Incentives and Discrimination

Eyal Winter Center for the Study of Rationality, Mini-Course NTU, April 2024

Incentives and Discrimination

Eyal Winter

- Why do we see hierarchies in organizations where authority plays no role at all?
- Why do we see major differences in bonuses across top level managers of the same firm?
- Why should we expect more inequality among workers who are complements (in the production technology) than among ones who are substitutes?

The Model

- The organizational project involves n tasks each performed by a different individual (agent).
 - Agents decide whether to invest on the task they perform.
- ▶ c is the cost of investment (constant across agents).
 - \blacktriangleright If i invests his task ends successfully with probability 1
 - If he doesn't invest this probability is only α .
 - ▶ The project succeeds if and only if all tasks end successfully.
- If the project succeeds agents are paid $v = (v_1, ..., v_n)$.
 - ▶ They are paid 0 if it fails.

The Game G(v)

Strategies:

- ▶ $d_i = 1$ investment,
- ► $d_i = 0$ non-investment.

Payoffs:
$$f_i(d) = v_i \alpha^{s(d)} - cI_{\{d_i = 1\}}$$
 where

*I*_{d_i = 1} = 1 if d_i = 1 and 0 otherwise. *s*(d) = |{j | d_j = 0}| is the number of individuals who choose to shirk.

The Mechanism

- We say that a mechanism v = (v₁, ..., vₙ) is incentive inducing (INI) if
- ▶ v induces all players to invest in every equilibrium,
 - ▶ i.e., d = (1, 1, ..., 1) is the only Nash equilibrium of the game G(v).
- We will say that an INI mechanism v is optimal if $\sum_{i \in N} v_i' \ge \sum_{i \in N} v_i$ for every other INI mechanism v'.

Proposition 1:

• Let
$$v^* = \left(\frac{c}{1-\alpha}, \frac{c}{\alpha(1-\alpha)}, \cdots, \frac{c}{\alpha^{n-1}(1-\alpha)}\right)$$

A mechanism v is an optimal *INI* mechanism iff
v = θ(v*) for some permutation θ,
i.e. all optimal mechanisms are discriminatory.

Why Discrimination?

Define v(k) the reward that will make an agent indifferent between investing and shirking given that k other agents invest.

►
$$v(k)$$
 solves $v\alpha^{n-k} = v\alpha^{n-k-1} - c$, or: $v(k) = \frac{c}{\alpha^{n-k-1}(1-\alpha)}$
► $v(k) > v(k+1)$.

In an optimal mechanism the principal pays v(0) to some player making it a dominant strategy for him/her to invest.
Then v(1) to another, v(2) to a third, etc.

General Success Technologies p

- ▶ p is a function from $\{0, 1\}^N$ to [0, 1].
 - With symmetry,
- ▶ $p: \{0,1, ..., n\} \rightarrow [0, 1]$, with
 - p(k) = the probability of success if k agents contribute.
 p is strictly increasing.
- In the benchmark model $p(k) = \alpha^{n-k}$.

▶ Proposition 2: A symmetric *INI* mechanism exists iff $p(n) - p(n-1) \le p(k+1) - p(k)$ for all k < n - 1.

Returns to Scale and Discrimination

2024/4/7

- \blacktriangleright We say that a technology p has increasing returns to
 - scale if p(k+1) p(k) is increasing in k.
- We say that an *INI* mechanism v is fully discriminating if $v_j \neq v_i$ for all pairs i, j
- Proposition 3: The technology p has increasing returns to scale iff all optimal INI mechanisms are fully discriminating.

Rewards:
$$\left(\frac{c}{p(1)-p(0)}, \frac{c}{p(2)-p(1)}, \cdots, \frac{c}{p(n)-p(n-1)}\right)$$

Different Costs

- Proposition 4: Let p be an increasing returns to scale technology, and
- Let $c_1 < c_2 < ... < c_n$ denote agents' effort costs, then • the (unique) optimal mechanism pays player j $v_j^* = \frac{c_j}{p(j) - p(j-1)}$

• i.e. v_j^*/c_j is decreasing with j.

What If Agents Are "Almost" Identical?

- $\bullet c_1 = 1$
- $c_2 = 1.00001$
- $c_3 = 1.00002$
- $\blacktriangleright \alpha = 1/2,$
- $v^* = (8, 4.00004, 2.00004)$

Differential Tasks

- Proposition 5: Consider the benchmark model in Section 2 and assume that $\alpha_1 < \alpha_2 < ... < \alpha_n$ and that c is the constant effort cost.
- Then the optimal mechanism is unique and pays

$$v_i = \frac{c}{\prod_{j=i+1}^n \alpha_j (1 - \alpha_i)}$$
 For $i < n$ and $v_n = c/(1 - \alpha_n)$
Furthermore, negligible differences in the values of α_j 's result in major differences in rewards.

Incentives and Discrimination

Tasks of Almost Equal Importance

- $\blacktriangleright c_i = 1$
- $ho lpha_1 = .5$
- ► $\alpha_2 = .5001$
- $lpha_3 = .5002$
- $v^* = (7.995, 3.999, 2.001)$

Coordination Strong Equilibrium/Coalition Proof

 \blacktriangleright Proposition 5: If p has increasing returns to scale then

• (v(n-1), ..., v(n-1)) is an optimal INI mechanism with respect to Strong Nash Implementation.

where
$$v(n-1) = \frac{c}{p(n) - p(n-1)}$$

Incentives and Discrimination

Single Agent

- Assume that a single agent can handle all tasks and his effort cost is c for each task.
 - The principal offers to pay the agent v if the project succeeds and 0 otherwise.
- The incentive constraints that the agent will find it better to invest all tasks to investing on none:

$$v lpha^n > v - nc$$
,

which is
$$v = \frac{nc}{1 - \alpha^n}$$

Sequential Moves

• (Winter 2006) The optimal sequential mechanism pays:

$$v_{1} = \frac{c}{1 - \alpha^{n}}$$
$$v_{2} = \frac{c}{1 - \alpha^{n-1}} \le \frac{c}{1 - \alpha^{n}} = v_{1}$$

$$v_n = \frac{c}{1-\alpha} \le \frac{c}{1-\alpha^2} = v_{n-1} \le \dots \le \frac{c}{1-\alpha^n} = v_1$$

▶ Hence the sequential mechanism is cheaper.

Increasing Returns to Scale

Incentives and Discrimination

Eyal Winter