### Raising Capital from Heterogeneous Investors

#### Marina Halac Ilan Kremer Eyal Winter

May 2019

### Introduction

- Firm raises capital from heterogeneous investors to fund project
- Investors face strategic risk: project succeeds only if enough invest
  - Possible outcomes where investors don't invest, expecting others won't

### Introduction

- Firm raises capital from heterogeneous investors to fund project
- Investors face strategic risk: project succeeds only if enough invest
  - · Possible outcomes where investors don't invest, expecting others won't
- This paper: What is optimal mechanism that guarantees investment?
  - Compensate for strategic risk, which depends on amount invested
  - How does heterogeneity in investor size affect scheme and payoffs?
  - Does firm offer differential returns based on size? Who is favored?



- $\blacksquare$  Firm's project succeeds if capital raised exceeds  $I \sim U[0,30]$ 
  - Success yields additional surplus
- Agent 1 has 10 units of capital, agent 2 has 20 units
  - Outside option is safe asset with net return of 10%



- Firm's project succeeds if capital raised exceeds  $I \sim U[0,30]$ 
  - Success yields additional surplus
- Agent 1 has 10 units of capital, agent 2 has 20 units
  - Outside option is safe asset with net return of 10%
- Firm wants to guarantee full investment; offers returns under success
  - If offer 10%, full-investment NE at minimum cost, but also other NE
  - Optimal scheme makes investment dominant for one of the agents



Suppose firm makes investment dominant for agent 1

- Must offer agent 1 net return (slightly above) r satisfying  $\frac{r}{3} = 10\%$
- Then offer 10% to agent 2. Cost is 10(30%)+20(10%)=5



Suppose firm makes investment dominant for agent 1

- Must offer agent 1 net return (slightly above) r satisfying  $\frac{r}{3} = 10\%$
- Then offer 10% to agent 2. Cost is 10(30%) + 20(10%) = 5

Firm's cost is lower if investment is made dominant for agent 2

- Must offer agent 2 net return (slightly above) r satisfying  $\frac{2r}{3} = 10\%$
- Then offer 10% to agent 1. Cost is 10(10%) + 20(15%) = 4



Suppose firm makes investment dominant for agent 1

- Must offer agent 1 net return (slightly above) r satisfying  $\frac{r}{3} = 10\%$
- Then offer 10% to agent 2. Cost is 10(30%) + 20(10%) = 5

Firm's cost is lower if investment is made dominant for agent 2

- Must offer agent 2 net return (slightly above) r satisfying  $\frac{2r}{3} = 10\%$
- Then offer 10% to agent 1. Cost is 10(10%) + 20(15%) = 4

Result: Larger investor receives higher net return than smaller investor

# Example (3)

Suppose we now transfer 4 units of capital from agent 1 to agent 2

- Firm offers net return of 12.5% to agent 2 and 10% to agent 1
- Cost is 6(10%) + 24(12.5%) = 3.6

# Example (3)

Suppose we now transfer 4 units of capital from agent 1 to agent 2

- Firm offers net return of 12.5% to agent 2 and 10% to agent 1
- Cost is 6(10%) + 24(12.5%) = 3.6
- Result: Firm benefits from dispersion in investor size
- Result: Dispersion reduces range of net returns

# Example (3)

Suppose we now transfer 4 units of capital from agent 1 to agent 2

- Firm offers net return of 12.5% to agent 2 and 10% to agent 1
- Cost is 6(10%) + 24(12.5%) = 3.6
- Result: Firm benefits from dispersion in investor size
- Result: Dispersion reduces range of net returns

What we do: General setting. Identify condition under which results hold

• Condition on distribution of threshold I; implied by log-concavity

### Literature

- Contracting with externalities
  - Segal (1999, 2003), Winter (2004), Bernstein-Winter (2012)
  - Departure: Endogenous externalities, heterogeneity
- Prior results on discrimination, exogenous heterogeneous externalities
  - Segal (2003), Winter (2004). Inostroza-Pavan (2017) on persuasion
  - Bernstein-Winter (2012). Sákovics-Steiner (2012) in global game
- Broader literature on capital raising and coordination

## Setup

Firm owns project that requires capital to be implemented/"succeed"

- Required capital is uncertain: distributed over  $[0,\overline{I}]$  with cdf F
- Success yields fixed additional surplus A > 0

### Setup

Firm owns project that requires capital to be implemented/"succeed"

- Required capital is uncertain: distributed over  $[0,\overline{I}]$  with cdf F
- Success yields fixed additional surplus A > 0

• Set of N>1 agents. Agent  $n\in S=\{1,\ldots,N\}$  has endowment  $\overline{x}_n$ 

## Setup

Firm owns project that requires capital to be implemented/"succeed"

- Required capital is uncertain: distributed over  $[0,\overline{I}]$  with cdf F
- Success yields fixed additional surplus A > 0

• Set of N>1 agents. Agent  $n\in S=\{1,\ldots,N\}$  has endowment  $\overline{x}_n$ 

- Firm proposes compensation contract to each agent
  - Agents decide simultaneously if invest or take safe asset return  $\theta > 0$
  - Firm wants to guarantee unique NE outcome

### Contracts

For each n, net returns  $(r_n,k_n)$  conditional on investment  $x_n\in[0,\overline{x}_n]$ 

•  $r_n$  if success;  $k_n$  if failure

### Contracts

- For each n, net returns (r<sub>n</sub>, k<sub>n</sub>) conditional on investment x<sub>n</sub> ∈ [0, x̄<sub>n</sub>]
   r<sub>n</sub> if success; k<sub>n</sub> if failure
- Denote n's decision by  $y_n \in \{0,1\}$ . Firm's budget constraint (BC) is

$$\sum_{n=1}^{N} r_n y_n x_n \leq A \quad \text{and} \quad \sum_{n=1}^{N} k_n y_n x_n \leq 0 \quad \forall \mathcal{Y} = (y_1, \dots, y_N)$$

### Contracts

- For each n, net returns (r<sub>n</sub>, k<sub>n</sub>) conditional on investment x<sub>n</sub> ∈ [0, x̄<sub>n</sub>]
   r<sub>n</sub> if success; k<sub>n</sub> if failure
- Denote n's decision by  $y_n \in \{0,1\}$ . Firm's budget constraint (BC) is

$$\sum_{n=1}^N r_n y_n x_n \leq A \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \leq 0 \quad \forall \mathcal{Y} = (y_1, \dots, y_N)$$

- Analyze firm's problem in two steps:
- (i) for fixed  $(x_n)_{n\in S}$ , find optimal  $(r_n,k_n)_{n\in S}$  guaranteeing these investments
- (ii) given (i), find optimal  $(x_n)_{n\in S}$  with  $x_n \in [0, \overline{x}_n]$  for each n

# Firm's problem: Step (i)

- Find least-cost  $(r_n, k_n)_{n \in S}$  s.t. investments  $(x_n)_{n \in S}$  are unique NE
  - Since open set, require unique NE when each  $r_n$  increased by any  $\varepsilon > 0$

# Firm's problem: Step (i)

- Find least-cost  $(r_n, k_n)_{n \in S}$  s.t. investments  $(x_n)_{n \in S}$  are unique NE
  - Since open set, require unique NE when each  $r_n$  increased by any  $\varepsilon > 0$
- Let E be set of NE profiles given  $(r_n, k_n)_{n \in S}$ . Two conditions: (C1)  $\mathcal{Y}^1 \equiv (1, \dots, 1) \in E$ (C2)  $\mathcal{Y} \in E, \mathcal{Y} \neq \mathcal{Y}^1 \implies \exists n : y_n = 0, \ U_n(1, \mathcal{Y}_{-n}) = U_n(0, \mathcal{Y}_{-n})$

# Firm's problem: Step (i)

- Find least-cost  $(r_n, k_n)_{n \in S}$  s.t. investments  $(x_n)_{n \in S}$  are unique NE
  - Since open set, require unique NE when each  $r_n$  increased by any  $\varepsilon > 0$
- Let E be set of NE profiles given  $(r_n, k_n)_{n \in S}$ . Two conditions: (C1)  $\mathcal{Y}^1 \equiv (1, \dots, 1) \in E$ (C2)  $\mathcal{Y} \in E, \mathcal{Y} \neq \mathcal{Y}^1 \implies \exists n : y_n = 0, \ U_n(1, \mathcal{Y}_{-n}) = U_n(0, \mathcal{Y}_{-n})$

• Let  $X_N \equiv \sum_{n=1}^N x_n$ . Optimal scheme guaranteeing  $(x_n)_{n \in S}$  solves:

$$\max_{(r_n,k_n)_{n\in S}} V = \left(A - \sum_{n=1}^N r_n x_n\right) F(X_N) - \sum_{n=1}^N k_n x_n \left(1 - F(X_N)\right)$$

subject to (BC), (C1), and (C2)

### Discussion of assumptions

Firm cannot coordinate agents to its preferred equilibrium

- Consistent with experiments (e.g. Devetag-Ortmann 2007)
- Agents make choices simultaneously
  - Extends to sequential moves under solution concepts used in literature
- Firm relies on contracts that are bilateral and simple
  - Simple excludes menus. Without loss if indivisibilities or condition holds
- Budget constraint on and off path
  - Without loss given focus on unique implementation

Characterizing the optimal return schedule

#### Lemma

(C1)-(C2)  $\iff \exists \text{ permutation } \pi = (n_1, \dots, n_N) \text{ of set of agents s.t., for each } i, n_i \text{ is willing to invest if } (n_1, \dots, n_{i-1}) \text{ do, no matter rest}$ 

### Characterizing the optimal return schedule

#### Lemma

(C1)-(C2)  $\iff \exists \text{ permutation } \pi = (n_1, \dots, n_N) \text{ of set of agents s.t., for each } i, n_i \text{ is willing to invest if } (n_1, \dots, n_{i-1}) \text{ do, no matter rest}$ 

(⇒)  $\circ$  By (C2),  $\exists n_1$  willing to invest if noone does; by (C1),  $n_1$  willing if all do  $\circ$  Hence,  $n_1$  willing to invest no matter what others do

 $\circ$  Induction shows  $n_i$  willing to invest if  $(n_1,\ldots,n_{i-1})$  do, no matter rest

### Characterizing the optimal return schedule

#### Lemma

(C1)-(C2)  $\iff \exists \text{ permutation } \pi = (n_1, \dots, n_N) \text{ of set of agents s.t., for each } i, n_i \text{ is willing to invest if } (n_1, \dots, n_{i-1}) \text{ do, no matter rest}$ 

- (⇒) By (C2),  $\exists n_1$  willing to invest if noone does; by (C1),  $n_1$  willing if all do • Hence,  $n_1$  willing to invest no matter what others do
  - $\circ$  Induction shows  $n_i$  willing to invest if  $(n_1,\ldots,n_{i-1})$  do, no matter rest
  - Optimal schedule specifies  $\pi = (n_1, \ldots, n_N)$  and  $(r_i, k_i)$  for each  $n_i$ 
    - First characterize  $(r_i^*,k_i^*)_{i\in S}$  and then solve for  $\pi^*=(n_1^*,\ldots,n_N^*)$

### **Optimal returns**

Given 
$$\pi = (n_1, \ldots, n_N)$$
, let  $X_i \equiv \sum_{j=1}^i x_{n_j}$ 

### Proposition

Optimal schedule specifies permutation  $\pi$  and  $(r_i^*, k_i^*)_{i \in S}$  s.t., for each i,

- $n_i$  is indifferent over investing if  $(n_1, \ldots, n_{i-1})$  invest and others don't
- Returns satisfy

$$r_{i}^{*} = rac{ heta}{F\left(X_{i}
ight)}$$
 and  $k_{i}^{*} = 0$ 

By Lemma,  $\exists \pi$  and  $(r_i^*, k_i^*)$  s.t.  $\forall i \in S$  and  $\forall j \in \{i, \dots, N\}$ ,

$$r_i^* F(X_j) + k_i^* \left(1 - F(X_j)\right) \ge \theta$$

By Lemma, 
$$\exists \pi$$
 and  $(r_i^*, k_i^*)$  s.t.  $\forall i \in S$  and  $\forall j \in \{i, \dots, N\}$ ,

$$r_i^* F(X_j) + k_i^* \left(1 - F(X_j)\right) \ge \theta$$

 $\blacksquare$  By BC and  $\theta>0,$  schedule must set  $\forall i$ 

$$r_i^* > 0 \ge k_i^*$$

By Lemma, 
$$\exists \pi$$
 and  $(r_i^*, k_i^*)$  s.t.  $\forall i \in S$  and  $\forall j \in \{i, \dots, N\}$ ,

$$r_i^* F(X_j) + k_i^* \left(1 - F(X_j)\right) \ge \theta$$

• By BC and  $\theta > 0$ , schedule must set  $\forall i$ 

 $r_i^* > 0 \ge k_i^* \rightarrow \text{strategic complementarities (SC)}$ 

By Lemma, 
$$\exists \pi$$
 and  $(r_i^*, k_i^*)$  s.t.  $\forall i \in S$  and  $\forall j \in \{i, \dots, N\}$ ,

$$r_i^* F(X_j) + k_i^* \left(1 - F(X_j)\right) \ge \theta$$

• By BC and  $\theta > 0$ , schedule must set  $\forall i$ 

 $r_i^* > 0 \ge k_i^* \rightarrow \text{strategic complementarities (SC)}$ 

Thus, optimal scheme is "divide and conquer":

$$r_i^*F(X_i) + k_i^*\left(1 - F(X_i)\right) = \theta \quad \forall i \in S$$

• Given 
$$r_i^* F(X_i) + k_i^* (1 - F(X_i)) = \theta$$
, set  $k_i^* = 0$ ,  $r_i^* = \frac{\theta}{F(X_i)}$ 

• If  $k_i < 0$ ,  $\uparrow k_i$  by small  $\varepsilon > 0$  and  $\downarrow r_i$  by  $\varepsilon \eta_i$  for  $\eta_i \equiv \frac{1 - 1 - (X_i)}{F(X_i)}$ 

Incentives are preserved

$$\circ$$
 Firm's payoff  $V$  changes by  $arepsilon \frac{(F(X_N)-F(X_i))}{F(X_i)} \geq 0$ 

Given 
$$r_i^* F(X_i) + k_i^* (1 - F(X_i)) = \theta$$
, set  $k_i^* = 0$ ,  $r_i^* = \frac{\theta}{F(X_i)}$ 

 $\circ \text{ If } k_{i} < 0, \uparrow k_{i} \text{ by small } \varepsilon > 0 \text{ and } \downarrow r_{i} \text{ by } \varepsilon \eta_{i} \text{ for } \eta_{i} \equiv \frac{1 - F(X_{i})}{F(X_{i})}$ 

Incentives are preserved

$$\circ$$
 Firm's payoff  $V$  changes by  $\varepsilon \frac{(F(X_N)-F(X_i))}{F(X_i)} \geq 0$ 

- Intuition: firm conditions on all investing,  $n_i$  on only  $(n_1, \ldots, n_i)$ 
  - Hence, firm values  $r_i$  relative to  $k_i$  more than  $n_i$

Given 
$$r_i^* F(X_i) + k_i^* (1 - F(X_i)) = \theta$$
, set  $k_i^* = 0$ ,  $r_i^* = \frac{\theta}{F(X_i)}$ 

 $\circ \text{ If } k_{i} < 0, \uparrow k_{i} \text{ by small } \varepsilon > 0 \text{ and } \downarrow r_{i} \text{ by } \varepsilon \eta_{i} \text{ for } \eta_{i} \equiv \frac{1 - F\left(X_{i}\right)}{F\left(X_{i}\right)}$ 

Incentives are preserved

$$\circ$$
 Firm's payoff  $V$  changes by  $\varepsilon \frac{(F(X_N)-F(X_i))}{F(X_i)} \geq 0$ 

- Intuition: firm conditions on all investing,  $n_i$  on only  $(n_1,\ldots,n_i)$ 
  - Hence, firm values  $r_i$  relative to  $k_i$  more than  $n_i$

#### Remark

Optimal scheme yields unique rationalizable outcome

### Finding the optimal permutation

•  $(r_i^*, k_i^*)_{i \in S}$  maximally relaxes BC. Firm can thus guarantee  $(x_n)_{n \in S}$  iff

$$A \geq \sum_{i=1}^{N} \frac{\theta}{F\left(X_{i}\right)} x_{n_{i}} \text{ for some } \pi$$

### Finding the optimal permutation

•  $(r_i^*, k_i^*)_{i \in S}$  maximally relaxes BC. Firm can thus guarantee  $(x_n)_{n \in S}$  iff

$$A \geq \sum_{i=1}^{N} rac{ heta}{F\left(X_{i}
ight)} x_{n_{i}} ext{ for some } \pi$$

Firm's payoff is

$$V = \left(A - \theta \sum_{i=1}^{N} \frac{x_{n_i}}{F(X_i)}\right) F(X_N)$$

• Optimal permutation  $\pi^*$  minimizes firm's costs under success:

$$\theta \sum_{i=1}^{N} \frac{x_{n_i}}{F(X_i)}$$

## Optimal permutation

### Proposition

Suppose 1/F(x) convex over [0, X]

For any investments  $(x_n)_{n\in S}$  with  $X_N \leq X$ ,  $\pi^* = (n_1^*, \ldots, n_N^*)$  satisfies

$$x_{n_1^*} \ge \ldots \ge x_{n_N^*}$$

Hence, larger investors receive higher net returns than smaller investors

# Optimal permutation

#### Proposition

Suppose 1/F(x) convex over [0, X]

For any investments  $(x_n)_{n\in S}$  with  $X_N \leq X$ ,  $\pi^* = (n_1^*, \ldots, n_N^*)$  satisfies

 $x_{n_1^*} \ge \ldots \ge x_{n_N^*}$ 

Hence, larger investors receive higher net returns than smaller investors

# Remark F(x) log-concave $\implies 1/F(x)$ convex

Most commonly used distributions are log-concave

# Example

• F uniform over [0, 30],  $\theta = 10\%$ ,  $(x_1, x_2) = (10, 20)$ 



• Optimal permutation is  $\pi^* = (2, 1)$ 

### Intuition

- Agent  $n_i$  paid on marginal unit invested:  $r_i^* = \theta/F(X_i)$
- **Thus, if** 1/F(x) is convex, decreasing order minimizes costs
  - I.e., optimal to move down the return curve  $\theta/F(X_i)$  "quickly"
- $\blacksquare$  Intuitively, large  $x_n$  self-insures agent, reduces required risk premium
  - Place large  $x_n$  when risk premium drops most sharply with investment

## Intuition

- Agent  $n_i$  paid on marginal unit invested:  $r_i^* = \theta/F(X_i)$
- **Thus, if** 1/F(x) is convex, decreasing order minimizes costs
  - I.e., optimal to move down the return curve  $heta/F(X_i)$  "quickly"
- $\blacksquare$  Intuitively, large  $x_n$  self-insures agent, reduces required risk premium
  - Place large  $x_n$  when risk premium drops most sharply with investment

#### Remark

1/F(x) convex (over range) not only sufficient but also necessary for result

Characterizing the optimal investments

• So far  $(x_n)_{n\in S}$  as given. What are the optimal capital amounts?

Characterizing the optimal investments

So far  $(x_n)_{n \in S}$  as given. What are the optimal capital amounts?

Definition For two N-vectors  $\mathbf{x}$  and  $\hat{\mathbf{x}}$ ,  $\hat{\mathbf{x}}$  majorizes  $\mathbf{x}$  if

- components of  $\widehat{\mathbf{x}}$  and  $\mathbf{x}$  have same total sum, and
- $\forall m$ , sum of m smallest components is weakly smaller in  $\widehat{\mathbf{x}}$  than in  $\mathbf{x}$

# Optimal investments

### Proposition

Suppose 1/F(x) convex over [0, X]. Take investments  $(x_n)_{n \in S}$ ,  $X_N \leq X$ Let investments  $(\hat{x}_n)_{n \in S}$  majorize  $(x_n)_{n \in S}$ 

Firm's expected payoff under  $(\widehat{x}_n)_{n\in S}$  is higher than that under  $(x_n)_{n\in S}$ 

# Optimal investments

### Proposition

Suppose 1/F(x) convex over [0, X]. Take investments  $(x_n)_{n \in S}$ ,  $X_N \leq X$ Let investments  $(\hat{x}_n)_{n \in S}$  majorize  $(x_n)_{n \in S}$ 

Firm's expected payoff under  $(\widehat{x}_n)_{n\in S}$  is higher than that under  $(x_n)_{n\in S}$ 

#### Corollary

Given  $(\overline{x}_n)_{n \in S}$ , firm raises capital from agents with largest endowments

• If  $X_N < \overline{X}_N$ , not only preferential returns but also preferential access

## Example

- If  $(x_1, x_2, x_3) = (10, 10, 10)$ , cost is 10(30% + 15% + 10%) = 5.5
- If  $(x_1, x_2, x_3) = (10, 20, 0)$ , cost is 4. Further reduce w/transfer  $1 \rightarrow 2$



### Intuition

- Aggregating capital of subset reduces strategic uncertainty
  - Self-insurance: single agent knows she will invest the whole amount
- More generally, derive  $(\hat{x}_n)_n$  from  $(x_n)_n$  by finite sequence of transfers
  - From small to large (Hardy-Littlewood-Polya 1934)
- We show any such transfer lowers firm's costs
  - Move down return curve  $\theta/F(X_i)$  "more quickly" given original  $\pi^*$
  - Changing to optimal  $\pi^*$  can only raise firm's payoff further

### Distribution of returns

Given  $\pi^* = (n_1^*, \dots, n_N^*)$ , range of net returns is  $F(X_N) (r_1^* - r_N^*)$ 

### Distribution of returns

Given  $\pi^* = (n_1^*, \dots, n_N^*)$ , range of net returns is  $F(X_N) (r_1^* - r_N^*)$ 

#### Proposition

Suppose 1/F(x) convex over [0, X]. Take investments  $(x_n)_{n \in S}$ ,  $X_N \leq X$ Let investments  $(\hat{x}_n)_{n \in S}$  majorize  $(x_n)_{n \in S}$ 

Range of net returns under  $(\hat{x}_n)_{n\in S}$  is smaller than that under  $(x_n)_{n\in S}$ 

### Distribution of returns

Given  $\pi^* = (n_1^*, \dots, n_N^*)$ , range of net returns is  $F(X_N) (r_1^* - r_N^*)$ 

#### Proposition

Suppose 1/F(x) convex over [0, X]. Take investments  $(x_n)_{n \in S}$ ,  $X_N \leq X$ Let investments  $(\hat{x}_n)_{n \in S}$  majorize  $(x_n)_{n \in S}$ 

Range of net returns under  $(\hat{x}_n)_{n\in S}$  is smaller than that under  $(x_n)_{n\in S}$ 

- Dispersion lowers largest investor's return; keeps smallest unchanged
  - As a result, range of final capital can decrease with dispersion

### Discussion of results

Differential net returns: larger investors get more per unit invested

- Consistent with evidence from private equity
- Suggests "winner-takes-all dynamics": large investors become larger

Distribution of capital: larger investments from wealthier investors

- Dispersion in investor size increases firm's payoff
- Dispersion thus also increases feasibility of investment
- Return advantage of large investors depends on capital distribution
  - Scheme is less discriminatory when investments are more unequal
  - To the extent that final capital may become more equal with dispersion

• Suppose firm has capital W > 0, with  $W < \theta X_N$ 

• BC: 
$$\forall \mathcal{Y} = (y_1, \dots, y_N)$$
,  

$$\sum_{n=1}^N r_n y_n x_n \leq W + A \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \leq W$$

• Suppose firm has capital W > 0, with  $W < \theta X_N$ 

• BC: 
$$\forall \mathcal{Y} = (y_1, \dots, y_N)$$
,  

$$\sum_{n=1}^N r_n y_n x_n \leq W + A \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \leq W$$

By Lemma:  $n_i$  willing to invest if  $(n_1,\ldots,n_{i-1})$  do, no matter rest

• Suppose firm has capital W > 0, with  $W < \theta X_N$ 

• BC: 
$$\forall \mathcal{Y} = (y_1, \dots, y_N)$$
,  

$$\sum_{n=1}^N r_n y_n x_n \leq W + A \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \leq W$$

- By Lemma:  $n_i$  willing to invest if  $(n_1,\ldots,n_{i-1})$  do, no matter rest
- Firm can induce strategic substitutability.

• Suppose firm has capital W > 0, with  $W < \theta X_N$ 

• BC: 
$$\forall \mathcal{Y} = (y_1, \dots, y_N),$$
  

$$\sum_{n=1}^N r_n y_n x_n \leq W + A \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \leq W$$

- By Lemma:  $n_i$  willing to invest if  $(n_1, \ldots, n_{i-1})$  do, no matter rest
- Firm can induce strategic substitutability. Show  $r_i \ge k_i \ \forall i$  is optimal
  - If  $k_i > r_i$  for some i, then by BC  $k_j < r_j$  for some  $j \neq i$
  - $n_i$  indifferent when all others invest;  $n_j$  when only  $(n_1, \ldots, n_{j-1})$  do
  - Perturbation with  $\downarrow k_i$ ,  $\uparrow r_i$ ,  $\uparrow k_j$ ,  $\downarrow r_j$  (weakly) increases firm's payoff

### Proposition

Suppose 1/F(x) convex over [0, X]. Take  $(x_n)_{n \in S}$ ,  $W + X_N \leq X$ 

- $\pi^* = (n_1^*, \dots, n_N^*)$  satisfies  $x_{n_1^*} \ge \dots \ge x_{n_N^*}$
- $(r^*_i,k^*_i)_{i\in S}$  satisfy

$$k_{i}^{*} = \frac{\min\{\theta x_{n_{i}^{*}}, W_{i}\}}{x_{n_{i}^{*}}} \text{ and } r_{i}^{*} = \frac{\theta - k_{i}^{*}(1 - F(W + X_{i}))}{F(W + X_{i})}$$
  
where  $W_{N} \equiv W$ ,  $W_{i} \equiv \max\{W - \sum_{j=i+1}^{N} k_{j}^{*} x_{n_{j}^{*}}, 0\}$  for  $i \in \{1, \dots, N-1\}$ 

### Proposition

Suppose 1/F(x) convex over [0, X]. Take  $(x_n)_{n \in S}$ ,  $W + X_N \leq X$ 

- $\pi^* = (n_1^*, \dots, n_N^*)$  satisfies  $x_{n_1^*} \geq \dots \geq x_{n_N^*}$
- $(r^*_i,k^*_i)_{i\in S}$  satisfy

$$k_{i}^{*} = \frac{\min\{\theta x_{n_{i}^{*}}, W_{i}\}}{x_{n_{i}^{*}}} \text{ and } r_{i}^{*} = \frac{\theta - k_{i}^{*}(1 - F(W + X_{i}))}{F(W + X_{i})}$$
  
where  $W_{N} \equiv W$ ,  $W_{i} \equiv \max\{W - \sum_{j=i+1}^{N} k_{j}^{*} x_{n_{j}^{*}}, 0\}$  for  $i \in \{1, \dots, N-1\}$ 

Benchmark results extend, plus predictions on risk profile

- Smallest investors fully insured, until W depleted
- Then order investors in decreasing size order

# Proportional surplus

Suppose project success yields surplus Rx if x invested, for R > 0

• BC: 
$$\forall \mathcal{Y} = (y_1, \dots, y_N),$$

$$\sum_{n=1}^N r_n y_n x_n \leq \sum_{n=1}^N R y_n x_n \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \leq 0$$

### Proportional surplus

Suppose project success yields surplus Rx if x invested, for R > 0

• BC: 
$$\forall \mathcal{Y} = (y_1, \dots, y_N)$$
,

$$\sum_{n=1}^N r_n y_n x_n \le \sum_{n=1}^N R y_n x_n \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \le 0$$

Problem with fixed surplus  $A_R \equiv RX_N$  is relaxed version

• BC with proportional surplus adds restriction:  $\max_{n \in S} r_n \leq R$ 

### Proportional surplus

Suppose project success yields surplus Rx if x invested, for R > 0

• BC: 
$$\forall \mathcal{Y} = (y_1, \dots, y_N),$$

$$\sum_{n=1}^N r_n y_n x_n \le \sum_{n=1}^N R y_n x_n \quad \text{and} \quad \sum_{n=1}^N k_n y_n x_n \le 0$$

Problem with fixed surplus  $A_R \equiv RX_N$  is relaxed version

• BC with proportional surplus adds restriction:  $\max_{n \in S} r_n \leq R$ 

Benchmark results extend. Can guarantee  $(x_n)_{n \in S}$  iff  $r_{n_1}^* \leq R$ 

· Solution to relaxed problem minimizes highest return given constraints

# Concluding remarks

Capital raising for new projects must address strategic risk

- We characterize firm's optimal unique-implementation scheme
- Broad insight: strategic risk may be a driver of inequality
  - Profit-max mechanism favors certain agents to lower risk on others
  - Under condition, favorable terms to those already in favorable position
- Further applications
  - Monopolist offers exclusive contracts to buyers w/different demand size
  - · Firm offers rewards to team of workers with different ability
  - Bank offers collateral and interest to depositors of different size

# Thank you!