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1 Nash equilibrium

1.1 N-Person Normal Form Games

A N-person normal form game is given as a triple:

G = (N, {Si}i∈N , {hi}i∈N),

where

(1): N = {1, 2, ..., N}—the set of players;

(2): Si = {si1, ..., si`i}—the set of pure strategies for player i = 1, 2, ..., N ;

(3): hi : S1 × S2 → R—the payoff function of player i = 1, 2, ..., N .
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1.2 Existence

Let Ĝ = (N, {∆(Si)}i∈N , {hi}i∈N) be the mixed extension of G = (N, {Si}i∈N , {hi}i∈N).

A profile of mixed strategies m∗ = (m∗1, ...,m
∗
N) (m∗i ∈ ∆(Si) for i ∈ N) is called a Nash

equilibrium iff for all i ∈ N,

hi(mi,m
∗
−i) ≤ hi(m

∗
i ,m

∗
−i) for all mi ∈ ∆(Si). (1)

Here, we are using the notation: m∗−i = (m∗1, ...,m
∗
i−1,m

∗
i+1, ...,m

∗
N) and (mi,m

∗
−i) =

(m∗1, ...,m
∗
i−1,mi,m

∗
i+1, ...,m

∗
N). Thus, (m∗i ,m

∗
−i) is m∗ itself.

The following is the famous theorem due to John F. Nash.

Theorem 1.1 (Nash (1951)). Let G = (N, {Si}i∈N , {hi}i∈N) be a N-person finite nor-

mal form game. Then, the mixed extension Ĝ = (N, {∆(Si)}i∈N , {hi}i∈N) has a Nash

equilibrium.

Let G = (N, {Si}i∈N , {hi}i∈N) be a 2-person zero-sum game. Then, the mixed exten-

sion Ĝ also satisfies the zero-sum condition. Since a Nash equilibrium becomes a saddle

point, it follows from Theorem 1.1 that the mixed extension Ĝ has a saddle point.

Corollary 1.1. Let G = (N, {Si}i∈N , {hi}i∈N) be an 2-person 0-sum game. Then, the

mixed extension Ĝ = (N, {∆(Si)}i∈N , {hi}i∈N) has a saddle point with respect to h1.

Moreover, because saddle point is equivalent to maximin strategies, and the existence

of saddle points imply that the game is strictly determined, we have the Minimax theorem

as a corollary of Theorem 1.1.

Theorem 1.2 (von Neumann (1928)). Let Ĝ be the mixed extension of a 2-person 0-sum

game G. Then,

max
m1∈M1

min
m2∈M2

h1(m1,m2) = min
m2∈M2

max
m1∈M1

h1(m1,m2). (2)

Theorem 1.1 is proved by applying Brouwer’s fixed point theorem (or Kakutani’s fixed

point theorem). Now, we present Brouwer’s fixed point theorem.
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Let (Rm, d) be the m-dimensional Euclidean space with the Euclidean metric d, where

d(x, y) =

√√√√ m∑
t=1

(xt − yt)2 for x, y ∈ Rm.

We say that a sequence {xν} converges to x0 iff the sequence of real numbers {d(xν , x0)}

converges to 0.

Let T be a subset of Rm, i.e., T ⊆ Rm. We say that T is closed (in the topological

sense) iff for any sequence {xν} in T, if {xν} converges to x0 (in Rm), then x0 belongs to

T . Let T be a subset of Rm. We say that T is bounded iff there is a number M such that

d(0, x) ≤M for all x ∈ T .

We say that a subset T of Rm is compact iff T is closed and bounded. Hence, the

interval [0, 1] is compact, and the m-dimensional simplex is compact, too.

Let T be a subset of Rm. We say that T is convex iff for any x, y ∈ T and λ ∈ [0, 1],

the convex combination λx + (1− λ)y belongs to T. Now, let f be a function from T to

T. We say that f is continuous iff for any sequence {xν} in T, if {xν} converges x0 ∈ T,

then {f(xν)} converges f(x0).

Now, we can present Brouwer’s fixed point.

Theorem 1.3 (Brouwer (1908)). Let T be a nonempty compact convex subset of Rm,

and let f be a continuous function from T to T. Then f has a fixed point x0 in T, i.e.,

f(x0) = x0.

Proof of Theorem 1.1: Define a function f :
∏

i∈N ∆(Si)→
∏

i∈N ∆(Si) as follows:

(1) For each si ∈ Si, define gisi(m) = max{hi(si,m−i)− hi(m), 0}.

(2) For each si ∈ Si, define fi(m)[si] =
mi[si]+g

i
si

(m)

1+
∑

ti∈Si
giti

(m)
.

It is straightforward to verify that
∑

si∈Si
fi(m)[si] = 1 and fi(m)[si] ≥ 0 and hence

f(m) = (f1(m), ..., fN(m)) ∈
∏

i∈N ∆(Si).

Now we show that if f(m∗) = m∗, then m∗ is a Nash equilibrium. Suppose that

f(m∗) = m∗. Fix a player i ∈ N . Because hi(m
∗) =

∑
si∈Si

m∗i [si]hi(si,m
∗
−i), there exists
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some s0
i such that hi(s

0
i ,m

∗
−i) ≤ hi(m

∗) and m∗i [s
0
i ] > 0. Then, fi(m

∗) = m∗ implies that

m∗i [s
0
i ] =

m∗i [s
0
i ] + gi

s0i
(m∗)

1 +
∑

ti∈Si
giti(m

∗)
and gis0i

(m∗) = 0.

Thus,
∑

ti∈Si
giti(m

∗) = 0, and this implies that hi(m
∗
i ,m

∗
−i) ≥ hi(mi,m

∗
−i) for any mi ∈

∆(Si).

Finally, we show that f has a fixed point by appealing to Theorem 1.3. It is easy

to verify that
∏

i∈N ∆(Si) is compact and convex. It is also easy to verify that gisi is

continuous for each si ∈ Si and each i ∈ N , and hence f is continuous. 2

1.3 Interpretations

Steady-state interpretation

Under this interpretation, Nash equilibrium is the outcome after repeated plays. An

explicit model requires a dynamic process that leads to Nash equilibrium. This literature

includes learning models and evolutionary models. In this approach, the selection of Nash

equilibria is based upon assumptions on the dynamic process.

Ex ante decision-making

Nash (1951) was intended to give a theory of ex ante decision-making from each indi-

vidual player’s perspective. The proposed solution is not a particular Nash equilibrium;

instead, the solution is the set of all Nash equilibria. However, not every game is solvable.

2 Nash Noncooperative Theory

We define E(Ĝ) to be the set of all Nash equilibria in Ĝ. By Theorem 1.1, the set E(Ĝ)

is nonempty.

Let F be a subset of
∏

i∈N ∆(Si). We say that F satisfies Interchangeability iff

(m1,m2, ...,mN), (m′1,m
′
2, ...,m

′
N) ∈ F imply (m′i,m−i) ∈ F for all i. (3)
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Now, let E = {E : E ⊆ E(Ĝ) and E satisfies (3)}. We say that E is the Nash solution

iff E is the greatest set in E, i.e., E ′ ⊆ E for any E ′ ∈ E. We say that E is a Nash

subsolution iff E is a maximal set in E, i.e., there is no E ′ ∈ E such that E ( E ′. We call

these the Nash noncooperative solutions from now on.

The solution exists if and only if the entire set E(Ĝ) of equilibria is interchangeable.

In this case, Nash called the game Ĝ solvable. On the other hand, a subsolution ex-

ists always; specifically, for any (m1,m2, ...,mN) ∈ E(Ĝ), there is a subsolution F with

(m1,m2, ...,mN) ∈ F. This is already claimed in Nash (1951).

Lemma 2.1. For any (m1,m2, ...,mN) ∈ E(Ĝ), there is a subsolution E such that

(m1,m2, ...,mN) ∈ E.

Proof. We prove for the case N = 2. Consider the class E(m1,m2) := {E ∈ E : E satisfies

(3) and (m1,m2) ∈ E}. This set satisfies the assumption of Zorn’s lemma. Indeed, let

{Eλ}λ∈Λ is any ascending chain in E(m1,m2). Now, let Eo =
⋃
λ∈ΛE

λ. This is a set of

Nash equilibria and contains (m1,m2). Take (m′1,m
′
2), (m′′1,m

′′
2) from Eo. Then, since

{Eλ}λ∈Λ is an ascending chain, we have some F λ containing (m′1,m
′
2), (m′′1,m

′′
2). Since Eλ

satisfies (3), we have (m′1,m
′′
2) ∈ Eλ, a fortiori, (m′1,m

′′
2) ∈ Eo. Thus, Eo satisfies (3). We

have shown that {Eλ}λ∈Λ has an upper bound in E(m1,m2). Hence, by Zorn’s lemma, we

have a maximal set E in E(m1,m2). This E is what we wanted.

For some (m1,m2) ∈ E(Ĝ), a subsolution given in Lemma 2.1 may not be unique, as

remarked in Jansen (1981). Consider the game given in Table 1.

Table 1

s21 s22

s11 (1, 1) (1, 1)

s12 (1, 1) (0, 0)

This has two subsolutions; {((α, 1 − α), (1, 0)) : α ∈ [0, 1]} and {((1, 0), (α, 1 − α)) : α ∈

[0, 1]}. Here, ((1, 0), (1, 0)) belongs to both subsolutions.

Lemma 2.2. Let F ⊆
∏

si∈Si
∆(Si) and let Fi = {mi : (mi;m−i) ∈ F for some m−i ∈

∆(S−i)} for i = 1, 2..., N. Then, F satisfies (3) if and only if F = F1 × F2 × ...× FN .
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Proof. We prove for the case N = 2. The if part is straightforward. Consider the only-if

part. First, F ⊆ F1 × F2 holds in general. Suppose that F satisfies (3). Let (m1,m2) ∈

F1 × F2. Then, we have some m′1 ∈ ∆(S1) and m′2 ∈ ∆(S2) such that (m1,m
′
2) ∈ F and

(m′1,m2) ∈ F . By (3), we have (m1,m2) ∈ F .

3 Ex ante decision-making

3.1 Johansen’s Postulates for the Nash Theory

Johansen (1982) gives an argument for the Nash noncooperative theory from the ex ante

perspective. Here, we review his postulates and claims. For simplicity and without losing

any insights, we consider only 2-person games.

Postulate 1. A player makes his decision si ∈ Si on the basis of, and only on the basis

of information concerning the action possibility sets of two players S1, S2 and their payoff

functions h1, h2.

Postulate 2. In choosing a his own decision, a player assumes that the other is rational

in the same way as he himself is rational.

Postulate 3. If any decision is rational decision to make for an individual player, then

this decision can be correctly predicted by the other player.

Postulate 4. Being able to predict the actions to be taken by the other player, a player’s

own decision maximizes his payoff function corresponding to the predicted actions of the

other player.

Comments.

• Postulate 1 states that the decisions and predictions are made before the game

starts. Here it assumes an ideal situation in which the preferences and the rules of

the game are commonly known.

• Postulate 4 requires players’ decisions be optimal, instead of according to a ex-
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ogenous evaluation of strategies independent of other players’ decisions as in the

Maximin criterion, against predictions about other players’ decisions.

• Postulates 2 and 3 state the principles of making predictions. In this approach, the

distinction between decision and prediction is crucial.

• Rationality in Postulate 2 should be interpreted more broadly than the optimiza-

tion requirement in Postulate 4; rather, it should embrace the contents of the four

postulates.

3.2 Decision criterion for Nash theory

We have seen the Maximin criterion for decision-making in games. That criterion has

various advantages—playability, zero-order requirements on interpersonal thinking, con-

structiveness, etc. However, it does not guarantee the best-response property as stated

in Postulate 2 and 4; only from the outside observer’s perspective, and only in zero-sum

games, that criterion satisfies the best-response property to some extent.

Here we present a decision criterion based on Johansen’s four postulates. Although

these requirements are formulated in a symmetric manner between the two players, it

should be understood as a decision criterion together with a prediction criterion for one

single player.

The final decisions belong to the set Ei ⊆Mi, i = 1, 2, that is the greatest set satisfying

the following two requirements:

N1: for each m1 ∈ supp(E1), Best1(m1;m2) holds for all m2 ∈ E2;

N2: for each m2 ∈ supp(E2), Best2(m2;m1) holds for all m1 ∈ E1.

Comments.

• From player 1’s perspective, E1 is the decision variable while E2 is the prediction

variable. Correspondingly, condition (N1) is the decision criterion while condition

(N2) is the prediction criterion.
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• Although these two requirements appear as a set of simultaneous equations, it in-

volves an infinite regress—player 1’s decision in (N1) depends on his prediction

about player 2’s decision in (N2), which depends on her prediction about player 1’s

decision in (N1), ad infinitum.

• The choice of the quantifier before the predictions about the other player’s decision

reflects the assumption of free will.

Here we show that (N1-N2) characterizes the Nash noncooperative solution. First we

give a lemma that connects (N1-N2) to Nash equilibria.

Lemma 3.1. Let Ei be a nonempty subset of ∆(Si) for i = 1, 2. Then, (E1, E2) satisfies

N1-N2 if and only if any (m1,m2) ∈ E1 × E2 is a Nash equilibrium in Ĝ.

Proof. (Only-If): Let (m1,m2) be any mixed strategy pair in E1 × E2. By N1, any s1

with m1(s1) > 0 gives the largest payoff over h1(s′1,m2), s′1 ∈ S1. Hence, any mixture of

those payoffs over such s1’s takes the same largest value. Hence, h1(m′1,m2) takes the

largest value over m′1’s. By the symmetric argument, h2(m1,m2) takes the largest value

over m′2’s. Thus, (m1,m2) is a Nash equilibrium in Ĝ.

(If): Let s1 ∈ σ(E1) and m2 ∈ E2. Then, m1(s1) > 0 for some m1 ∈ E1. Since (m1,m2)

is a Nash equilibrium, we have h1(s1,m2) ≥ h1(s′1,m2) for all s′1 ∈ S1. Requirement N2 is

shown in the parallel manner.

The following theorem shows that the greatest set satisfies (N1-N2) corresponds to

the Nash noncooperative solution if it exists.

Theorem 3.1 (The Nash Noncooperative Solutions). Let E be a subset of ∆(S1)×∆(S2),

and let Ei = {mi : (mi;m−i) ∈ E for some m−i ∈ ∆(S−i)} for i = 1, 2. Then,

(1): E is a Nash subsolution if and only if E = E1×E2 and it is a maximal set satisfying

N1-N2.

(2): E is the Nash solution if and only if E = E1×E2 and it is the greatest set satisfying

N1-N2.
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Proof. (1) (If): Let E = E1 × E2 be a maximal set satisfying N1-N2, i.e., there is no

(E ′1, E
′
2) satisfying N1-N2 with E1 × E2 ( E ′1 × E ′2. Then E satisfies interchangeability

(3). Also, E1×E2 is a set of Nash equilibria. Let E ′ be a set of Nash equilibria satisfying

(3) with E1 ×E2 ⊆ E ′. Then, E ′ is expressed as E ′1 ×E ′2. Since E ′1 ×E ′2 satisfies N1-N2,

we have E1 × E2 = E ′ by maximality for E1 × E2 satisfying N1-N2.

(Only-If): Since E is a subsolution, it satisfies (3). Hence, E is expressed as E = E1×E2.

Also, E1 × E2 satisfies N1-N2. Since E = E1 × E2 is a subsolution, it is maximal set

satisfying N1-N2.

(2) (If): Let E = E1 × E2 be the greatest set satisfying N1-N2. E satisfies (3), and it is

a set of Nash equilibria. Let E ′ be any set of Nash equilibria satisfying (3). Then, E ′ is

expressed as E ′1×E ′2 and satisfies N1-N2. Since E = E1×E2 be the greatest set satisfying

N1-N2, we have E ′1 × E ′2 ⊆ E1 × E2.

(Only-If): Since E is the Nash solution, it satisfies (3). Hence, E is expressed as E =

E1 × E2. Also, since it consists of Nash equilibria, E1 × E2 satisfies N1-N2 and is the

greatest set having N1-N2.

Comments.

• The role of interchangeability and solvability

– interchangeability is not required in (N1-N2); rather, it is a condition on the

game being played so that (N1-N2) can recommend a decision.

– if interchangeability is not satisfied, additional requirements are necessary to

derive a decision.

• Separation of players’ minds

– each player uses (N1-N2) to derive the final decision and prediction; to do

so a symmetric assumption about the other player’s decision and prediction

criterion is necessary.

– these assumptions lead to an infinite regress which requires common knowledge
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– these epistemic considerations can be formalized in epistemic logic

• The role of mixed strategies

– mixed strategies are objects of choice in our formulation and warrantees the

existence of a subsolution

– conceptually, however, the use of mixed strategies is not essential; rather, it

creates some difficulties
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