Raising Capital from Heterogeneous Investors

Marina Halac Ilan Kremer Eyal Winter

May 2019

Introduction

- Firm raises capital from heterogeneous investors to fund project

■ Investors face strategic risk: project succeeds only if enough invest

- Possible outcomes where investors don't invest, expecting others won't

Introduction

- Firm raises capital from heterogeneous investors to fund project

■ Investors face strategic risk: project succeeds only if enough invest

- Possible outcomes where investors don't invest, expecting others won't

■ This paper: What is optimal mechanism that guarantees investment?

- Compensate for strategic risk, which depends on amount invested
- How does heterogeneity in investor size affect scheme and payoffs?
- Does firm offer differential returns based on size? Who is favored?

Example (1)

■ Firm's project succeeds if capital raised exceeds $I \sim U[0,30]$

- Success yields additional surplus
- Agent 1 has 10 units of capital, agent 2 has 20 units
- Outside option is safe asset with net return of 10%

Example (1)

■ Firm's project succeeds if capital raised exceeds $I \sim U[0,30]$

- Success yields additional surplus
- Agent 1 has 10 units of capital, agent 2 has 20 units
- Outside option is safe asset with net return of 10%

■ Firm wants to guarantee full investment; offers returns under success

- If offer 10%, full-investment NE at minimum cost, but also other NE
- Optimal scheme makes investment dominant for one of the agents

Example (2)

- Suppose firm makes investment dominant for agent 1
- Must offer agent 1 net return (slightly above) r satisfying $\frac{r}{3}=10 \%$
- Then offer 10% to agent 2 . Cost is $10(30 \%)+20(10 \%)=5$

Example (2)

■ Suppose firm makes investment dominant for agent 1

- Must offer agent 1 net return (slightly above) r satisfying $\frac{r}{3}=10 \%$
- Then offer 10% to agent 2 . Cost is $10(30 \%)+20(10 \%)=5$

■ Firm's cost is lower if investment is made dominant for agent 2

- Must offer agent 2 net return (slightly above) r satisfying $\frac{2 r}{3}=10 \%$
- Then offer 10% to agent 1 . Cost is $10(10 \%)+20(15 \%)=4$

Example (2)

■ Suppose firm makes investment dominant for agent 1

- Must offer agent 1 net return (slightly above) r satisfying $\frac{r}{3}=10 \%$
- Then offer 10% to agent 2 . Cost is $10(30 \%)+20(10 \%)=5$

■ Firm's cost is lower if investment is made dominant for agent 2

- Must offer agent 2 net return (slightly above) r satisfying $\frac{2 r}{3}=10 \%$
- Then offer 10% to agent 1 . Cost is $10(10 \%)+20(15 \%)=4$

■ Result: Larger investor receives higher net return than smaller investor

Example (3)

■ Suppose we now transfer 4 units of capital from agent 1 to agent 2

- Firm offers net return of 12.5% to agent 2 and 10% to agent 1
- Cost is $6(10 \%)+24(12.5 \%)=3.6$

Example (3)

- Suppose we now transfer 4 units of capital from agent 1 to agent 2
- Firm offers net return of 12.5% to agent 2 and 10% to agent 1
- Cost is $6(10 \%)+24(12.5 \%)=3.6$
- Result: Firm benefits from dispersion in investor size

■ Result: Dispersion reduces range of net returns

Example (3)

- Suppose we now transfer 4 units of capital from agent 1 to agent 2
- Firm offers net return of 12.5% to agent 2 and 10% to agent 1
- Cost is $6(10 \%)+24(12.5 \%)=3.6$

■ Result: Firm benefits from dispersion in investor size
■ Result: Dispersion reduces range of net returns

What we do: General setting. Identify condition under which results hold

- Condition on distribution of threshold I; implied by log-concavity

Literature

- Contracting with externalities
- Segal (1999, 2003), Winter (2004), Bernstein-Winter (2012)
- Departure: Endogenous externalities, heterogeneity
- Prior results on discrimination, exogenous heterogeneous externalities
- Segal (2003), Winter (2004). Inostroza-Pavan (2017) on persuasion
- Bernstein-Winter (2012). Sákovics-Steiner (2012) in global game

■ Broader literature on capital raising and coordination

Setup

■ Firm owns project that requires capital to be implemented/ "succeed"

- Required capital is uncertain: distributed over $[0, \bar{I}]$ with $\operatorname{cdf} F$
- Success yields fixed additional surplus $A>0$

Setup

■ Firm owns project that requires capital to be implemented/ "succeed"

- Required capital is uncertain: distributed over $[0, \bar{I}]$ with $\operatorname{cdf} F$
- Success yields fixed additional surplus $A>0$

■ Set of $N>1$ agents. Agent $n \in S=\{1, \ldots, N\}$ has endowment \bar{x}_{n}

Setup

- Firm owns project that requires capital to be implemented/"succeed"
- Required capital is uncertain: distributed over $[0, \bar{I}]$ with $\operatorname{cdf} F$
- Success yields fixed additional surplus $A>0$

■ Set of $N>1$ agents. Agent $n \in S=\{1, \ldots, N\}$ has endowment \bar{x}_{n}

■ Firm proposes compensation contract to each agent

- Agents decide simultaneously if invest or take safe asset return $\theta>0$
- Firm wants to guarantee unique NE outcome

Contracts

■ For each n, net returns $\left(r_{n}, k_{n}\right)$ conditional on investment $x_{n} \in\left[0, \bar{x}_{n}\right]$

- r_{n} if success; k_{n} if failure

Contracts

■ For each n, net returns $\left(r_{n}, k_{n}\right)$ conditional on investment $x_{n} \in\left[0, \bar{x}_{n}\right]$ - r_{n} if success; k_{n} if failure

■ Denote n 's decision by $y_{n} \in\{0,1\}$. Firm's budget constraint (BC) is

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq A \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq 0 \quad \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)
$$

Contracts

■ For each n, net returns $\left(r_{n}, k_{n}\right)$ conditional on investment $x_{n} \in\left[0, \bar{x}_{n}\right]$ - r_{n} if success; k_{n} if failure

■ Denote n 's decision by $y_{n} \in\{0,1\}$. Firm's budget constraint (BC) is

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq A \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq 0 \quad \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)
$$

- Analyze firm's problem in two steps:
(i) for fixed $\left(x_{n}\right)_{n \in S}$, find optimal $\left(r_{n}, k_{n}\right)_{n \in S}$ guaranteeing these investments
(ii) given (i), find optimal $\left(x_{n}\right)_{n \in S}$ with $x_{n} \in\left[0, \bar{x}_{n}\right]$ for each n

Firm's problem: Step (i)

■ Find least-cost $\left(r_{n}, k_{n}\right)_{n \in S}$ s.t. investments $\left(x_{n}\right)_{n \in S}$ are unique NE

- Since open set, require unique NE when each r_{n} increased by any $\varepsilon>0$

Firm's problem: Step (i)

■ Find least-cost $\left(r_{n}, k_{n}\right)_{n \in S}$ s.t. investments $\left(x_{n}\right)_{n \in S}$ are unique NE

- Since open set, require unique NE when each r_{n} increased by any $\varepsilon>0$
- Let E be set of NE profiles given $\left(r_{n}, k_{n}\right)_{n \in S}$. Two conditions:
(C1) $\mathcal{Y}^{1} \equiv(1, \ldots, 1) \in E$
(C2) $\mathcal{Y} \in E, \mathcal{Y} \neq \mathcal{Y}^{1} \Longrightarrow \exists n: y_{n}=0, U_{n}\left(1, \mathcal{Y}_{-n}\right)=U_{n}\left(0, \mathcal{Y}_{-n}\right)$

Firm's problem: Step (i)

■ Find least-cost $\left(r_{n}, k_{n}\right)_{n \in S}$ s.t. investments $\left(x_{n}\right)_{n \in S}$ are unique NE

- Since open set, require unique NE when each r_{n} increased by any $\varepsilon>0$
- Let E be set of NE profiles given $\left(r_{n}, k_{n}\right)_{n \in S}$. Two conditions:
(C1) $\mathcal{Y}^{1} \equiv(1, \ldots, 1) \in E$
(C2) $\mathcal{Y} \in E, \mathcal{Y} \neq \mathcal{Y}^{1} \Longrightarrow \exists n: y_{n}=0, U_{n}\left(1, \mathcal{Y}_{-n}\right)=U_{n}\left(0, \mathcal{Y}_{-n}\right)$
- Let $X_{N} \equiv \sum_{n=1}^{N} x_{n}$. Optimal scheme guaranteeing $\left(x_{n}\right)_{n \in S}$ solves:

$$
\begin{aligned}
& \max _{\left(r_{n}, k_{n}\right)_{n \in S}} V=\left(A-\sum_{n=1}^{N} r_{n} x_{n}\right) F\left(X_{N}\right)-\sum_{n=1}^{N} k_{n} x_{n}\left(1-F\left(X_{N}\right)\right) \\
& \text { subject to (BC), (C1), and (C2) }
\end{aligned}
$$

Discussion of assumptions

■ Firm cannot coordinate agents to its preferred equilibrium

- Consistent with experiments (e.g. Devetag-Ortmann 2007)
- Agents make choices simultaneously
- Extends to sequential moves under solution concepts used in literature
- Firm relies on contracts that are bilateral and simple
- Simple excludes menus. Without loss if indivisibilities or condition holds

■ Budget constraint on and off path

- Without loss given focus on unique implementation

Characterizing the optimal return schedule

Lemma
(C1)-(C2) $\Longleftrightarrow \exists$ permutation $\pi=\left(n_{1}, \ldots, n_{N}\right)$ of set of agents s.t., for each i, n_{i} is willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest

Characterizing the optimal return schedule

Lemma
(C1)-(C2) $\Longleftrightarrow \exists$ permutation $\pi=\left(n_{1}, \ldots, n_{N}\right)$ of set of agents s.t., for each i, n_{i} is willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest
$(\Rightarrow) \circ \mathrm{By}(\mathrm{C} 2), \exists n_{1}$ willing to invest if noone does; by (C1), n_{1} willing if all do

- Hence, n_{1} willing to invest no matter what others do
- Induction shows n_{i} willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest

Characterizing the optimal return schedule

Lemma
(C1)-(C2) $\Longleftrightarrow \exists$ permutation $\pi=\left(n_{1}, \ldots, n_{N}\right)$ of set of agents s.t., for each i, n_{i} is willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest
$(\Rightarrow) \circ \mathrm{By}(\mathrm{C} 2), \exists n_{1}$ willing to invest if noone does; by (C1), n_{1} willing if all do

- Hence, n_{1} willing to invest no matter what others do
- Induction shows n_{i} willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest

■ Optimal schedule specifies $\pi=\left(n_{1}, \ldots, n_{N}\right)$ and $\left(r_{i}, k_{i}\right)$ for each n_{i}

- First characterize $\left(r_{i}^{*}, k_{i}^{*}\right)_{i \in S}$ and then solve for $\pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$

Optimal returns

■ Given $\pi=\left(n_{1}, \ldots, n_{N}\right)$, let $X_{i} \equiv \sum_{j=1}^{i} x_{n_{j}}$

Proposition

Optimal schedule specifies permutation π and $\left(r_{i}^{*}, k_{i}^{*}\right)_{i \in S}$ s.t., for each i,

- n_{i} is indifferent over investing if $\left(n_{1}, \ldots, n_{i-1}\right)$ invest and others don't
- Returns satisfy

$$
r_{i}^{*}=\frac{\theta}{F\left(X_{i}\right)} \quad \text { and } \quad k_{i}^{*}=0
$$

Sketch of proof (1)

■ By Lemma, $\exists \pi$ and $\left(r_{i}^{*}, k_{i}^{*}\right)$ s.t. $\forall i \in S$ and $\forall j \in\{i, \ldots, N\}$,

$$
r_{i}^{*} F\left(X_{j}\right)+k_{i}^{*}\left(1-F\left(X_{j}\right)\right) \geq \theta
$$

Sketch of proof (1)

■ By Lemma, $\exists \pi$ and $\left(r_{i}^{*}, k_{i}^{*}\right)$ s.t. $\forall i \in S$ and $\forall j \in\{i, \ldots, N\}$,

$$
r_{i}^{*} F\left(X_{j}\right)+k_{i}^{*}\left(1-F\left(X_{j}\right)\right) \geq \theta
$$

- By BC and $\theta>0$, schedule must set $\forall i$

$$
r_{i}^{*}>0 \geq k_{i}^{*}
$$

Sketch of proof (1)

■ By Lemma, $\exists \pi$ and $\left(r_{i}^{*}, k_{i}^{*}\right)$ s.t. $\forall i \in S$ and $\forall j \in\{i, \ldots, N\}$,

$$
r_{i}^{*} F\left(X_{j}\right)+k_{i}^{*}\left(1-F\left(X_{j}\right)\right) \geq \theta
$$

- By BC and $\theta>0$, schedule must set $\forall i$

$$
r_{i}^{*}>0 \geq k_{i}^{*} \rightarrow \text { strategic complementarities (SC) }
$$

Sketch of proof (1)

■ By Lemma, $\exists \pi$ and $\left(r_{i}^{*}, k_{i}^{*}\right)$ s.t. $\forall i \in S$ and $\forall j \in\{i, \ldots, N\}$,

$$
r_{i}^{*} F\left(X_{j}\right)+k_{i}^{*}\left(1-F\left(X_{j}\right)\right) \geq \theta
$$

- By BC and $\theta>0$, schedule must set $\forall i$

$$
r_{i}^{*}>0 \geq k_{i}^{*} \rightarrow \text { strategic complementarities (SC) }
$$

■ Thus, optimal scheme is "divide and conquer":

$$
r_{i}^{*} F\left(X_{i}\right)+k_{i}^{*}\left(1-F\left(X_{i}\right)\right)=\theta \quad \forall i \in S
$$

Sketch of proof (2)

- Given $r_{i}^{*} F\left(X_{i}\right)+k_{i}^{*}\left(1-F\left(X_{i}\right)\right)=\theta$, set $k_{i}^{*}=0, r_{i}^{*}=\frac{\theta}{F\left(X_{i}\right)}$
- If $k_{i}<0, \uparrow k_{i}$ by small $\varepsilon>0$ and $\downarrow r_{i}$ by $\varepsilon \eta_{i}$ for $\eta_{i} \equiv \frac{1-F\left(X_{i}\right)}{F\left(X_{i}\right)}$
- Incentives are preserved
- Firm's payoff V changes by $\varepsilon \frac{\left(F\left(X_{N}\right)-F\left(X_{i}\right)\right)}{F\left(X_{i}\right)} \geq 0$

Sketch of proof (2)

■ Given $r_{i}^{*} F\left(X_{i}\right)+k_{i}^{*}\left(1-F\left(X_{i}\right)\right)=\theta$, set $k_{i}^{*}=0, r_{i}^{*}=\frac{\theta}{F\left(X_{i}\right)}$

- If $k_{i}<0, \uparrow k_{i}$ by small $\varepsilon>0$ and $\downarrow r_{i}$ by $\varepsilon \eta_{i}$ for $\eta_{i} \equiv \frac{1-F\left(X_{i}\right)}{F\left(X_{i}\right)}$
- Incentives are preserved
- Firm's payoff V changes by $\varepsilon \frac{\left(F\left(X_{N}\right)-F\left(X_{i}\right)\right)}{F\left(X_{i}\right)} \geq 0$

■ Intuition: firm conditions on all investing, n_{i} on only $\left(n_{1}, \ldots, n_{i}\right)$

- Hence, firm values r_{i} relative to k_{i} more than n_{i}

Sketch of proof (2)

■ Given $r_{i}^{*} F\left(X_{i}\right)+k_{i}^{*}\left(1-F\left(X_{i}\right)\right)=\theta$, set $k_{i}^{*}=0, r_{i}^{*}=\frac{\theta}{F\left(X_{i}\right)}$

- If $k_{i}<0, \uparrow k_{i}$ by small $\varepsilon>0$ and $\downarrow r_{i}$ by $\varepsilon \eta_{i}$ for $\eta_{i} \equiv \frac{1-F\left(X_{i}\right)}{F\left(X_{i}\right)}$
- Incentives are preserved
- Firm's payoff V changes by $\varepsilon \frac{\left(F\left(X_{N}\right)-F\left(X_{i}\right)\right)}{F\left(X_{i}\right)} \geq 0$
- Intuition: firm conditions on all investing, n_{i} on only $\left(n_{1}, \ldots, n_{i}\right)$
- Hence, firm values r_{i} relative to k_{i} more than n_{i}

Remark

Optimal scheme yields unique rationalizable outcome

Finding the optimal permutation

- $\left(r_{i}^{*}, k_{i}^{*}\right)_{i \in S}$ maximally relaxes BC. Firm can thus guarantee $\left(x_{n}\right)_{n \in S}$ iff

$$
A \geq \sum_{i=1}^{N} \frac{\theta}{F\left(X_{i}\right)} x_{n_{i}} \text { for some } \pi
$$

Finding the optimal permutation

- $\left(r_{i}^{*}, k_{i}^{*}\right)_{i \in S}$ maximally relaxes BC. Firm can thus guarantee $\left(x_{n}\right)_{n \in S}$ iff

$$
A \geq \sum_{i=1}^{N} \frac{\theta}{F\left(X_{i}\right)} x_{n_{i}} \text { for some } \pi
$$

- Firm's payoff is

$$
V=\left(A-\theta \sum_{i=1}^{N} \frac{x_{n_{i}}}{F\left(X_{i}\right)}\right) F\left(X_{N}\right)
$$

■ Optimal permutation π^{*} minimizes firm's costs under success:

$$
\theta \sum_{i=1}^{N} \frac{x_{n_{i}}}{F\left(X_{i}\right)}
$$

Optimal permutation

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$
For any investments $\left(x_{n}\right)_{n \in S}$ with $X_{N} \leq X, \pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$ satisfies

$$
x_{n_{1}^{*}} \geq \ldots \geq x_{n_{N}^{*}}
$$

Hence, larger investors receive higher net returns than smaller investors

Optimal permutation

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$
For any investments $\left(x_{n}\right)_{n \in S}$ with $X_{N} \leq X, \pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$ satisfies

$$
x_{n_{1}^{*}} \geq \ldots \geq x_{n_{N}^{*}}
$$

Hence, larger investors receive higher net returns than smaller investors

Remark

$F(x)$ log-concave $\Longrightarrow 1 / F(x)$ convex
■ Most commonly used distributions are log-concave

Example

■ F uniform over $[0,30], \theta=10 \%,\left(x_{1}, x_{2}\right)=(10,20)$

- Optimal permutation is $\pi^{*}=(2,1)$

Intuition

■ Agent n_{i} paid on marginal unit invested: $r_{i}^{*}=\theta / F\left(X_{i}\right)$

- Thus, if $1 / F(x)$ is convex, decreasing order minimizes costs
- I.e., optimal to move down the return curve $\theta / F\left(X_{i}\right)$ "quickly"
- Intuitively, large x_{n} self-insures agent, reduces required risk premium
- Place large x_{n} when risk premium drops most sharply with investment

Intuition

■ Agent n_{i} paid on marginal unit invested: $r_{i}^{*}=\theta / F\left(X_{i}\right)$

- Thus, if $1 / F(x)$ is convex, decreasing order minimizes costs
- I.e., optimal to move down the return curve $\theta / F\left(X_{i}\right)$ "quickly"
- Intuitively, large x_{n} self-insures agent, reduces required risk premium
- Place large x_{n} when risk premium drops most sharply with investment

Remark

$1 / F(x)$ convex (over range) not only sufficient but also necessary for result

Characterizing the optimal investments

- So far $\left(x_{n}\right)_{n \in S}$ as given. What are the optimal capital amounts?

Characterizing the optimal investments

- So far $\left(x_{n}\right)_{n \in S}$ as given. What are the optimal capital amounts?

Definition

For two N-vectors \mathbf{x} and $\widehat{\mathbf{x}}, \widehat{\mathbf{x}}$ majorizes \mathbf{x} if

- components of $\widehat{\mathrm{x}}$ and x have same total sum, and
- $\forall m$, sum of m smallest components is weakly smaller in $\widehat{\mathbf{x}}$ than in \mathbf{x}

Optimal investments

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$. Take investments $\left(x_{n}\right)_{n \in S}, X_{N} \leq X$
Let investments $\left(\widehat{x}_{n}\right)_{n \in S}$ majorize $\left(x_{n}\right)_{n \in S}$
Firm's expected payoff under $\left(\widehat{x}_{n}\right)_{n \in S}$ is higher than that under $\left(x_{n}\right)_{n \in S}$

Optimal investments

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$. Take investments $\left(x_{n}\right)_{n \in S}, X_{N} \leq X$
Let investments $\left(\widehat{x}_{n}\right)_{n \in S}$ majorize $\left(x_{n}\right)_{n \in S}$
Firm's expected payoff under $\left(\widehat{x}_{n}\right)_{n \in S}$ is higher than that under $\left(x_{n}\right)_{n \in S}$

Corollary

Given $\left(\bar{x}_{n}\right)_{n \in S}$, firm raises capital from agents with largest endowments

- If $X_{N}<\bar{X}_{N}$, not only preferential returns but also preferential access

Example

- If $\left(x_{1}, x_{2}, x_{3}\right)=(10,10,10)$, cost is $10(30 \%+15 \%+10 \%)=5.5$

■ If $\left(x_{1}, x_{2}, x_{3}\right)=(10,20,0)$, cost is 4 . Further reduce w/transfer $1 \rightarrow 2$

Intuition

- Aggregating capital of subset reduces strategic uncertainty
- Self-insurance: single agent knows she will invest the whole amount

■ More generally, derive $\left(\widehat{x}_{n}\right)_{n}$ from $\left(x_{n}\right)_{n}$ by finite sequence of transfers

- From small to large (Hardy-Littlewood-Polya 1934)
- We show any such transfer lowers firm's costs
- Move down return curve $\theta / F\left(X_{i}\right)$ "more quickly" given original π^{*}
- Changing to optimal π^{*} can only raise firm's payoff further

Distribution of returns

■ Given $\pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$, range of net returns is $F\left(X_{N}\right)\left(r_{1}^{*}-r_{N}^{*}\right)$

Distribution of returns

■ Given $\pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$, range of net returns is $F\left(X_{N}\right)\left(r_{1}^{*}-r_{N}^{*}\right)$

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$. Take investments $\left(x_{n}\right)_{n \in S}, X_{N} \leq X$
Let investments $\left(\widehat{x}_{n}\right)_{n \in S}$ majorize $\left(x_{n}\right)_{n \in S}$
Range of net returns under $\left(\widehat{x}_{n}\right)_{n \in S}$ is smaller than that under $\left(x_{n}\right)_{n \in S}$

Distribution of returns

■ Given $\pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$, range of net returns is $F\left(X_{N}\right)\left(r_{1}^{*}-r_{N}^{*}\right)$

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$. Take investments $\left(x_{n}\right)_{n \in S}, X_{N} \leq X$
Let investments $\left(\widehat{x}_{n}\right)_{n \in S}$ majorize $\left(x_{n}\right)_{n \in S}$
Range of net returns under $\left(\widehat{x}_{n}\right)_{n \in S}$ is smaller than that under $\left(x_{n}\right)_{n \in S}$

- Dispersion lowers largest investor's return; keeps smallest unchanged
- As a result, range of final capital can decrease with dispersion

Discussion of results

■ Differential net returns: larger investors get more per unit invested

- Consistent with evidence from private equity
- Suggests "winner-takes-all dynamics": large investors become larger

■ Distribution of capital: larger investments from wealthier investors

- Dispersion in investor size increases firm's payoff
- Dispersion thus also increases feasibility of investment
- Return advantage of large investors depends on capital distribution
- Scheme is less discriminatory when investments are more unequal
- To the extent that final capital may become more equal with dispersion

Firm's initial capital (1)

- Suppose firm has capital $W>0$, with $W<\theta X_{N}$
- $\mathbf{B C}: \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$,

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq W+A \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq W
$$

Firm's initial capital (1)

■ Suppose firm has capital $W>0$, with $W<\theta X_{N}$

- $\mathbf{B C}: \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$,

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq W+A \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq W
$$

■ By Lemma: n_{i} willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest

Firm's initial capital (1)

■ Suppose firm has capital $W>0$, with $W<\theta X_{N}$

- $\mathbf{B C}: \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$,

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq W+A \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq W
$$

■ By Lemma: n_{i} willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest
■ Firm can induce strategic substitutability.

Firm's initial capital (1)

■ Suppose firm has capital $W>0$, with $W<\theta X_{N}$

- $\mathbf{B C}: \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$,

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq W+A \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq W
$$

■ By Lemma: n_{i} willing to invest if $\left(n_{1}, \ldots, n_{i-1}\right)$ do, no matter rest

- Firm can induce strategic substitutability. Show $r_{i} \geq k_{i} \forall i$ is optimal
- If $k_{i}>r_{i}$ for some i, then by $\mathrm{BC} k_{j}<r_{j}$ for some $j \neq i$
- n_{i} indifferent when all others invest; n_{j} when only $\left(n_{1}, \ldots, n_{j-1}\right)$ do
- Perturbation with $\downarrow k_{i}, \uparrow r_{i}, \uparrow k_{j}, \downarrow r_{j}$ (weakly) increases firm's payoff

Firm's initial capital (2)

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$. Take $\left(x_{n}\right)_{n \in S}, W+X_{N} \leq X$

- $\pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$ satisfies $x_{n_{1}^{*}} \geq \ldots \geq x_{n_{N}^{*}}$
- $\left(r_{i}^{*}, k_{i}^{*}\right)_{i \in S}$ satisfy

$$
k_{i}^{*}=\frac{\min \left\{\theta x_{n_{i}^{*}}, W_{i}\right\}}{x_{n_{i}^{*}}} \text { and } r_{i}^{*}=\frac{\theta-k_{i}^{*}\left(1-F\left(W+X_{i}\right)\right)}{F\left(W+X_{i}\right)}
$$

where $W_{N} \equiv W, W_{i} \equiv \max \left\{W-\sum_{j=i+1}^{N} k_{j}^{*} x_{n_{j}^{*}}, 0\right\}$ for $i \in\{1, \ldots, N-1\}$

Firm's initial capital (2)

Proposition

Suppose $1 / F(x)$ convex over $[0, X]$. Take $\left(x_{n}\right)_{n \in S}, W+X_{N} \leq X$

- $\pi^{*}=\left(n_{1}^{*}, \ldots, n_{N}^{*}\right)$ satisfies $x_{n_{1}^{*}} \geq \ldots \geq x_{n_{N}^{*}}$
- $\left(r_{i}^{*}, k_{i}^{*}\right)_{i \in S}$ satisfy

$$
k_{i}^{*}=\frac{\min \left\{\theta x_{n_{i}^{*}}, W_{i}\right\}}{x_{n_{i}^{*}}} \text { and } r_{i}^{*}=\frac{\theta-k_{i}^{*}\left(1-F\left(W+X_{i}\right)\right)}{F\left(W+X_{i}\right)}
$$

where $W_{N} \equiv W, W_{i} \equiv \max \left\{W-\sum_{j=i+1}^{N} k_{j}^{*} x_{n_{j}^{*}}, 0\right\}$ for $i \in\{1, \ldots, N-1\}$

- Benchmark results extend, plus predictions on risk profile
- Smallest investors fully insured, until W depleted
- Then order investors in decreasing size order

Proportional surplus

■ Suppose project success yields surplus $R x$ if x invested, for $R>0$

- $\mathrm{BC}: \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$,

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq \sum_{n=1}^{N} R y_{n} x_{n} \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq 0
$$

Proportional surplus

■ Suppose project success yields surplus $R x$ if x invested, for $R>0$

- $\mathrm{BC}: \forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$,

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq \sum_{n=1}^{N} R y_{n} x_{n} \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq 0
$$

■ Problem with fixed surplus $A_{R} \equiv R X_{N}$ is relaxed version

- BC with proportional surplus adds restriction: $\max _{n \in S} r_{n} \leq R$

Proportional surplus

■ Suppose project success yields surplus $R x$ if x invested, for $R>0$

- BC: $\forall \mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$,

$$
\sum_{n=1}^{N} r_{n} y_{n} x_{n} \leq \sum_{n=1}^{N} R y_{n} x_{n} \quad \text { and } \quad \sum_{n=1}^{N} k_{n} y_{n} x_{n} \leq 0
$$

■ Problem with fixed surplus $A_{R} \equiv R X_{N}$ is relaxed version

- BC with proportional surplus adds restriction: $\max _{n \in S} r_{n} \leq R$

■ Benchmark results extend. Can guarantee $\left(x_{n}\right)_{n \in S}$ iff $r_{n_{1}}^{*} \leq R$

- Solution to relaxed problem minimizes highest return given constraints

Concluding remarks

■ Capital raising for new projects must address strategic risk

- We characterize firm's optimal unique-implementation scheme
- Broad insight: strategic risk may be a driver of inequality
- Profit-max mechanism favors certain agents to lower risk on others
- Under condition, favorable terms to those already in favorable position
- Further applications
- Monopolist offers exclusive contracts to buyers w/different demand size
- Firm offers rewards to team of workers with different ability
- Bank offers collateral and interest to depositors of different size

Thank you!

