 

changes behavior.  There is no discernible effect of being eyetracked versus seeing all 

parameters (“open boxes”). 

 When the bias b is large, information transmission is higher (measured by correlations 

among S, M and A), and payoffs are higher, than predicted by equilibrium theory.  These data 

replicate the “overcommunication” (too much truth-telling) reported in Cai and Wang (2006).   

Can individual players be classified as level-k types?  Based on all behavioral data, we 

classify individual sender subjects into various types according to Table 1, assuming subjects 

remain the same type across different biases using the “spike-logit” estimation as in Costa-

Gomes and Crawford (2006).  The results are shown in Table 4.  Subjects are classified as types 

(percentages) L0-L2 (18 percent, 25 percent, and 25 percent), SOPH (14 percent) and EQ (18 
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percent), with good compliance (above 60 percent, except for one).18  Individual level 

classifications therefore confirm that subjects are mostly choosing according to stable level-k 

types, as hinted by the aggregate choice data.  Comparing the classification results with that of 

Cai and Wang (2006), we see a similar pattern (having few L0, mostly L1 beyond), although 

they use a more primitive way to conduct the classification.   

III.B Lookup Patterns 

There are several goals in observing lookup patterns: First, we want to know what the 

aggregate lookup patterns are during the decision process.  This indicates the subjects’ attention 

to different information, and provides the basis for theorizing about subjects’ decision-making 

process.  Moreover, since the level-k model relaxes the assumption that people hold consistent 

beliefs about others, beliefs about other’s beliefs, and so on, we expect the lookup patterns to 

indicate this.  Finally, since the level-k model predictions explain individual behavior, it is 

natural to ask whether additional lookup data can provide more direct evidence supporting the 

level-k model than choices alone.  In particular, we would like to ask whether individual subjects 

who are classified into different level-k types produce different lookup patterns matching their 

types.    

The lookup results are organized according to the above goals as follows: 

                                                 
18 Using only trials such that b=1, 2 yield the exact same classification.  Using a logit structure (instead of spike-

logit) on b=1, 2 also yields a similar distribution, in which only two subjects are classified differently: Subject #3 (2-

1) is classified as SOPH instead of L1, and subject #5 (3-2) is classified as L2 instead of SOPH.  See Table S12.  

Note that SOPH and L2 are almost identical, and from the lookup results below (Table 7), subject #3 has a lookup 

score more similar to SOPH than L1. Finally, using a logit structure on all data adds three more SOPH types (2-2, 4-

3 and 5-2), all from “neighboring” types which often coincide with SOPH (EQ, EQ, and L2, respectively).   
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1. Attention to structure: In reporting aggregate lookup counts and time spent on different 

parts of the screen, we expect to see different level-k subjects paying differential attention to 

important parameters of the sender-receiver game, such as state, bias, and payoffs. 

2. Truth bias:  The level-k model assumes subjects best respond to perceived beliefs 

about their opponents’ behavior, which are inconsistent with what opponent’s actually do.19  If 

senders cannot think like receivers (who do not know the true state), they would put too much 

attention on the payoff row corresponding to the true state, instead of treating all states equally.  

Hence, excessive attention to payoffs corresponding to the true state demonstrates a “curse of 

knowledge” and could be an attentional marker of these incorrect beliefs.   

3. Individual level-k type lookup patterns: The level-k model assumes an anchoring L0 

behavior of truth-telling.  Higher types go through beliefs about lower types until they reach their 

own level-k type.  If this decision process is reflected in the lookup patterns, attention should be 

paid to payoffs corresponding to the action A=S (L0), A=S+b (L1), and so on, up to the 

corresponding level-k type for each individual subject.  For example, when bias is 2, a L2 sender 

under state 2 would look at the payoffs corresponding to state 2 and action 2 (the L0 outcome if 

the message is taken literally), action 4 (the L1 outcome if the message is taken literally), and 

action 5 (the L2 outcome if the message is taken literally).  In Table 1, this corresponds to the 

first three elements (L0~L2 Senders) of the second column (S=2) in the bottom panel (b=2).  

Thus, in addition to the lookups required to figure out the bias parameter,20 a level-k type sender 

                                                 
19 If all subjects are SOPH who correctly best respond to others, SOPH behavior should coincide with equilibrium 

(EQ) behavior. 
20 In the hidden bias-stranger design, subjects must at least look at two payoffs to determine the bias: A=S and 

A=S+b.  Potentially, this S could be any state, but should correspond to the true state due to the truth bias.  In this 

case, the lookups would coincide with lookups linked to L0 and L1 thinking. 
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(with truth bias) would follow the prediction of the level-k model (first (k+1) elements of column 

S in Table 1) up to his own level.   

What are senders paying attention to?  Table 5 shows the average lookup time 

(excluding fixations shorter than 50msec) for various numbers on the screen which are 

parameters of the game.21 Senders clearly are thinking carefully about the game because they 

look up the state for 0.86 seconds total (which is 3.2 fixations, about 270msec per fixation).  The 

low time per lookup is a reminder that the eye glances around very rapidly, making frequent 

quick fixations, as is typical of other tasks including reading text passages.   

Senders also look at their own payoffs longer. In particular, subjects look at their own 

(sender) payoffs at least 40% more than receiver payoffs.  This difference is surprising since 

senders need to look carefully at receiver payoffs in order to determine the bias.  Note that the 

ratio of lookup time for sender and receiver payoffs is the same for a small bias (b=1) and large 

bias (b=2).   For b=2, which creates the most scope for guilt to constrain deception, we divide 

senders into those who looked more often at receiver payoffs, and those who looked less often 

(relative to the median sender-receiver looking ratio). Importantly, the high receiver-lookup 

group is actually more deceptive than the low group, which is inconsistent with the guilt 

hypothesis that the more one cares about other’s payoffs and looks at them, the less one should 

deceive.  For the high group, the correlation between states and messages is 0.55, and the 

average LIE_SIZE (|M-S|) is 0.88; for the low group, the correlation is 0.69, and the average 

LIE_SIZE is 0.71. 

                                                 
21 The number of separate fixations is very highly correlated with the lookup time—in no cell is the average time per 

fixation less than 250msec or greater than 300msec—so the number of fixations can be approximated well by 

dividing the Table 5 figures by 270 msec.  Both fixations and lookup time are reported in the supplemental 

Appendix (Table S10 and S11).   
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Note that there is a reduction in total looking times across trials, about 35 percent less in 

later periods (31-45) than in earlier periods (1-15) (see Table 5), and this reduction is similar 

across bias levels and treatments (Table S7.)   

Do senders have a “curse of knowledge”?  Table 6 shows that subjects look about five 

times longer at payoffs in the rows corresponding to the true state than they look at payoffs in 

rows corresponding to each of the four other states.  When the bias is 0 this fixation on the actual 

state is understandable (and subjects typically choose message M=S), but the disproportionate 

attention to actual state payoffs is comparable when there is a bias of b=1 or 2.  This result 

indicates that subjects do not “think in others’ shoes”, and cannot fully think like a receiver (who 

does not know the true state).  Note that Table 6 suggests lookups might have statistical power to 

detect the actual state (i.e., to detect lies in which the message M deviates from the true state S).  

That is, a receiver who had online sender looking statistics might be able to predict what the 

actual state was rather reliably. This possibility is explored in Section IV.   

Do senders follow level-k predictions of lookups?  Tables 5 and 6 show there is a 

strong bias for senders to look more at payoffs from the state they know to be the true one. More 

detailed information about looking patterns across state-action pairs is conveyed by the icon 

graph in Figures 4-7 (developed by Johnson et al., 2002).  For brevity we show only data from 

trials with positive biases for subjects classified as L1 and L2 (aggregate data are in the 

supplemental appendix, Figures S6-S9).  

Each box in Figures 4-7 represents the attention paid to the payoff corresponding to a 

different state-action combination. Parts (a) and (b) represent attention to the sender payoff boxes 

and the receiver payoff boxes, respectively.  The width of the box is a linear function of the 

average number of fixations on that box. The height of the box is a linear function of the average 
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total looking time in that box.  Boxes which are wide and tall were looked at repeatedly (wide) 

and for a longer time (tall).  The vertical bars in the first columns represent the sum of looking 

time across each row.  Longer bars represent longer time for all state-action boxes in that state. 

The “ruler” in the upper right shows the scale of looking time and number of fixations that can 

be used to “measure” each box.  

Figure 4 shows the icon graph for bias b=1 when the subject is classified as L1.22  The 

first thing to notice is that subjects spend much more time looking at their own payoffs (Figure 

4a) than the payoffs of receivers (Figure 4b), as the Table 5 statistics show.  Subjects’ lookups 

are also more frequent and longer for actions that are equal to the actual state S or S+1.  This 

corresponds to the first two rows (L0 and L1 senders) of the top panel (b=1) in Table 1, as well 

as the lookups to determine the bias. 

Figure 5 shows the lookup icon graphs for bias b=1 when the subject is classified as L2 

(again when subjects are L1).  Senders again look at their own payoffs more often than their 

opponents’ payoffs.  When the state S is 1-3 they tend to look at their payoffs from actions 

corresponding to S, S+1 and S+2.  This is consistent with the first three rows (L0, L1, and L2 

senders) of the top panel (b=1) in Table 1.  However, when the state is 4 or 5 this pattern 

crumbles as states S+2 and S+1 do not exist; then lookup patterns resemble L1 lookups.   

Similar patterns arise when b=2 as well.  Figure 6 and 7 show the lookup icon graphs for 

bias b=2 when subjects are classified as L1 and L2, respectively.  As the level-k model predicts, 

                                                 
22 When the bias b=0 the looking data are very clear: Subjects look almost exclusively at their own payoffs 

corresponding to the actual state S and corresponding receiver action A, and they look at the receiver payoffs from 

the same S-A pair less often than they look at their own payoffs (1/2 in the display bias-partner design and 2/3 in the 

hidden bias-stranger).  See Figure S5. 
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subjects look at payoffs corresponding to the first two or three rows (L0-L1 or L0-L2 senders) of 

the bottom panel (b=2) in Table 1.   

If we calculate the linear measure of predictive success (Reinhard Selten, 1991), a subject 

who is classified as a certain level-k type almost always has the highest score for the 

corresponding lookups of the same type.  In particular, let x equal the “hit rate”, the proportion of 

lookups in a period that fall in the target cells, and let a equal the proportional area of the target 

cells.  Then the linear measure (LM score) equals x-a, the proportional hit rate minus the 

proportional area.  This measure controls for the size of the predicted lookup area, and takes a 

value of zero when subjects randomly scan the entire screen.  Table 7 presents each subject’s LM 

score for various types.  Among all the six subjects classified as L1 and L2 subjects, only one 

(subject #8) has another type’s LM score slightly higher (0.268 vs. 0.259, less than 0.01) than the 

score corresponding to their classification based on choices.  Moreover, this subject would be 

classified as SOPH under the logit specification.    Regarding SOPH subjects, it is not clear 

theoretically what their lookup patterns would be.  But, the low LM scores do show that they do 

not look like L1, L2 or EQ. 

III.C Pupil Dilation 

As noted in the introduction, pupils dilate when people are aroused or make cognitively 

difficult decisions. Our first exploratory step is to treat pupil dilation as a dependent variable and 

see whether the degree of behavioral deception by the sender is correlated with pupil dilation. It 

may be that pupil dilation is so poorly measured, or so weakly linked to deception, that there is 

no reliable correlation. However, we see that deception is reliably correlated with pupil dilation.  

To correlate pupil dilation with senders’ messages, average pupil sizes are calculated for 

various time periods before and after the sender’s message decision.  Then, we try to predict 
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averaged pupil dilation using the bias b and the amount of deception (measured by the absolute 

distance between states and messages, |M-S|).    

To record their message M, senders are instructed to look at a series of decision boxes on 

the right side of the screen, which contain the numbers 1 to 5 (corresponding to the possible 

numerical messages). The software records a decision after the subject has fixated on a single 

decision box for 0.8 seconds—that is, the subjects choose by using their eyes, not their hands.23  

Since there is a time lag of at least 0.8 second between the instant subjects “made up their 

minds” and the recording of this decision,24 the decision time is defined as the first time subjects 

view any of the boxes in the decision boxes area, (provided they continue to look at the decision 

box area for more than 98 percent of the time until the software records a decision).  

Average pupil sizes are regressed on the amount of deception for different biases, the 

absolute size of the deception (LIE_SIZE = |M-S|), and bias and state dummies, controlling for 

subject random effects and individual learning trends (picked up by round number and squared 

round number variables interacted with individual dummies).  All standard errors are robust 

standard errors clustered at the individual level.  The specification is: 
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23 Allowing eye fixations to determine actual choices is widely used in research with monkeys.  For humans, making 

choice hands-free is an advantage if psychophysiological measurements are being recorded simultaneously (e.g., 

galvanic skin conductance on the palms, heart rate) since even small hand movements add noise to those 

measurements.  
24This time lag can be longer if the subject is not perfectly calibrated, and hence, needs extra time to perform the 

required fixation.  Another possible situation is when the subject “changed her mind” and looked at different 

decision boxes.   
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where the error termε  has elementskt k ktuε η= +  (subject random effects), and  

PUPILi = Average pupil (area) size at time frame i: 1.2 to 0.8 seconds, 0.8 to 0.4 seconds, 0.4 to 

0 seconds before, and 0 to 0.4 seconds, 0.4 to 0.8 seconds after the decision time.25  

Here, we normalize each individual’s average pupil size to 100.26   

LIE_SIZE = The “size” of the lie or the amount of deception, measured by the absolute distance 

between states and messages, (|M-S|). 

BIASb, STATEs, SUBJk = Dummy variables for the bias b, true state s, and subject k 

ROUND = Round number t 

 The parameter α is the average pupil size. The β1 coefficients give us the effect of 

deviating from reporting the true state (deceiving more) under different bias levels. The 

coefficients β2b and β3s give us the pure effects of different biases b (relative to b=2) and states 

(relative to S=3) which might influence dilation, and γk,1 ,γk,2 capture (individual) linear and 

quadratic learning effects.   

 Look first at the coefficients on the amount of deception in Table 8, interacted with bias 

(denoted β1b where b is the bias parameter).  Immediately after the decision is made (0 seconds 

to 0.4 seconds and 0.4 to 0.8 seconds later), the coefficients are significantly higher at about 2 

percent for all biases.  Sending less accurate messages is therefore correlated with pupil dilation 

                                                 
25 Hence, we are aggregating 100 observations into one data point when averaging for each 400 milliseconds 

interval.  Rounds with very short response time are discarded if PUPILi cannot be calculated. 
26 Pupil sizes are measured by area, in relative terms.  Absolute pixel counts have little meaning since they vary by 

camera positions, contrast cutoffs, etc., which depend on individual calibrations.  Hence, the eyetracker scales it to a 

pupil size measurement between 800-2000.  Here, we normalize all observations by the average pupil size of each 

subject throughout the entire experiment, and present all results in percentage terms.  (To avoid potential bias 

created by eyetracker adjustments, all between-round adjustment stages were excluded when doing this 

normalization.)  Therefore, “100” means 100 percent of an individual subject’s typical pupil size.   
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when b=1 or b=2.  Before the decision is made, the pupil dilation difference is still at 1.5-2 

percent (though less significant) when b=2.   

Note that the bias condition by itself does not generate pupil dilation (i.e., nearly all the 

coefficients β2s  are insignificant and are omitted from Table 8).  This finding implies arousal or 

cognitive difficulty is created by sending deceptive messages in bias conditions, not by bias per 

se. Furthermore, these basic patterns are reproduced when we divide the samples into two halves 

and compare them, which provide some assurance of statistical reliability.27  

III.D Results of the Display Bias-Partner Design 

The supplemental appendix reports results analogous to those in Table 2-6, Table 8 and 

Figure 2-4 for the display bias-partner condition (Tables S2-S6 and S8, Figures S2-S4).  

Compared to the hidden bias-stranger condition there is more overcommunication (correlations 

of M and S around 0.5 even when b=2) and more low-type classification (one third L0 types). 

These differences are probably due to the repeated game effects created by the partner matching.  

Subjects do also look at the bias parameter when it is available, but they look less often at 

receiver payoffs (which they need not look at to figure out what the bias b is).  

The pupil dilation results are much stronger than in the hidden bias-stranger design.  The 

coefficients on pupil dilation predicting the amount of deception are 2.8-4.5 percent, and are 

significant in all 400 millisecond intervals from -1200 milliseconds to +800 milliseconds (where 

zero is the decision time).  It is likely that the display bias-partner design is less demanding 

                                                 
27 Because we measured eyetracking and pupil dilation from ten senders, it is useful to check how reliable these 

results are in two subsamples of five subjects each. The 400-msec intervals from +0.4 to +0.8 secs after decision 

time gives the highest R2’s so we compare those. The β1b coefficients across bias levels (b=0, 1, 2) are the most 

important. They are 6.35*, 2.40, 2.11 for the first five subjects and 6.11**, 4.14**, and 3.00*** for the second five 
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cognitively, and lowered baseline pupil dilation.  In fact, the increase in predictive power here 

could be construed as consistent with the cognitive difficulty story because showing the bias 

parameter and eliminating noise from the payoffs make the display bias-partner design easier in 

general. This simplification could decrease the baseline pupil dilation of truth-telling in all 

conditions, which makes any additional dilation from deception easier to detect.  Running similar 

regressions show that using criteria of 99, 95, or 90 percent all yield similar results, though 

slightly weaker.  

IV. Lie-detection and Prediction 

As noted, one goal of measuring eyetracking is to see whether these behavioral measures 

enable us to improve upon predictions of theory.  This section reports whether using eyetracking 

data helps predict deception and uncover the underlying true states. The ability to detect private 

information in this way could eventually have many practical applications. And since private 

information often undermines efficiency, the ability to detect private information could be 

Pareto-improving in some settings.  

Here, we ask how well receivers could predict the true state using only messages and 

lookup patterns (and how much they could earn by using those predictions).  That is, we pretend 

we don’t know the true state for predictive purposes, forecast it from observables, then use 

knowledge of the true state to evaluate predictive accuracy.  We focus only on b=1 and b=2 since 

truth-telling is so prominent when b=0. 

For the dependent variable STATE j, from 1-5, we ran an ordered logit regression  
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subjects.  For other intervals, as predictive power (R2) falls the reliability across the two subsamples falls too, but the 
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where lookups are consolidated into two integer variables, ROWself  and ROWother, which are the  

states corresponding to the own (or opponent) payoff row which has the longest total lookup 

time of all rows. 

The coefficients β1b represents the information about the state contained in the message 

the coefficient, β2b measures the effects of the “most viewed row” of one’s own payoffs (i.e., the 

state number corresponding to the row that is viewed for the longest time), and β3b represents the 

effects of the “most viewed row” of the opponent’s payoffs.  The θj are state-specific constants.   

To evaluate how well these specifications could predict new data, out-of-sample 

validation is used.  Each observation is used with probability 2/3 to estimate the model, then the 

model forecasts on a holdout sample of the remaining 1/3 of the data.  For each holdout 

observation, the estimated logit probabilities are used to calculate the expected state, which is 

rounded to the nearest integer to make a precise single-state prediction. This partial estimation-

prediction procedure is performed for 100 random samples of the data. Average βs and 

(bootstrap) standard errors across the 100 resamplings are reported in Table 9.   

The significance of β1b in Table 9 indicates that the messages are informative about the 

states (as analyses reported above established).  A smaller message indicates a smaller true state, 

even though standard game theory predicts that little information should be transmitted by the 

message (β1b should be zero when b=2).   

 The lookup data are significantly correlated with states as well.  The coefficients β2b, on 

the most-viewed own row variables, and the coefficients β3b, on the most-viewed other row 

variables, are all positive and significant.  Thus, lookup data improve predictability even when 

controlling for the message.  For example, if the message is 4, but the lookup data indicate the 

                                                                                                                                                             
coefficient signs are almost always the same in the two subsamples and magnitudes are typically reasonably close.   
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subject was looking most often at the payoffs in row corresponding to state 2, then the model 

could predict that the true state is 2, not 4.  This is to be expected, since Table 6 indicates 

subjects look at the payoff rows corresponding to the true state five times more than other rows.  

However, note that this sort of prediction can only come from a setting in which attention is 

measured.  In addition, if senders knew their eye movements were being used to infer the state, 

they could of course change their lookups and undermine the predictions. 

 The error rates in predicting states in the holdout sample are never greater than 40 percent.  

(Keep in mind that the error rates in equilibrium would be 60 percent and 80 percent.)  Most of 

the wrong predictions from the logit model (70 percent) miss the state by one.  The model 

accuracy is also substantially better than the actual performance of the receiver subjects in our 

experiments: Subjects “missed” (chose A≠S) 58.5 percent of the time when b=1, and missed 77.9 

percent for b=2.   

An interesting calculation is how much these predictions could potentially add to the 

receiver payoffs (cf. “economic value” in Camerer et al., 2004).  For biases b=1 and b=2, the 

average actual payoffs earned by receivers who faced eyetracked senders in the random sample 

were 87.5 and 80.9.  If receivers had based their predictions on the models estimated in Table 8, 

and chose an action equal to the model predicted state (for the holdout sample), their expected 

payoffs would be 101.7 for b=1 and 98.0 for b=2.  Since the maximum payoff possible is 110, 

this is a large economic value of about 60 percent of the increment between actual and maximum 

payoffs.28  In fact, these payoffs are already close to what subjects actually earn when b=0 and 

                                                 
28 For b=1, economic value = (101.7-87.5)/(110-87.5) = 63%.  For b=2, economic value = (98-80.9)/(110-80.9) = 

59%.  Analogous out-of-sample prediction results for the display bias-partner design are reported in Table S9.  

Results are weaker than that of the hidden bias-stranger design, having a modest economic value of 44 and 24 

percent. 
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there is no bias (100.85 in Table 3).29  These economic value statistics suggest that it could be 

possible to almost erase the cost to receivers of not knowing the true state just by looking at 

attention along with messages. 

An important caveat to these analyses is that we do not know what would happen if the 

senders knew that their pupil dilation and lookups were being used to predict the true state. 

Senders would try to signal-jam by looking at the payoffs corresponding to their message more 

often (a kind of faked sincerity), but it is possible that excessive pupil dilation or more detailed 

lookup patterns could distinguish such signal-jamming. Putting senders under time pressure 

might also make it difficult for them use such a deliberately misleading strategy. In any case, 

such experiments are natural follow-ups and could be easily done.  

V. Conclusion 

 This paper reports experiments on sender-receiver games with an incentive gap between 

senders and receivers, such as managers or security analysts painting a rosy picture about a 

firm’s earnings prospects.  Senders observe a state S, an integer 1-5, and choose a message M.  

Receivers observe M (but not S) and choose an action A.  The sender prefers that the receiver 

choose an action A=S+b, which is b units higher than the true state, where b=0 (truth-telling is 

optimal), or b=1 or b=2.  The bias number b is the size of the incentive gap. Receivers know the 

payoff structure, so they should be suspicious of inflated messages M.  

 Our experimental results show “overcommunication”—messages are more informative of 

the state than they should be, in equilibrium. This result is consistent with a level-k model of 

communication anchored at level-0 truth-telling.  To explore the cognitive foundations of 

                                                 
29 Such gains in the hidden bias-stranger design are not surprising since subjects are forced to look at the payoff 

table to discover the bias parameter, and they focus disproportionally on the “true state” row along the way. 
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overcommunication, eyetracking was used to record what payoffs the sender subjects are looking 

at, and how widely their pupils dilate (expand) when they send message.30  

 The lookup data show that senders look disproportionally at the payoffs corresponding to 

the true state.  They do not appear to be thinking strategically enough by putting themselves “in 

other’s shoes,” looking and choice are roughly consistent with a cognitive hierarchy specified by 

the level-k model, starting from truth-telling. 

Senders’ pupils also dilate when they send deceptive messages (M≠S), and dilate more 

when the deception |M-S| is larger in magnitude. In a simpler pilot design that is prone to 

memory and repeated game effects (the display bias-partner design), these behavioral results are 

also present.  Together, these data are consistent with the underlying assumptions of the level-k 

model, and that figuring out how much to deceive another player is cognitively difficult. Gneezy 

(2005) and Sjaak Hurkens and Kartik (2008) found that changing the known costs to others from 

deception lowers deception by subjects, suggesting that guilt plays a role in limiting deception. 

Complementing this finding, we find that guilt does not appear to be the sole driver of 

overcommunication, because senders who look at receiver payoffs more often are also more 

deceptive.  In fact, Santiago Sánchez-Pagés and Marc Vorsatz (2007) show that 

overcommunication is caused by the tension between normative social behavior and incentives 

for lying.    

 Furthermore, combining sender messages and lookup patterns, one can predict the true 

state and lower the miss rate of subjects by one half.  Those predictions increase receiver payoffs 

                                                 
30 The sender-receiver paradigm also expands the quality of research on lie-detection in general: Deception in these 

games is spontaneous and voluntary (most studies use instructed lying); and both players have a clear and 

measurable financial incentive to deceive and to detect deception (most studies lack one or both types of incentives). 
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up to 16-21 percent, which is an economic value of more than half of the maximum increase 

above what subjects actually earn in the experiment.   

There are many directions for future research. 

Within this paradigm, eyetracking receivers would be useful for establishing their degree 

of strategic sophistication in making inferences from messages.  More generally, economic 

theories often talk vaguely about the costs of decision making or difficulty of tradeoffs.  Pupil 

dilation gives us one way to start measuring these costs.  

Many economic models also specify a cognitive algorithm that maps acquired 

information into choices (e.g, dynamic programming applications which require looking ahead). 

The idea of allocating attention has itself gotten attention in economics (Della Vigna, 2008) and 

in macroeconomic studies of “rational inattention” (e.g., Christopher Sims, 2006). In both cases, 

measuring attention directly through (now video-based) eyetracking could improve tests of 

theories which make predictions about both attention and choice, and how they interact, as in 

previous mouse-tracking studies, such as Costa-Gomes et al. (2001), Johnson et al. (2002), and 

Costa-Gomes and Crawford (2006).  Given the novelty of using these two methods in studying 

games, the results should be considered exploratory and simply show that such studies can be 

done and can yield surprises (e.g., the predictive power of lookups and pupil dilation for 

inferring private state information). 

 In the realm of deception, two obvious questions for future research are: Are there 

substantial individual differences in the capacity or willingness to deceive others for a benefit?  

And, can experience teach people to be better at deception, and at detecting deception? Both 

questions are important for extrapolating these results to domains in which there is self-selection 

and possibly large effects of experience (e.g., used-car sales or politics).  In other domains of 
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economic interest, the combination of eyetracking and pupil dilation could be applied to study 

any situation in which the search for information and cognitive difficulty are both useful to 

measure, such as “directed cognition” (Xavier Gabaix et al., 2006), perceptions of advertising 

and resulting purchase, and attention to trading screens with multiple markets (e.g., with possible 

arbitrage relationships). 
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Table 1: Behavioral Predictions of the Level-k Model 

Sender Message (condition on State) Receiver Action (condition on Message) 

State 1 2 3 4 5 Message 1 2 3 4 5 

b=0            

L0/Eq Sender 1 2 3 4 5 L0/Eq Receiver 1 2 3 4 5 

b=1            

L0 Sender 1 2 3 4 5 L0 Receiver 1 2 3 4 5 

L1 Sender 2 3 4 5 5 L1 Receiver 1 1 2 3 4 

L2 Sender 3 4 5 5 5 L2 Receiver 1 1 1 2 4 

Eq Sender 4 5 5 5 5 Eq Receiver 1 1 1 1 4 

SOPH Sender 3 4 5 5 5 SOPH Receiver 1 2 2 2 4 

b=2            

L0 Sender 1 2 3 4 5 L0 Receiver 1 2 3 4 5 

L1 Sender 3 4 5 5 5 L1 Receiver 1 1 1 2 4 

L2 Sender 4 5 5 5 5 L2 Receiver 1 1 1 1 4 

Eq Sender 5 5 5 5 5 Eq Receiver 1 1 1 1 3 

SOPH Sender 5 5 5 5 5 SOPH Receiver 2 2 2 2 3 

Note: L0 senders are truthful and L0 receivers best respond to L0 senders by following the message.  L1 senders 
best respond to L0 receivers, while L1 receivers best respond to L1 senders, and so on.  Note that when b=2, due to 
discreteness both L2 and Eq(=L3) senders best respond to L1 receivers.   
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Table 2: Information Transmission: Correlations between states S, messages M, and actions A 

Bias Eyetracked? r(S, M) r(M, A) r(S, A) Predicted r(S, A) 

0 
Yes .92 

}  .93 

.90 

}  .92 

.86 

}  .86 1.00 
No .94 .94 .88 

1 
Yes .68 

}  .64 

.73 

}  .71 

.53 

}  .49 .65 
No .51 .61 .35 

2 
Yes .41 

}  .34 

.52 

}  .58 

.34 

}  .32 .00 
No .23 .63 .28 

Note: In the hidden bias-stranger design, some senders’ eye movements were recorded (“eyetracked”) and others 
were not (“open box”). This comparison provides a useful test of whether obtrusively tracking a subject’s eye 
fixations affects their behavior.  
 

 

 

Table 3: Sender and Receiver’s Payoffs 

Bias Eyetracked? uS (std) (combined) uR (std) (combined) Pred. uR (std) 

0 
Yes 101.13 (18.68) }  101.30 a 

(17.28) 

100.85 (19.28) }  101.27 a 
(17.69) 

110.00 (0.00) 
No 101.89 (14.89) 102.07 (15.23) 

1 
Yes 71.81 (39.56) }  73.28 

(37.46) 

87.88 (28.63) }  86.88 
(27.59) 

91.40 (19.39) 
No 75.44 (35.11) 84.44 (25.62) 

2 
Yes 43.39 (52.17) 

}  
43.31 
(52.79) 

80.78 (27.17) }  
80.55 
(27.57) 

80.80 (20.76) 
No 43.21 (53.37) 80.21 (29.11) 

Note: a Payoffs are not exactly the same due to the random noise added and certain groups excluded. 
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Table 4: Level-k Classification Results 

Session ID log L k Exact lambda Treatment 

1 1 -46.23 SOPH 0.64 0.06 eyetracked subject #1 

1 2 -25.99 L1 0.87 0.00 eyetracked subject #2 

1 3 -15.98 L2 0.91 0.44 open box 

2 1 -37.32 L1 0.60 0.52 eyetracked subject #3 

2 2 -37.34 EQ 0.73 0.52 open box (eyetracked to round 20) 

2 3 -25.70 SOPH 0.83 0.07 open box 

3 1 -68.84 n/a 0.13 0.01 eyetracked subject #4 

3 2 -17.71 SOPH 0.89 0.12 eyetracked subject #5 

3 3 -54.73 EQ 0.60 0.03 open box 

4 1 -50.86 L1 0.51 0.04 eyetracked subject #6 

4 3 -25.22 EQ 0.82 0.48 open box 

5 1 -22.26 L1 0.89 0.02 eyetracked subject #7 

5 2 -35.77 L2 0.78 0.03 eyetracked subject #8 

5 3 -25.17 EQ 0.87 0.04 open box 

6 1 -16.27 L2 0.91 0.43 eyetracked subject #9 

6 2 -42.02 SOPH 0.62 0.13 eyetracked subject #10 

6 3 -52.17 L0 0.62 0.01 open box 

 

 

Table 5: Average Sender Lookup Times (in seconds) Across Game Parameters 

Bias 
b 

Response Time 

State 
Sender 
Payoffs 

Receiver 
Payoffs 

Sender-to-
Receiver 
Ratio 

Periods 

1-15 

Periods 

31-45 

0 9.78 7.24 0.83 2.93 1.71 1.72 

1 11.77 8.76 0.81 3.80 2.66 1.43 

2 16.84 8.99 0.91 4.67 3.26 1.43 

all 13.47 8.52 0.86 3.99 2.72 1.47 
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Table 6: Average Lookup Time per Row Depending on the State 

Bias b 
True State 
Rows  

Other State 
Rows 

True-to-Other 
Ratio 

0 2.76 0.47 5.89 

1 3.88 0.64 6.02 

2 4.29 0.91 4.70 

overall 3.83 0.72 5.33 

 

 

 

Table 7: Individual Lookup Linear Measure Scores for Various Level-k Types 

Type Subject ID L1 L2 L3/EQ 

L1 

#2 (1-2) 0.24 0.22 0.19 
#3 (2-1) 0.16 0.15 0.14 
#6 (4-1) 0.26 0.24 0.18 
#7 (5-1) 0.41 0.33 0.28 

 Average 0.27 0.23** 0.19*** 

L2 
#8 (5-2) 0.27 0.26 0.21 
#9 (6-1) 0.22 0.24 0.19 

 Average 0.24 0.25 0.20* 

SOPH 
#1 (1-1) 0.17 0.16 0.13 
#5 (3-2) 0.16 0.15 0.11 
#10 (6-2) 0.21 0.13 0.07 

 Average 0.18 0.15 0.10 
Note:  Highest lookups scores underlined.  Lookup scores if choice 

classifications correspond to lookups boldfaced.  Note that they almost 
always coincide for L1 and L2 types. 
*, ** and *** denotes p<0.05, p<0.01, p<0.0001 for signed rank sum test 
using both own and other cells for each state, each bias, and each subject 
(of that type) with total lookup time > 1sec. 
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Table 8: Pupil Size Regressions for 400 msec Intervals  

Y  PUPILi 
-1.2~ 

-0.8sec 

-0.8~ 

-0.4sec 

-0.4~ 

0.0sec 

0.0~ 

0.4sec 

0.4~ 

0.8sec 

constant α 107.27 108.03 106.19 109.56 108.67 

  (2.81) (2.55) (2.57) (2.05) (2.16) 

LIE_SIZE * BIASb β10 2.83 2.36 3.07 5.35** 5.57* 

interactions  (1.85) (2.23) (2.46) (1.76) (2.19) 

 β11 -1.02 -0.46 -0.36 2.16^ 2.64* 

  (1.26) (1.31) (1.28) (1.21) (1.15) 

 β12 2.06* 1.52^ 1.47* 1.83* 2.00** 

  (0.86) (0.79) (0.75) (0.75) (0.74) 

 N 414 415 414 415 414 

 χ
2 323.86 235.43 194.40 258.49 352.49 

 R2 0.291 0.299 0.263 0.365 0.438 

Note: Robust standard error in parentheses; t-Test p-values lower than ^10 percent, *5 percent, ** 1 percent, 
and *** 0.1 percent.  (Dummies for biases, states, individual subjects and individual learning trends are 
included in the regression, but results are omitted.) 
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Table 9: Predicting True States (Resampling 100 times) (s. e. in parentheses)  

X  Hidden Bias-Stranger 

MESSAGE * BIAS = 1 β11 0.46** (0.12) 

MESSAGE * BIAS = 2 β12 0.42** (0.09) 

ROW self * BIAS=1 β21 1.07** (0.24) 

ROW self * BIAS=2 β22 1.72** (0.20) 

ROW other * BIAS=1 β31 1.27** (0.22) 

ROW other * BIAS=2 β32 0.44** (0.15) 

total observations N a  357 

N used in estimation 238.3 

N used to predict 118.7 

 Actual   Data Hold-out Sample 

Percent of wrong prediction (b=1) 58.5 28.9 

Percent of errors of size (1,2,3+) (b=1) (61, 28, 11) (79, 19, 2) 

Average predicted payoff (b=1) b  87.5 (28.8) 101.7** (2.1) 

Percent of wrong prediction (b=2) 77.9 37.9 

Percent of errors of size (1,2,3+) (b=2) (60, 30, 10) (72, 24, 4) 

Average predicted payoff (b=2) b 80.9 (26.9) 98.0** (2.2) 

Note:  * and ** Denotes p<0.05 and p<0.001 (t-test)   
a Observation with less than 0.5 seconds lookup time and without the needed pupil size measures 

are excluded.   
b Two sample t-test conducted against the actual payoffs of receivers in the experiment who are 

paired with eyetracked senders. 
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Figure 1: Raw Data Pie Charts (b=0)   Figure 2: Raw Data Pie Chart (b=1) 
   (Hidden Bias-Stranger)          (Hidden Bias-Stranger) 

 

 
Figure 3: Raw Data Pie Chart (b=2) 

 (Hidden Bias-Stranger) 
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Figure 4: Lookup Icon Graph for b=1, Hidden Bias-Stranger, Type = L1 

Part (a): Sender Payoffs     Part (b): Receiver Payoffs 

 
 

Figure 5: Lookup Icon Graph for b=1, Hidden Bias-Stranger, Type = L2 

Part (a): Sender Payoffs     Part (b): Receiver Payoffs 

 

   

Each row reports the lookup counts and time for the “true state row” corresponding to the given 
true state.  The width of each box is scaled by the number of lookups and the height by the length of 
lookups (scaled by the little “ruler” in the upper right corner).  The vertical bar on the first column 
icon represents the total lookup time summed across each row.   
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Figure 6: Lookup Icon Graph for b=2, Hidden Bias-Stranger, Type = L1 

Part (a): Sender Payoffs     Part (b): Receiver Payoffs 

 

 
Figure 7: Lookup Icon Graph for b=2, Hidden Bias-Stranger,, Type = L2 

Part (a): Sender Payoffs     Part (b): Receiver Payoffs 

 
 

Each row reports the lookup counts and time for the “true state row” corresponding to the given 
true state.  The width of each box is scaled by the number of lookups and the height by the length of 
lookups (scaled by the little “ruler” in the upper right corner).  The vertical bar on the first column 
icon represents the total lookup time summed across each row.   
 

 



Appendix for Online Access [NOT INTENDED FOR PUBLICATION] 

Appendix: Methods 

 Since this paper incorporates economics experiments in the laboratory, eyetracking devices, 

and studies the issue of deception, we expect to have readers who come from various backgrounds, 

such as economic theory, experimental economics, psychophysiology, and lie-detection.  Therefore, 

we use this methodology appendix to address issues that might already be very familiar to some 

readers, but not to the rest.  In particular, section 1 introduces video-based eyetracking to 

economists who are interested in learning about methods to study information acquisition, and 

section 2 demonstrates the relevance of eyetracking in economic experiments.  Section 3 provides 

an argument for adding yet another paradigm (sender-receiver games) to study lie-detection, instead 

of adopting previous tasks such as CQT, GKT, etc.  Section 4 provides the technical details of the 

equipment and software programs used in this study for those who are interested in replicating our 

results or applying this technique in future research. 

A.I What is Eyetracking? 

There are several ways to track a person’s eyes.  One of the most reliable and non-invasive 

way is video-based.  Video-based eyetracking works by placing cameras in front of subject’s eyes 

to capture eye images and corneal reflection of infrared sensors, and record changes up to 50-

250Hz.  Using eye movement images when subjects are told to fixate on certain positions on the 

screen, a procedure called “calibration,” the experimenter can trace eye fixations and saccades on 

the screen and infer subject information acquisition patterns.  In addition to information lookups, 

the eyetracker also records pupil dilation, which is correlated with arousal, pain, and cognitive 



 1

difficulty.  Therefore, eyetracking provides additional data about one’s decision making process, 

uncovering previously unobservable parameters.1   

A.II What Does Eyetracking Tell Us About the “Real World”? 

Since economists are used to judging theories only by whether they predict choices 

accurately, it is useful to ask what direct measurement of eye fixations and pupil dilation can add. 

One possible inferential strategy from eyetracking is to separate competing theories that explain the 

same behavior.  Previous studies compared offers and lookups in three-period alternating-offer 

bargaining (Camerer et al., 1993; Johnson et al., 2002), and in initial responses to normal-form 

games and two-person guessing games (Costa-Gomes et al., 2001; Costa-Gomes and Crawford, 

2006).  In those experiments, the same choices could be caused by different decision rules, such as 

L1 (optimize against perceived random play) and D1 (optimize against perceived random play 

excluding dominated strategies) in Costa-Gomes et al. (2001), but are separated by different lookup 

generated by these rules.2  These studies illustrate the potential for using cognitive data, besides 

choices, for distinguishing between competing theories or inspiring new theory.3   

                                                 
1 One potential concern of adopting eyetracking is scrutiny.  For example, in our experiments senders could have been 
more truthful simply because they were watched.  Indeed, we do find many L0 and L1 types (seven out of twelve) in the 
display bias-partner design.  But subjects could be more truthful due to the repeated game effect.  Hence, such concerns 
should be dealt with empirically by comparing eyetracked and open box subjects.  In our experiment, the hidden bias-
stranger adopts random matching and contains both eye-tracked and open boxed subjects.  Overall type classification 
results are similar to Cai and Wang (2006).  Although the sub-samples of eyetracked and open box subjects do show 
some interesting differences, the average level of strategic thinking is comparable: None of the eyetracked subjects were 
EQ (L3), but there were many SOPH; none of the open box subjects were L1, but the only L0 subject was an open box.  
This results in lower correlation between state and message for the open box subjects, but there is still little difference in 
payoffs.  Hence, we conclude that there is no striking difference between the two, though the sample size is small.   
2 For example, in the three-stage bargaining game of Camerer et al. (1993) and Johnson et al. (2002), opening offers 
typically fell between an equal split of the first-period surplus and the subgame perfect equilibrium prediction 
(assuming self-interest).  These offers could be caused by limited strategic thinking (i.e., players do not always look 
ahead to the second and third round payoffs of the game), or by computing an equilibrium by looking ahead, adjusting 
for fairness concerns of other players.  The failure to look at payoffs in future periods showed that the deviation of 
offers from equilibrium was (at least partly) due to limited strategic thinking, rather than entirely due to equilibrium 
adjustment for fairness (unless “fairness” means not at all responding to advantages conferred by the strategic structure).  
Furthermore, comparing across rounds, when players do look ahead at future round payoffs their resulting offer are 
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 Lookup patterns and pupil dilation could be useful in the sender-receiver games, because it 

could potentially be used to distinguish between competing theories for overcommunication.  

Although our experiments are not designed to separate these theories, overcommunication of the 

true state is consistent with two rough accounts: guilt and cognitive difficulty.  Senders may feel 

guilty about deceiving the receivers and potentially costing the receivers money.  This is the direct 

cost of lying.  According to this theory, senders will look at the receiver payoffs (since seeing those 

payoffs is the basis of guilt) and their pupils will dilate when they misrepresent the state (i.e., 

choose M different from S) due to emotional arousal from guilt.  In this story, the guilt springs from 

the senders’ realization that their actions cost the receivers money, which depends on seeing the 

receiver payoffs.   

  A different story is that senders find it cognitively difficult to figure out how much to 

misrepresent the state.  For example, senders might believe that some other senders always tell the 

truth, and receivers might therefore believe messages are truthful. Then strategic senders have to 

think hard about how much to misrepresent the state to take advantage of the receivers’ naïveté (as 

in Crawford, 2003, Kartik, Ottaviani and Squintani, 2007, Chen, 2007, and Kartik, 2008). In this 

story, senders do not have to pay much attention to receiver payoffs but their pupils will dilate 

because of the cognitive difficulty of figuring out precisely how much to exaggerate.  

Ultimately, the goal is to open up the black box of human brain, and model the decision 

process of human behavior, which is similar to what has been done to the firm.  Instead of dwelling 

                                                                                                                                                                  
closer to the self-interested equilibrium prediction (see Johnson and Camerer, 2004). Thus, the lookup data can actually 
be used to predict choices, to some degree.   
3 Another example comes from the accounting literature: James E. Hunton and McEwen (1997) asked analysts under 
hypothetical incentive schemes to make earnings forecast based on real firm data, and investigated factors that affect the 
accuracy of these forecasts.  Using an eye-movement computer technology (Integrated Retinal Imaging System, IRIS), 
they find that analysts who employ a “directive information search strategy” make more accurate forecasts, both in the 
lab and in the field, even after controlling for years of experience.  This indicates that eyetracking may provide an 
alternative measure of experience or expertise that is not simply captured by seniority.  Had they not observed the eye 
movements, they could not have measured the difference in information search which is linked to accuracy. 
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on the neoclassical theory of the firm, which is merely a production function, modern economics 

has opened up the black box of the firm, and explicitly modeled its internal structure, such as the 

command hierarchy, principle-agent issues, and team production.  Though there is still much to be 

done before we come close to what has been achieved in industrial organization, eyetracking 

provides a window to the soul and gives us a hint of the decision-making process inside the brain.  

Just as we may infer a factory’s technology level by observing its inputs and wastes, we may also 

infer a person’s reasoning process by observing the information he or she acquires (inputs) and how 

hard does he think (indexed by pupillary response).   

 

A.III What Does Economics Have to Offer Regarding Lie-detection? 

This study introduces an economic framework that is missing in most previous 

psychophysical studies on deception and lie detection.  An advantage of the strategic information 

transmission game for studying deception is that game theory makes equilibrium predictions about 

how much informed agents will exaggerate what they know, when they know that other agents are 

fully-informed about the game’s structure and the incentives to exaggerate.  Even when equilibrium 

predictions fail, there are various behavioral models, such as level-k reasoning and quantal response 

equilibrium, which provide precise predictions that are testable in the lab.  And while in most other 

deception studies,4  subjects are instructed to lie or give weak or poorly controlled incentives,5 

subjects in experiments like ours choose voluntarily whether to deceive others or not (see also John 

                                                 
4 For a survey of studies on (skin-conductance) polygraph, see Theodore R. Bashore and Paul E. Rapp (1993).  For lie-
detection studies in psychology, see the reviews of Robert E. Kraut (1980) and Aldert Vrij (2000).  For a comprehensive 
discussion of different cues used to detect lies, see Bella M. DePaulo et al. (2003).  For individual differences in lie-
detection (Secret Service, CIA and sheriffs do better), see Paul Ekman and Maureen O’Sullivan (1991) and Ekman et al. 
(1999).  More recently studies in neuroscience using functional magnetic resonance imaging (fMRI) include Sean A. 
Spence et al. (2001), D. D. Langleben et al. (2002) and F. Andrew Kozel et al. (2004).   
5 One exception is Samantha Mann et al. (2004) which used footage of real world suspect interrogation to test lie-
detecting abilities of ordinary police.  However, a lot of experimental control is lost in this setting.  One interesting 
findings in this study is that counter to conventional wisdom, the more subjects relied on stereotypical cues such as gaze 
aversion to detect lies, the less accurate they were. 
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Dickhaut et al., 1995, Andreas Blume et al., 1998, 2001 and Cai and Wang, 2006).6 Senders and 

receivers also have clear measurable economic incentives to deceive and to detect deception.7 

 

A.IV Technological Details 

 Eyetracking data and button responses are recorded using the mobile Eyelink II head-

mounted eyetracking system (SR Research, Osgoode, Ontario).  Eyetracking data are recorded at 

250 Hz. The mobile Eyelink II is a pair of tiny cameras mounted on a lightweight rack facing 

toward the subjects’ eyes, and is supported by comfortable head straps. Subjects can move their 

heads and a period of calibration adjusts for head movement to infer accurately where the subject is 

looking. Nine-point calibrations and validations are performed prior to the start of each experiment 

in a participant’s session.  Accuracy in the validations typically is better than 0.5º of visual angle.  

Experiments are run under Windows XP (Microsoft, Inc.) in Matlab (Mathworks, Inc., Natick, MA) 

using the Psychophysics Toolbox (David H. Brainard, 1997; Denis G. Pelli, 1997) and the Eyelink 

Toolbox (Frans W. Cornelissen et al., 2002).   

     Eyetracking data are analyzed for fixations using the Eyelink Data Viewer (SR Research, 

Hamilton, Ontario).  In discriminating fixations, we set saccade velocity, acceleration, and motion 

                                                 
6 In fact, when the senders were asked after the experiment whether they considered sending a number different from 
the true state deception, 8 of the subjects said yes, while another 3 said no, but gave excuses such as “it’s part of the 
game” or “the other player knows my preference difference.”  Only 1 subject said no without any explanation.  These 
debriefing results also suggest that guilt has played little role in the experiment.   
7 Most lie-detection studies have three drawbacks: (1) They do not use naturally-occurring lies (because it is then 
difficult to know whether people are actually lying or not).  Instead, most studies create artificial lies by giving subjects 
true and false statements (or creating a “crime scenario”) and instructing them to either lie or tell the truth, sometimes to 
fool a lie-detecting algorithm or subject.  However, instructed deception can be different than naturally-occurring 
voluntary deception, and the ability to detect instructed deception might be different than detecting voluntary deception.  
(2) The incentives to deceive in these studies are typically weak or poorly controlled (e.g., in Spence et al. (2001) all 
subjects were told that they successfully fooled the investigators who tried to detect them; in Mark G. Frank and Ekman 
(1997), subjects were threatened with “sitting on a cold, metal chair inside a cramped, darkened room labeled 
ominously XXX, where they would have to endure anywhere from 10 to 40 randomly sequenced, 110-decibel startling 
blasts of white noise over the course of 1 hr” but never actually enforcing it.).  (3) Subjects are typically not 
economically motivated to detect deception.  Experiments using the strategic-transmission paradigm from game theory 
address all these drawbacks. 
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thresholds to 30º/sec, 9500º/sec2, and 0.15º, respectively.  Regions of interest (ROIs), or the boxes 

subject look up, are drawn on each task image using the drawing functions within the Data Viewer. 

Measures of gaze include Fixation Number (i.e., the total number of fixations within an ROI) and 

Fractional Dwell Time (i.e., the time during a given round spent on fixating a given ROI divided by 

the total time between image onset and response).  Only those fixations beginning between 50ms 

following the onset of a task image and offset of the task image are considered for analysis. 

     All task images are presented on a CRT monitor (15.9 in x 11.9 in) operating at 85 or 100 Hz 

vertical refresh rate with a resolution of 1600 pixels x 1200 pixels, and at an eye-to-screen distance 

of approximately 24 inches, thus subtending ~36 degrees of visual angle. 
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Appendix: Experiment Instructions 
 
The experiment you are participating in consists of 1 session, having 45 rounds.  At the end of 
the last session, you will be asked to fill out a questionnaire and paid the total amount you 

have accumulated during the course of the sessions in addition to a $5 show-up fee.  

Everybody will be paid in private after showing the record sheet.  You are under no obligation 
to tell others how much you earned.   

 

During the experiment all the earnings are denominated in FRANCS.  Your dollar earnings are 
determined by the FRANC/$ exchange rate: 200 FRANCS = $1.   
 

In each round, the computer program generates a secret number that is randomly drawn from 

the set {1,2,3,4,5}.  The computer will display this secret number on member A’s screen.  
After receiving the number, member A will send the message “The number I received is XX,” 

to member B by staring at box XX.  Hearing the message from member A, member B will then 
choose an action.  In particular, member B can choose action 1, 2, 3, 4, or 5, using the game 

pad.  Earnings of both members depend on the secret number and member B’s action.   

 
Member B’s earnings is higher when member B’s action is closer to the secret number, while 

member A’s earnings is higher when member B’s action is closer to the secret number plus 
the preference difference.  The preference difference is either 0, 1 or 2, with equal chance, 

and will also be displayed and announced at the beginning of each round.   
 

For example, if the preference difference is 2 and the secret number is 3, member B’s earnings 

are higher if his or her action is closer to 3.  However, member A’s earnings is higher when 
member B’s action is closer to 3 + 2 = 5.  The earning tables are provided to you for 

convenience.   

 
To summarize, in each round, the computer will display the preference difference and the 
secret number on member A’s screen.  Then, member A stares at a box (on the right) 

containing the desired message.  Member B will hear the preference difference and the 

message “The number I received is XX,” and then choose an action.  The secret number is 
revealed after this choice, and earnings are determined accordingly.   
 

Practice Session: 3 Rounds 

 

Session 1: 45 Rounds  

 

Member B: Please make sure you record the earnings in your record sheet.  Your payments 
will be rounded up.  Thank you for your participation.   



 9

Appendix: Supplemental Figures and Tables   

Figure S1: Sender Screen for b=1 and S=4 without payoff perturbation 
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Figure S2: Raw Data Pie Charts (b=0),   Figure S3: Raw Data Pie Chart (b=1),  
     (Display Bias-Partner)          (Display Bias-Partner) 

 

 
Figure S4: Raw Data Pie Chart (b=2), (Display Bias-Partner) 

 

The true states are in rows, and senders’ messages are in columns.  Each cell contains the average 
action taken by the receivers and a pie chart break down of the actions.  Actions are presented 
in a gray scale, ranging from white (action 1) to black (action 5).  The size of the pie chart is 
proportional to the number of occurrences for the corresponding state and message.   
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Figure S5: Lookup Icon Graph for b=0, Type = all 

Part (a): Display Bias-Partner     Part (b): Hidden Bias-Stranger 

 
Figure S6: Lookup Icon Graph for b=1, Display Bias-Partner, Type = all 

Part (a): Sender Payoffs    Part (b): Receiver Payoffs 

 
Figure S7: Lookup Icon Graph for b=2, Display Bias-Partner, Type = all 

Part (a): Sender Payoffs      Part (b): Receiver Payoffs 

 

 

Each row reports the lookup counts and time for the “true state row” corresponding to the given true 
state.  The width of each box is scaled by the number of lookups and the height by the length of 
lookups (scaled by the little “ruler” in the upper right corner).  The vertical bar on the first column 
icon represents the total lookup time summed across each row.   
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Figure S8: Lookup Icon Graph for b=1, Hidden Bias-Stranger, Type = all 

Part (a): Sender Payoffs     Part (b): Receiver Payoffs 

 

 
 

Figure S9: Lookup Icon Graph for b=2, Hidden Bias-Stranger, Type = all 

Part (a): Sender Payoffs      Part (b): Receiver Payoffs  

 

 

 
Each row reports the lookup counts and time for the “true state row” corresponding to the given true 
state.  The width of each box is scaled by the number of lookups and the height by the length of 
lookups (scaled by the little “ruler” in the upper right corner).  The vertical bar on the first column 
icon represents the total lookup time summed across each row.   
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Table S1A: Learning – Actual Information Transmission 

Display Bias-Partner 

BIAS Rounds Corr(S, M) Corr(M, A) Corr(S, A) Predicted Corr(S, A) 

 1-15  0.880 0.833 0.732  

0 16-30 0.976 0.949 0.925 1.000 

 31-45 0.937 0.942 0.919  

 1-15 0.620 0.730 0.477  

1 16-30 0.685 0.724 0.577 0.645 

 31-45 0.598 0.713 0.415  

 1-15 0.384 0.584 0.372  

2 16-30 0.327 0.526 0.306 0.000 

 31-45 0.279 0.643 0.291  

Hidden Bias-Stranger 

BIAS Rounds Corr(S, M) Corr(M, A) Corr(S, A) Predicted Corr(S, A) 

 1-15 0.887 0.816 0.716  

0 16-30 0.941 0.951 0.885 1.000 

 31-45 0.888 0.944 0.866  

 1-15 0.602 0.730 0.436  

1 16-30 0.660 0.727 0.561 0.645 

 31-45 0.555 0.714 0.393  

 1-15 0.380 0.592 0.372  

2 16-30 0.347 0.540 0.313 0.000 

 31-45 0.232 0.636 0.288  
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Table S1B: Learning Sender and Receiver’s Payoffs 

Display Bias-Partner 

BIAS Rounds uS (std) uR (std) Predicted uR (std) 

 1-15 96.36 (23.47) 96.48 (24.37)    

0 16-30 104.63 (11.65) 104.78 (12.01) 110.00 (0.00) 

 31-45 103.50 (12.46) 103.19 (12.18)  

 1-15 79.38 (31.83) 87.04 (26.78)  

1 16-30 69.19 (40.15) 87.98 (28.94)    91.40 (19.39) 

 31-45 71.83 (39.05) 85.52 (27.09)  

 1-15 46.06 (50.91) 80.63 (25.93)  

2 16-30 46.74 (51.11) 81.20 (27.63)    80.80 (20.76) 

 31-45 35.87 (55.73) 79.70 (29.65)  

Hidden Bias-Stranger 

BIAS Rounds uS (std) uR (std) Predicted uR (std) 

 1-15 95.38 (23.56) 95.72 (24.15)    

0 16-30 102.40 (15.18) 102.52  (15.53) 110.00 (0.00) 

 31-45 102.00 (16.89) 101.69 (17.30)  

 1-15 78.76 (35.63) 85.88 (28.92)  

1 16-30 69.18 (39.40) 87.45 (28.61)    91.40 (19.39) 

 31-45 71.40 (38.82) 84.73 (26.87)  

 1-15 46.76 (49.84) 81.06 (26.36)  

2 16-30 46.75 (50.19) 81.81 (27.15)    80.80 (20.76) 

 31-45 36.22 (55.94) 79.29 (29.10)  
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Table S2: Information Transmission: Correlations between S, M and A, Display Bias-Partner 

Bias r(S, M) r(M, A) r(S, A) Predicted r(S, A) 

0 .99 1.00 .99 1.00 

1 .73 .74 .72 .65 

2 .63 .57 .50 .00 

Note: In the display bias-partner design, all senders’ eye movements were recorded (“eyetracked”). 
 

 

Table S3: Sender and Receiver’s Payoffs, Display Bias-Partner 

Bias uS (std) uR (std) Pred. uR (std) 

0 109.14 (4.07) a   109.14 (4.07) a 110.00 (0.00) 

1 93. 35 (20.75) 94.01 (19.86) 91.40 (19.39) 

2 41.52 (49.98) 85.52 (25.60) 80.80 (20.76) 

Note: a Payoffs are exactly the same for senders and receivers due to the symmetry of the payoffs when b=0.  
          

 
 

Table S4: Level-k Classification Results, Display Bias-Partner 

Session ID log L k Exact lambda  

1 1 -36.33 L0 0.71 0.06  

2 2 -51.47 L0 0.64 0.00  

3 3 -33.01 L0 0.78 0.03  

4 4 -19.81 L1 0.82 0.49  

5 5 -38.93 SOPH 0.76 0.04  

6 6 -45.05 EQ 0.69 0.05  

7 7 -34.89 L0 0.80 0.00  

8 8 -27.36 L2 0.84 0.04  

9 9 -31.80 L1 0.80 0.04  

10 10 -24.30 L1 0.84 0.48  

11 11 -22.35 L2 0.87 0.45  

12 12 -31.07 L2 0.73 1.00   
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Table S5: Average Sender Lookup Times (in sec.) across Game Parameters, Display Bias-Partner 

Bias 
b 

Response Time 

State Bias 
Sender 
Payoffs 

Receiver 
Payoffs 

Sender-to-
Receiver 

Ratio 
Periods 

1-15 

Periods 

31-45 

0 5.42 2.39 0.65 0.41 0.73 0.27 2.70 

1 7.92 5.44 1.47 0.99 2.29 1.05 2.18 

2 9.73 8.12 1.72 1.52 3.03 1.50 2.02 

all 8.07 5.25 1.34 1.02 2.14 1.00 2.14 

 

Table S6: Average Lookup Time per Row Depending on the State, Display Bias-Partner 

Bias b 
True State 

Rows  
Other State 

Rows 
True-to-Other 

Ratio 

0 0.54 0.11 4.91 

1 2.06 0.32 6.44 

2 2.24 0.57 4.28 

overall 1.71 0.36 4.75 

 

Table S7A: Average response time change for different biases, Display Bias-Partner 

Bias N  
Average for  

first 15 rounds 
N  

Average for  

middle 15 rounds 
N  

Average for  

last 15 rounds 

0 38 5.42 47 2.91 55 2.39 

1 73 7.92 60 5.44 59 5.44 

2 67 9.73 68 8.96 51 8.12 

overall 178 8.07 175 6.13 165 5.25 

* The numbers of observations are slightly different because we exclude 10 rounds where subjects had to use the 
keyboard to make their decision.  Also, subject #4 had severe pain and the experimenter was forced to stop the 
experiment at the end of round 33.   

Note: Since the bias was randomly determined each round, and subject #4 stopped at round 33 (due to excess pain 
wearing the eyetracker), numbers of observations are not equal.  Dropping subject #4 does not change the results. 
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Table S7B: Average response time change for different biases, Hidden Bias-Stranger 

Bias N  
Average for  

first 15 rounds 
N  

Average for  

middle 15 rounds 
N  

Average for  

last 15 rounds 

0 30 9.78 24 5.54 29 7.24 

1 56 11.77 58 10.78 59 8.76 

2 61 16.84 65 10.23 49 8.99 

overall 147 13.47 147 9.68 137 8.52 

* The numbers of observations are slightly different because we exclude 12 rounds where subjects had to use the 
keyboard to make their decision.  Also, subject #3 had calibration issues and the experimenter was forced to stop 
eyetracking at the end of round 40.   

Note: Since the bias was randomly determined each round, and subject #4 stopped at round 40 wearing the 
eyetracker), numbers of observations are not equal.   

 
 

Table S8: Pupil Size Regressions for 400 msec Intervals, Display Bias-Partner 

Y  PUPILi 
-1.2~ 

-0.8sec 

-0.8~ 

-0.4sec 

-0.4~ 

0.0sec 

0.0~ 

0.4sec 

0.4~ 

0.8sec 
constant α 99.59 99.78 104.62 111.81 109.95 

  (2.45) (2.41) (2.19) (1.84) (2.07) 
LIE_SIZE * BIASb β10 1.20 6.41 3.92 -3.91 0.58 

interactions  (3.21) (6.38) (3.06) (2.76) (7.36) 
 β11 2.79* 3.40** 3.28** 4.55*** 4.20*** 
  (1.19) (1.17) (0.97) (0.86) (0.73) 
 β12 3.49*** 3.71*** 3.04*** 2.90** 3.28** 
  (0.99) (0.98) (0.84) (0.87) (0.90) 
 N 499 497 499 508 503 
 χ

2 224.54 337.22 500.93 785.32 631.21 
 R2 0.271 0.346 0.455 0.539 0.557 

Note: Robust standard error in parentheses; t-Test p-values lower than ^10 percent, *5 percent, ** 1 percent, and 
*** 0.1 percent.  (Dummies for biases, states, individual subjects and individual learning trends are included in the 
regression, but results are omitted.) 
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Table S9: Predicting True States (Resampling 100 times, s.e. in parentheses), Display Bias-Partner 

X  Display Bias-Partner 

MESSAGE * BIAS = 1 β11 0.64* (0.22) 

MESSAGE * BIAS = 2 β12 0.91** (0.23) 

ROW self * BIAS=1 β21 0.98** (0.21) 

ROW self * BIAS=2 β22 1.00** (0.27) 

ROW other * BIAS=1 β31 0.25 (0.16) 

ROW other * BIAS=2 β32 0.39* (0.17) 

total observations N a  208 

N used in estimation 139.3 

N used to predict 68.7 

 Actual   Data Hold-out Sample 

Percent of wrong prediction (b=1) 56.2 29.2 

Percent of errors of size (1,2,3+) (b=1) (80, 15, 5) (74, 19, 7) 

Average predicted payoff (b=1) b  93.4 (22.3) 100.7* (2.4) 

Percent of wrong prediction (b=2) 70.9 58.7 

Percent of errors of size (1,2,3+) (b=2) (67, 26, 7) (73, 22, 5) 

Average predicted payoff (b=2) b 86.2 (23.8) 91.8* (3.4) 

Note:  * and ** Denotes p<0.05 and p<0.001 (t-test)   
a Observation with less than 0.5 seconds lookup time and without the needed pupil size measures are excluded. 
b Two sample t-test conducted against the actual payoffs of receivers in the experiment who are paired with 
eyetracked senders. 
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Table S10: Average Sender Fixation Counts and Lookup Time across Game Parameters 

   Res-

ponse 

time 

(sec.) 

State Bias Sender Payoffs Receiver Payoffs 

Treat-
ment 

Bias b 
Fixation  
(count) 

Lookup 

(sec.)  
Fixation 
(count) 

Lookup  

(sec.)  
Fixation 
 (count) 

Lookup 

(sec.)  
Fixation 
 (count) 

Lookup 

 (sec.) 

Displayed 0 3.59 2.6 0.65 2.1 0.41 3.0 0.73 1.4 0.27 

Bias 1 6.86 5.0 1.47 3.9 0.99 8.1 2.29 3.9 1.05 

- Partner 2 9.68 6.2 1.72 5.5 1.52 10.6 3.03 5.4 1.50 

 overall 7.00 4.8 1.34 4.0 1.02 7.6 2.14 3.7 1.00 

Hidden 0 7.65 3.0 0.83 - - 12.0 2.93 7.5 1.71 

Bias 1 10.95 3.1 0.81 - - 14.2 3.80 10.7 2.66 

- Stranger 2 12.91 3.4 0.91 - - 17.5 4.67 12.4 3.26 

 overall 11.12 3.2 0.86 - - 15.1 3.99 10.8 2.72 

 

Table S11: Average Fixation Counts and Lookup Time per Row 

  True State Rows Other Rows 

Treatment Bias b Fixation Counts  

(counts per row) 

Lookup Time  

(sec. per row)  

Fixation Counts  

(counts per row) 

Lookup Time  

(sec. per row)  

Displayed 0 2.2 0.54 0.5 0.11 

Bias 1 6.8 2.06 1.3 0.32 

- Partner 2 7.8 2.24 2.0 0.57 

 overal
l 

5.9 1.71 1.3 0.36 

Hidden 0 11.4 2.76 2.0 0.47 

Bias 1 14.4 3.88 2.6 0.64 

- Stranger 2 15.7 4.29 3.6 0.91 

 overall 14.3 3.83 2.9 0.72 



Table S12: Individual Types and Log Likelihood under Spike-logit and Logit Specification 
 

Ses- Sub- Spike-logit (baseline) Spike-logit (without bias=0) Logit Logit (without bias=0)  

sion   ject L0 L1 L2 L3 SOPH L0 L1 L2 L3 SOPH L0 L1 L2 L3 SOPH L0 L1 L2 L3 SOPH 

1 1 -60.20 -55.68 -46.36 -53.16 -46.23 -50.47 -43.08 -36.68 -41.48 -35.28 -66.92 -52.59 -50.83 -54.65 -48.72 -54.44 -42.12 -40.07 -43.31 -38.50 

1 2 -67.54 -25.99 -55.16 -56.98 -55.82 -55.14 -24.72 -50.15 -51.96 -50.80 -66.85 -36.95 -49.41 -51.79 -48.10 -57.46 -33.19 -42.58 -44.18 -42.21 

1 3 -72.16 -50.97 -15.98 -40.06 -22.60 -56.92 -42.76 -8.82 -33.29 -17.74 -72.21 -46.26 -16.26 -31.31 -19.94 -57.94 -39.55 -10.24 -24.95 -16.32 

2 1 -55.43 -37.32 -43.27 -43.29 -41.45 -46.88 -30.94 -36.70 -36.82 -35.30 -56.20 -35.57 -36.33 -37.68 -32.92 -47.12 -29.33 -29.29 -30.01 -26.56 

2 2 -49.08 -47.07 -45.17 -37.34 -43.01 -41.28 -39.95 -38.68 -32.57 -37.13 -54.41 -48.18 -44.00 -40.05 -39.73 -42.03 -37.90 -34.10 -30.40 -31.55 

2 3 -63.73 -49.05 -33.23 -31.65 -25.70 -49.74 -40.08 -25.05 -23.07 -17.26 -63.97 -43.32 -28.04 -27.62 -24.89 -49.89 -35.66 -20.95 -20.18 -19.66 

3 1 -68.32 -68.84 -71.93 -71.16 -71.29 -56.34 -54.93 -57.48 -56.92 -57.48 -69.40 -71.94 -72.43 -72.43 -72.42 -56.72 -57.93 -57.94 -57.94 -57.94 

3 2 -71.84 -47.10 -22.95 -30.78 -17.71 -62.49 -43.98 -21.86 -28.76 -16.95 -71.79 -41.49 -18.26 -27.31 -21.02 -62.77 -38.52 -16.86 -24.02 -19.27 

3 3 -72.35 -71.84 -59.83 -54.73 -55.24 -64.40 -65.98 -57.14 -52.56 -53.07 -72.43 -71.80 -63.97 -61.77 -62.83 -65.99 -65.85 -59.46 -57.33 -58.77 

4 1 -54.83 -50.86 -57.41 -62.43 -58.71 -48.26 -43.88 -49.87 -54.04 -50.51 -54.81 -49.71 -57.41 -61.08 -56.59 -47.41 -42.74 -48.53 -51.20 -48.16 

4 3 -69.49 -43.38 -29.43 -25.22 -27.41 -56.24 -36.20 -22.70 -18.81 -21.88 -69.77 -38.12 -23.20 -22.61 -20.73 -56.15 -31.29 -16.80 -15.57 -15.89 

5 1 -68.90 -22.26 -44.60 -42.75 -40.74 -61.32 -21.50 -41.94 -40.52 -38.51 -67.29 -23.01 -33.07 -35.16 -29.89 -60.41 -21.50 -29.46 -30.98 -27.38 

5 2 -69.84 -54.26 -35.77 -48.07 -40.75 -54.31 -42.78 -21.10 -37.72 -30.23 -69.44 -48.58 -40.71 -45.07 -39.44 -54.20 -37.41 -29.60 -33.32 -30.16 

5 3 -70.23 -44.73 -30.63 -25.17 -29.33 -61.00 -40.19 -26.93 -21.44 -26.26 -71.66 -41.34 -21.23 -19.50 -17.81 -61.16 -36.49 -17.38 -15.43 -15.35 

6 1 -70.88 -46.20 -16.27 -35.62 -22.96 -57.94 -39.17 -9.11 -29.26 -17.88 -70.51 -38.41 -14.12 -23.23 -15.98 -57.89 -32.36 -8.53 -17.17 -12.80 

6 2 -65.57 -49.32 -43.38 -47.52 -42.02 -56.82 -44.38 -38.05 -43.33 -37.08 -70.22 -47.91 -48.39 -52.75 -45.64 -57.70 -41.36 -40.60 -43.83 -38.75 

6 3 -53.12 -68.57 -70.88 -71.41 -70.87 -46.26 -59.73 -62.40 -62.66 -62.35 -56.49 -67.30 -71.21 -71.31 -70.36 -48.23 -58.70 -62.09 -62.15 -61.50 
Note:  Maximum likelihood for each specification underlined.  Classification results that are consistent with the baseline specification (spike-logit) are in bold.   

Subject 3-1 has compliance rates less than 20 percent for all types under both spike-logit specifications, and hence, is deemed as unclassified. 


