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1 Introduction

In the lowest unique bid auction (LUBA), players submit bids for an object, and the

one who submits the lowest unique bid wins the object and pays her bid. In recent

years this auction format has gained considerable popularity in online markets.1 LUBA

has also spurred academic interest and has been studied both theoretically and empir-

ically (De Wachter and Norman, 2006; Rapoport, Otsubo, Kim and Stein, 2013; Eich-

berger and Vinogradov, 2008; Raviv and Virag, 2009; Houba, Laan and Veldhuizen, 2011;

Scarsini, Solan and Vieille, 2010; Gallice, 2013; Pigolotti, Bernhardsson, Juul, Galster and

Vivo, 2012; Radicchi, Baronchelli and Amaral, 2012; Costa-Gomes and Shimoji, 2014;

Chakraborty, Tammana, Ganguly and Mukherjee, 2014). Although substantial progress

has been made, analyzing LUBA has proven to be complicated. For example, many pa-

pers have focused on numerical computations of symmetric equilibria of LUBA. However,

it has not yet been shown that there is a unique equilibrium. In this paper, we show that

it is straightforward to show uniqueness if one is willing to assume that the number of

players is uncertain. This is indeed the case in many online LUBAs� there is often a set

deadline and everybody that submits a bid before the deadline gets to participate� which

implies that there is uncertainty about the total number of bidders.

Speci�cally, following Östling, Wang, Chou and Camerer�s (2011) study of the lowest

unique positive integer (LUPI) game, we assume that the number of players is Poisson

distributed with mean n, which allows us to use results derived by Myerson (1998, 2000).

We show that the Poisson-Nash equilibrium of the Poisson LUBA is unique and satisfy a

number of theoretical properties, some of which has previously been shown to hold for the

�xed-N equilibrium. Furthermore, the Poisson LUBA equilibrium can easily be computed

and is practically indistinguishable from previously reported numerical computations of

the �xed-N equilibrium. In addition, we show that the Poisson LUBA can be extended

to take entry and risk preferences as well as private values of bidders into account.2

2 Poisson LUBA

In the lowest unique bid auction studied here, N players simultaneously submit one bid

k 2 N each.3 The player who submits the lowest unique bid wins a prize. If there is no
unique bid, there is no winner. Each participant pays a �xed fee f � 0. The winner wins

1See Eichberger and Vinogradov (2008) and Gallice (2013) for some information about online LUBAs.
2All papers on LUBA except Gallice (2013) and Costa-Gomes and Shimoji (2014) work exclusively

with known common values.
3Scarsini et al. (2010) provide some results for the case of multiple bids, under a severe restriction on

the strategy space. Gallice (2013) allows for multiple rounds with one bid per round. He assumes that
the probability of winning is given by a Tullock contest.
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a prize with common value V > 1 and pays her bid k. We assume that bidders maximize

expected utility and that their utility is strictly increasing in the monetary payo¤. We

may without loss of generality restrict attention to the pure strategy set S = f1; 2; :::; Kg
for some K. Consequently the mixed strategy space is the (K � 1)-dimensional simplex
� =

n
p 2 RK+ :

PK
i=1 pi = 0

o
.

Let k� (s) denote the winning number under pure strategy pro�le s = (s1; :::; sN) 2 SN :

k� (s) = min
j2fk2f1;:::;Ng:sk 6=sl;8l 6=kg

sj:

The payo¤ to a player choosing the number k 2 S under pure strategy pro�le s is

uk (s) =

(
u(V � k � f) if k = k� (s) ;

u (�f) otherwise.

Note that bidding k > V is weakly dominated by bidding 1.4 Moreover, in equilibrium

there is a positive chance of winning by bidding 1 and hence no player would bid k > V .

Without loss of generality we therefore set K = V .

We imagine a large population of potential bidders. A number of individuals are drawn

from this population to play the game. The number of players N is Poisson distributed

with mean n > 0.5 Let p denote the population average strategy, i.e. pk is the probability

that a randomly chosen player will pick pure strategy k. Let X (k) � Poisson (npk) be
the total number of players who are drawn to participate and choose strategy k. As shown

by Myerson (1998), from the point of view of a player that is drawn to play the game,

the number of other individuals who are drawn to play is Poisson (n), and the number

of other individuals that are drawn and plays k is Poisson (npk).

Let wk (p) be the probability that an individual who is drawn to play and picks number

k will win, when the population average strategy is p. This win probability is the same

as in the LUPI game, and from Östling et al. (2011) we consequently know that

wk(p) = Pr(X(k) = 0)
k�1Y
i=1

Pr (X(i) 6= 1) = e�npk
k�1Y
i=1

�
1� npie�npi

�
. (1)

The expected utility to a player putting all probability on strategy k given the population

4Bidding k > V yields u(V � k � f) when winning and u(�f) when losing, so it is strictly better to
lose by bidding 1 than to win by bidding k > V .

5The Poisson assumption can be motivated in di¤erent ways, for example by supposing there is a large
population of m potential bidders, each of which participates with probability r 2 (0; 1). The probability
r may depend on the process by which potential players become aware of the game, say, by sur�ng the
internet, and may also depend on the entry cost f relative to the expected payo¤ of participating. The
sum of participants has a binomial distribution with parameters m and r, which approximates a Poisson
distribution with mean mr for large m and small r.
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average strategy p is

�k(p) = wk(p) [u (V � k � f)� u (�f)] + u (�f) .

A Poisson-Nash equilibrium p requires �(p; p; n) � �(p0; p; n) where �(p0; p; n) is the

expected utility of strategy p0 when the population plays according to strategy p.6 In a

mixed strategy equilibrium that has both k and k + 1 in its support, �k+1(p) = �k(p).

Applying (1), the mixed equilibrium condition becomes:

enpk+1 = (enpk � npk)
u (V � k � 1� f)� u (�f)
u (V � k � f)� u (�f) � (enpk � npk)

�uk+1
�uk

: (2)

We may now prove that there is a unique equilibrium with convex support, characterize

conditions for the equilibrium to be mixed, and show that it is continuous in n.

Proposition 1 A Poisson-Nash equilibrium p� = (p1; p2; :::; pK) of the Poisson LUBA

game exists and is unique. The equilibrium p� is continuous in n, and it is mixed with

convex support f1; 2; :::; �g for some � � K if n is large enough so that

en � n > u (V � 1� f)� u (�f)
u (V � 2� f)� u (�f) =

�u1
�u2

. (3)

Otherwise, the equilibrium p� is for everyone to bid 1.

Proof. Existence of equilibrium follows directly from Myerson (1998). In order to

prove convexity of the equilibrium support, note �rst that p1 > 0 in any equilibrium since

picking 1 would otherwise guarantee a win with the lowest possible bid. Suppose now by

contradiction that the support is non-convex, i.e. that there is a k such that pk = 0 and

pk+1 > 0. Then, since e�npk+1 < 1 for pk+1 > 0,

�k+1(p)� �k(p) =
�
e�npk+1�uk+1 ��uk

�
�
k�1Y
i=1

�
1� npie�npi

�
< 0:

But this cannot hold in an equilibrium with pk = 0 and pk+1 > 0, so we must have pk > 0.

By induction we have a convex support f1; 2; :::; �g for some � � K.
If the Poisson-Nash equilibrium is in pure strategies, it must be that everyone bids 1

since p1 > 0 in any equilibrium. The pure strategy equilibrium p1 = 1 requires �2(p) �
�1(p) = [(1� ne�n)�u2 � e�n�u1] � 0, which gives condition (3). In order to prove

that the pure-strategy equilibrium is unique, it remains to show that there is no other

mixed-strategy equilibrium. Suppose to the contrary that there is another mixed-strategy
6Note that we cannot de�ne asymmetric equilibria in a game with population uncertainty since par-

ticipation of each player is uncertain.
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equilibrium p0 such that p01 < 1. The mixed-strategy equilibrium requirement �1 (p0) =

�2 (p
0) implies

�
enp

0
1 � np01

�
e�np

0
2 = �u1=�u2 � en � n by condition (3). Since e�np

0
2 < 1

and enp
0
1 � np01 < en � n, this inequality cannot hold.

In order to prove uniqueness of a mixed-strategy equilibrium, note that we can rewrite

the recursive equilibrium condition (2) as

pk+1 =
1

n
ln (enpk � npk) +

1

n
ln
�uk+1
�uk

: (4)

The partial derivative @pk+1=@pk = (enpk � 1) = (enpk � npk) is positive, so pk+1 is an
increasing function of pk. Suppose there are two equilibria p and p0, and their supports

have possibly di¤erent end-points � � �0. Since pk+1 is uniquely determined by pk, we

must have p1 6= p01 for p and p0 to di¤er. There are two cases to consider. If � = �0, we can
assume without loss of generality p1 > p01. Then,

P�
i=1 pi >

P�0

i=1 p
0
i since pk+1 is uniquely

determined by pk and strictly increasing in pk. This is a contradiction since probabilities

must sum to one in both equilibria. Suppose instead � > �0, so that pk > p0k = 0 for all

� � k > �0. For both p and p0 to be equilibria, we must have ��0(p0) � ��0+1 (p
0) and

��0 (p) = ��0+1 (p). By condition (2), we have

enp�0 � np�0 = enp�0+1 �
�u�0

�u�0+1
� enp�0+1 �

�
enp

0
�0 � np0�0

�
> enp

0
�0 � np0�0

since enp�0+1 > 1. Since (enp � np) is increasing in p, this implies p�0 > p0�0. Since pk+1
is an increasing function of pk, this further implies that pk > p0k for all k � �0. However,
this is a contradiction, as

P�0

k=1 pk >
P�0

k=1 p
0
k = 1.

We now show that the equilibrium p is continuous in n. Since the equilibrium is

unique, we de�ne p� : R+ ! � to be the mapping from the expected number of players,

n, to the corresponding Poisson-Nash equilibrium p�(n). Suppose p� is not continuous,

so there exists a sequence nt ! ~n and pt ! ~p such that pt = p�(nt) for all t but

~p 6= p�(~n). (That is, pt is a Poisson-Nash equilibrium for nt for all t, but ~p is not a

Poisson-Nash equilibrium for ~n.) This means that there is some p0 and " > 0 such that

�(p0; ~p; ~n) > �(~p; ~p; ~n) + 2". Since � is continuous in n and p, it follows that there is some

T such that if t > T , j�(p0; ~p; ~n)� �(p0; pt; nt)j < "
2
and j�(~p; ~p; ~n)� �(pt; pt; nt)j < "

2
.

Hence, �(p0; pt; nt) > �(pt; pt; nt) + ". This contradicts the assumption that pt = p�(nt).

Q.E.D.

Remark 1 The pure-strategy equilibrium condition (3) shows that all bidders would sub-

mit the lowest possible bid if and only if they expect very few opponents. In fact, for

risk-neutral bidders with u(x) = x, �u1=�u2 = 1 + 1= (V � 2) and V � 3:4, n = 1

satis�es condition (3).
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Proposition 1 together with equilibrium condition (2) implies that it is straightforward

to compute the mixed-strategy equilibrium by guessing p1, calculating p2; :::; p� using the

recursive condition and then verifying that the equilibrium probabilities sum to one. In

the Online Appendix, we provide some illustrative numerical computations of the LUBA

equilibrium, and compare the Poisson LUBA equilibrium with the �xed-N computations

provided by Houba et al. (2011) and Costa-Gomes and Shimoji (2014). The Poisson

LUBA and �xed-N Nash equilibrium are practically indistinguishable, in particular with

many players (which is not entirely surprising given the possibility to approximate the

multinomial distribution with a Poisson distribution).

Building on the characterization in Proposition 1 we are now able to show that the

equilibrium probabilities are decreasing over the convex support, while the probability of

winning, wk (p), is increasing. Also, the equilibrium p� converges to a uniform distribution

with many players, converges to the LUPI equlibrium as V ! 1, and is independent of
f for risk-neutral players. For the following result and the remainder of the paper, we

assume that the utility function is continuously di¤erentiable.

Proposition 2 The Poisson-Nash equilibrium p� = (p1; p2; :::; pK) of the Poisson LUBA

game has the following properties for all k and k + 1 in the support of the equilibrium:

1. Equilibrium probabilities are decreasing in k, pk > pk+1, and win probabilities are

increasing in k, wk(p) < wk+1(p).

2. As n!1, pk � pk+1 ! 0.

3. The equilibrium p� converges to the LUPI equilibrium when V !1:

4. If u00 = 0, the equilibrium p� is independent of f .

Proof. It is easy to verify that a pure-strategy equilibrium trivially satis�es these

properties, so we assume condition (3) holds so that the equilibrium is mixed.

We �rst show that wk(p) < wk+1(p) and pk > pk+1. The mixed-strategy equilibrium

requires �k+1(p) = �k(p). Since the utility of winning on k, u (V � k � f), is larger than
that of winning on k + 1, u (V � k � 1� f), the probability of winning on k must be
strictly lower than the probability of winning on k+1, i.e. wk(p) < wk+1(p). It is easy to

verify that wk(p) < wk+1(p) is equivalent to enpk+1 � enpk < �npk. The right hand side is
negative (since pk > 0), so for the left hand side to be negative we need pk > pk+1.

To show that pk � pk+1 ! 0 as n!1, we rewrite the equilibrium condition (2) as

pk � pk+1 = �
1

n
ln
�
1� npke�npk

�
� 1

n
ln
�uk+1
�uk

: (5)
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Since pk > pk+1, we have 1 > p1 � 1=K (since probabilities must sum up to 1). Hence,

np1e
�np1 � ne�n=K ! 0 as n ! 1. Thus, p1 � p2 = � (1=n) ln (1� np1e�np1) �

(1=n) ln (�uk+1=�uk) ! 0 as n ! 1: This implies that for any �1 2 (0; 1=K), there

is some n1 such that p2 � p1 � �1 � 1=K � �1 for n > n1. The argument can be iterated
to show that for each k, there is some �k 2 (0; 1=K � �k�1) such that pk+1 � 1=K � �k,
and thus pk � pk+1 ! 0 as n!1.
To see that the LUBA equilibrium converges to the LUPI equilibrium as V ! 1,

note that limV!1 ln (�uk+1=�uk) = 0, so the second term on the right hand side of (5)

vanishes. The remainder of the expression is identical to condition (2) in Östling et al.

(2011). Similarly, to examine the e¤ect of f on the equilibrium, note that if u00 = 0, then

�uk+1=�uk = (V � k � 1) = (V � k), which is independent of f . Q.E.D.

2.1 Risk Preferences and Entry

Organizers of LUBA primarily raise revenue from the �xed fees that bidders pay and

the sum of all �xed fees often vastly exceeds the value of the prize.7 This raises the

question why bidders might participate in such auctions. One potential explanation is

a love for risk, i.e. a convex utility function over total wealth.8 To illustrate that risk

loving preferences can potentially explain participation in LUBA auctions, we prove two

additional results.

Suppose the initial wealth level is given by W > 0 and that V � 1 > f > 0. Risk-

neutral bidders will not want to enter if their expected payo¤ of bidding k = 1 is negative,

which is equivalent to the condition e�np
�
1(V;f;n) < f= (V � 1). In general, bidders would

want to enter if and only if the expected utility for participating is higher than u(W ),

where u(W ) is the utility of not participating, or if

E [ujp�(V; f; n)] = e�np�1(V;f;n) [u(W + V � 1� f)� u(W � f)] + u(W � f) > u(W );

which is equivalent to

e�np
�
1(V;f;n) >

u (W )� u (W � f)
u (W + V � 1� f)� u (W � f) � Q(W;V; f): (6)

Note that if u is convex, 0 < Q < f= (V � 1) < 1. The following result establishes

7In fact, organizers paid back less than 50% of the �xed fees in the closely related LUPI game (Östling
et al., 2011).

8Other potential explanations include utility from gambling (Conlisk, 1993, Diecidue, Schmidt and
Wakker, 2004) or incorrect beliefs due to �non-belief in the law of large numbers�(Benjamin, Rabin and
Raymond, 2014). In the Online Appendix, we show that both these explanations are consistent with the
equilibrium derived above under the assumption that players are rational, risk-neutral and the number
of players (n) is interpreted as the perceived number of players rather than the actual number of players.
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that it is possible to vary the expected number of players n (which auctioneers might be

able to do via advertising) so that the expected utility from bidding k = 1 falls in this

range, i.e. so that a risk-loving bidder prefers to bid, but a risk-neutral bidder prefers not

to bid.

Proposition 3 Suppose V � 1 > f > 0 and u is convex. For any � 2 [Q; f= (V � 1)],
there is an n� > 0 such that e�np

�
1(V;f;n) = �.

Proof. In equilibrium, pk > pk+1 so that p�1 > 1=K for all �nite n and limn!1 p
�
1 =

1=K. It follows that limn!1 e
�np�1(V;f;n) = limn!1 e

�nK = 0. Moreover, since e�np1

is decreasing in p1 we have 1 = e0 � e�np
�
1(V;f;n) � e�n, and limn!0 e

�n = 1, so

limn!0 e
�np�1(V;f;n) = 1. Thus, there is some n0 such that for n < n0, 0 � e�np�1(V;f;n) < Q,

and some n1 such that for n > n1, f= (V � 1) < e�np
�
1(V;f;n) � 1. Since p�1(V; f; n) is

continuous in n, e�np
�
1(V;f;n) is also continuous in n. The result then follows from the

intermediate value theorem. Q.E.D.

Proposition 3 shows that for given risk preferences there is some n that makes risk-

loving buyers want to participate in the auction, despite the fact that at least one of

the bids they put positive probability on (number one) is associated with a negative ex-

pected payo¤. Conversely the next proposition shows that for a �xed n we can vary risk

preferences in order to induce buyers to participate.9 Suppose buyers have utility func-

tion u(x) = x1+�= (1 + �) with Arrow-Pratt-De Finetti measure of relative risk aversion

�xu00(x)=u0(x) = �� (larger � means more risk loving).

Proposition 4 Suppose V � 1 > f > 0 and u(x) = x1+�= (1 + �). For any n there is a
~� > 0 such that if � > ~� then E [ujp� (V; f; n)] > u (W ).

Proof. The limit of the right hand side of the participation condition (6) is

lim
�!1

(W )1+� � (W � f)1+�

(W + V � 1� f)1+� � (W � f)1+�
= lim

�!1

�
W

W+V�1�f

�1+�
�
�

W�f
W+V�1�f

�1+�
11+� �

�
W�f

W+V�1�f

�1+� = 0;

since W + V � 1� f > W > W � f . Since e�np�1(V;f;n) > e�n > 0, condition (6) holds for
su¢ ciently high �. Q.E.D.

9Proposition 3 shows that it is possible for the expected payo¤ to bid 1 to be negative while the
expected utility is positive. This does not rule out, however, that the expected payo¤ from making higher
bids might be positive.
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2.2 Independent Private Values

The theory of Poisson games (Myerson 1998, 2000) makes it straightforward to analyze

LUBA with private values. Suppose each individual�s value is drawn independently from

� = [0; ��] � R according to a continuous distribution �. Conditional on being of type
� 2 � an individual plays action k with probability pk(�). The probability that a randomly
drawn player plays strategy k is

pk =

Z
�2�

� (�) pk (�) d�:

The number of players choosing action k, still denoted X(k), is Poisson distributed

with mean npk. Thus the expected utility to a player of type � that bids k is

��k(p) = wk (p) [u (� � k � f)� u (�f)] + u (�f) ,

where wk(p) is the same expression as in the known common-value case analyzed above.

This allows us to use the same argument as in Proposition 1 to show that the (aggregate)

equilibrium strategy p has a convex support and includes the lowest bid. We are also

able to say something about how the supports of the strategies of di¤erent types, denoted

C(p�), relate to each other provided that the players are risk averse or risk neutral.10

Proposition 5 There exists an equilibrium of the private-values Poisson LUBA game

and any such equilibrium has convex support f1; 2; :::; �g for some � � K. Furthermore,
if (u00 � 0), the following holds: Let p� and p�

0
be the equilibrium strategies of types �

and �0. If � < �0 then the highest (lowest) number that p� puts positive probability on is

weakly lower than the highest (lowest) number that p�
0
puts positive probability on, i.e.,

maxC
�
p�
�
� maxC

�
p�

0�
and minC

�
p�
�
� minC

�
p�

0�
.

Proof. Existence follows from Myerson (2000). The proof that the support is

f1; 2; :::; �g for some � � K, is the same as in the known common value case.
Suppose � < �0. We de�ne �u�k = u(� � k � f) � u(�f). To obtain a contradiction,

assume that in equilibrium k = maxC(p�) > maxC(p�
0
) = k0. Hence, ��k�f < ��k0�f ,

10As Proposition 5 shows, the supports of the equilibrium strategies of high and low types overlap,
which implies that the revenue equivalence theorem (e.g. Klemperer, 1999) cannot be used to compare
revenues from LUBA with revenues from other auction formats.
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and �u�k < �u
�
k0. Since k 2 C(p�) in equilibrium, it must be that 0 � ��k(p)� ��k0(p), or

0 � e�npk
k�1Y
i=1

�
1� npie�npi

�
��u�k � e�npk0

k0�1Y
i=1

�
1� npie�npi

�
��u�k0

<

"
e�npk

k�1Y
i=1

�
1� npie�npi

�
� e�npk0

k0�1Y
i=1

�
1� npie�npi

�#
��u�k0 = �P ��u�k0 :

Since �� k� f > �f and k > k0, we have �� k0 > 0, or �u�k0 > 0. Thus, �P > 0. Using
u00 � 0 one �nds @

@�
u(� � k � f) � @

@�
u(� � k0 � f). Since �P > 0 and u0 > 0, we have

@

@�

�
��k (p)� ��k0 (p)

�
> �P � @

@�
u (� � k0 � f) > 0:

This together with ��k(p) � ��k0(p) implies �
�0
k (p) > ��

0
k0(p), which is inconsistent with �

0

putting positive probability on k0 and zero probability on k.

To prove minC(p�) � minC(p�
0
), assume the contrary that in equilibrium k =

minC(p�) > minC(p�
0
) = k0. As before we can �nd @

@�

�
��k(p)� ��k0 (p( p)

�
> 0. To-

gether with ��
0
k (p) � ��

0
k0(p) (which follows from k0 2 C(p�0)) this implies ��k(p) < ��k0(p).

This is not consistent with � putting positive probability on k and zero probability on k0.

Q.E.D.

3 Conclusion

The results in this paper suggest that the assumption that the number of players follows a

Poisson distribution is both useful and innocuous when studying LUBA. This assumption

allows us to prove that the equilibrium is unique, and to characterize its basic properties.
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Online Appendix

Numerical Equilibrium Computations

Figure A1 shows the equilibrium prediction with risk neutral bidders, V = 100 and

n = {10, 20, 30, 40, ..., 80}. Figure A2 shows the equilibrium prediction for agents with

utility function u(x) = x1+ρ/ (1 + ρ) for initial wealth W = 20, V = 100, n = 40 and

f = 0. The equilibrium prediction is shown for risk averse bidders (ρ = −0.9), risk neutral

bidders (ρ = 0) and risk-loving bidders (ρ = 3).

1



 2

Figure A1. Poisson LUBA Equilibrium with Risk Neutral Bidders

Notes: This figure shows the symmetric Nash equilibrium of the LUBA game when the number of risk neutral bidders is
Poisson distributed with mean n  = 10, 20,…, 80 players and value of the prize is V  = 100.

Notes: This figure shows the symmetric Nash equilibrium of the LUBA game for ρ = -0.9, 0 and 3, initial wealth W = 20, the
number of bidders is Poisson distributed with mean n = 40, there is no cost of bidding (f = 0) and the value of the prize is V =
100.

Figure A2. Poisson LUBA Equilibrium with Different Risk Attitudes

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Pr
ob

ab
ili

ty
 

Bid 10 20 30 40 50 60 70 80

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pr
ob

ab
ili

ty
 

Bid 

Risk averse (-0.9) Risk neutral (0) Risk loving (3)



Several papers have provided theoretical analyses of symmetric Nash equilibria with a

fixed number of players. Houba et al. (2011) prove that (i) a symmetric Nash equilibrium

has a convex support that includes the lowest bid, (ii) the probability put on each number

is strictly decreasing over the support, and (iii) the probability of a bid winning is strictly

increasing over the support. These three results are also proved by Gallice (2013) and

Costa-Gomes and Shimoji (2014).11 As shown by Proposition 1 and 2, these properties

are shared by the Poisson equilibrium. Several papers also report numerical computations

of the LUBA equilibrium with a fixed number of players. We have compared the Poisson

LUBA equilibrium with the fixed-N computations provided by Houba et al. (2011) and

Costa-Gomes and Shimoji (2014). The Poisson LUBA and fixed-N Nash equilibrium is

practically indistinguishable. Table A1 shows some illustrative computations for up to

N = 20 players.

Table A1. Poisson vs. fixed-N LUBA

Houba et al. (2010) Costa-Gomes & Shimoji (2014)

Fixed Poisson Fixed Poisson Fixed Poisson Fixed Poisson

V 50 50 100 100 100 100 100 100

n 5 5 8 8 10 10 20 20

p1 0.364 0.366 0.273 0.277 0.237 0.242 0.150 0.154

p2 0.320 0.291 0.253 0.242 0.222 0.217 0.145 0.146

p3 0.193 0.205 0.219 0.199 0.201 0.188 0.138 0.137

p4 0.095 0.109 0.157 0.149 0.166 0.153 0.130 0.127

p5 0.028 0.029 0.080 0.092 0.113 0.111 0.120 0.115

p6 0.017 0.036 0.052 0.064 0.107 0.101

p7 0.004 0.009 0.022 0.090 0.085

p8 0.067 0.066

p9 0.039 0.044

p10 0.012 0.021

p11 0.001 0.004

The table shows the fixed-N equilibrium probabilities reported in Houba et al. (2010) and Costa-

Gomes & Shimoji (2014) and the Poisson LUBA equilibrium for some combinations of n and V.

The difference between the Poisson and fixed-N Nash equilibrium appears to be de-

creasing in N ; for the parameter values used in Figure A1, the absolute difference summed

11Raviv and Virag (2009) prove the first of these two results under the strong assumption that players
strive to maximize probability of win, disregarding the payoff consequences. They also assume that LUBA
is repeated or that the fee is returned in case of a tie (thus implying constant payoffs).
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over all strategies is lower the higher is N .12

MATLAB Code

The MATLAB code used to generate the numerical computations above consists of the

two programs below called PoissonLUBAEQ and iter_luba.

function F = PoissonLUBAEQ(W,rho,n,V,f)

p1_in_l = 0;

p1_in_h = 1;

p1_in_diff = 0.1;

p1_diff = p1_in_diff;

p1_in = p1_in_l:p1_in_diff:p1_in_h;

[junk, range] = size(p1_in);

p = ones(V,range);

error = 1;

while error > 1/10^6

p(1,:) = p1_in;

for kkk = 1:(V-1)

p(kkk+1,:) = iter_luba(W, rho, n, V, f, p(kkk,:), kkk);

end

sum_p = nansum(p);

turn_point = 0;

p1_new_l = p1_in(1,1);

p1_new_h = p1_in(1,range);

for i=1:(range-1)

if (sum_p(1,i) < 1) & (sum_p(1,i+1) > 1)

turn_point = i;

p1_new_l = p1_in(1,i);

p1_new_h = p1_in(1,i+1);

end

end
12We have also visually compared the Poisson LUBA equilibrium to the fixed-N computations provided

by Rapoport et al. (2013) and the distributions appear similar. The numerical computations by Eichberger
and Vinogradov (2009) have a different shape compared to the Poisson equilibrium as well as equilibria
reported in other papers. Pigolotti et al. (2012) assume like this paper that the number of bidders is
Poisson distributed. They only provide solutions for the case when V →∞, i.e. the LUPI game, and they
do not prove uniqueness. Visual comparison of their reported equilibrium analysis for the LUPI game in
their Figure 1 and our computations of the corresponding Poisson LUBA equilibrium suggests that the
two cases are practically indistinguishable (which is due to the fact that they only report equilibria with
high-value objects).
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p1_diff = p1_diff*p1_in_diff;

p1_in = p1_new_l:p1_diff:p1_new_h;

error = abs(sum_p(turn_point) - sum_p(turn_point+1));

end

[r,c] = size(p);

F = sum(p,2)/c;

function p_next = iter_luba(W, rho, n, V, f, p, k)

[size_r, size_c] = size(p);

I = ones(size_r, size_c);

np = n*p;

exp_np = exp(np);

exp_np_next = (exp_np - np)*((((W+V-k-1-f)^(1+rho))/(1+rho) - ((W-f)^

(1+rho))/(1+rho)) / (((W+V-k-f)^(1+rho))/(1+rho) - ((W-f)^(1+rho))

/(1+rho)));

np_next = log(exp_np_next);

p_next = np_next / n;

for i = 1:size_c

if p_next(1,i) < 0

p_next(1,i) = NaN;

end

end

Alternative Explanations for LUBA Participation

Utility from Gambling. The possibility that people derive utility from gambling in a way

that is not captured by concerns for total wealth has been suggested by many people,

but rarely been modelled explicitly. One exception is Diecidue et al. (2004).13 Consider

a gamble (µ, ω), where ω ∈ Rn is a vector of monetary outcomes and µ is the vector of
probabilities of the different outcomes. Suppose a subject has initial wealth w ∈ R. So far
we have assume that the subjective utility is equal to expected total wealth; u = w+µ ·ω.
Following Diecidue et al. (2004) we may try to capture the (dis)utility from gambling by

positing a utility function v = u (µ, ω)− c (w) = w+ µ ·ω− c (w), where c (w) is negative

for all relevant w. This model (intentionally) creates a discontinuity in the transition

between risky and riskless alternatives. Once a subject has decided to enter the auction

the term c (w) does not matter and the individual behaves just like a standard risk-neutral

expected payoff maximizer. Thus we obtain the same risk-neutral equilibrium as above.

13For an interesting discussion of the concept, see Conlisk (1993).
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However, before the subject has entered the term c (w) matters. If c (w) is negative the

subject may choose to enter even though the expected monetary payoff is negative.

Non-Belief in the Law of Large Numbers. Kahneman and Tversky (1972) present evidence

that people neglect sample size, and instead seem to believe that sample proportions will

reflect some “universal sampling distribution.” In large samples this means that people

overestimate the probability that empirical distribution deviates from the true distribu-

tion. For example, the event of finding more than 600 boys in a sample of 1000 babies, is

judged to be roughly the same as the probability of the event of finding more than 60 boys

in a sample of 100 babies, even though the latter even is much more likely (given that the

probability of any given baby being a boy is below 0.6). Recently Benjamin et al. (2014)

has dubbed this the non-belief in the law of large numbers (NBLLN), and modelled this

phenomenon in a non-strategic context. Here we suggest another way of thinking about

NBLLN which we think is more suitable for our strategic context.

It might be that non-belief in the law of large numbers causes non-Nash behaviour even

after players have had time to learn and adapt their behaviour.14 However, in our studies

of the LUPI game (Östling et al., 2011 and Mohlin, Östling and Wang, 2014) we find

that aggregate play eventually comes remarkably close the Nash equilibrium. Still players

continue to participate even though the expected monetary payoff of doing so is negative

in the Nash equilibrium. Thus if players are motivated solely by expected monetary

gain their decision to enter a LUBA (or LUPI) must be due to an over-estimation of the

resulting equilibrium payoff, at the time of making the entry decision. A non-believer in

the law of large numbers may fall prey to such an illusion because she predicts that the

equilibrium monetary payoff will be as if there is a smaller number of participants than

there actually is.

14It might also be interesting to model an “equilibrium” p∗ in which everyone best responds given a
correct belief about p∗ and an incorrect belief about n.
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